1,570
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Fusobacterium nucleatum dissemination by neutrophils

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2217067 | Received 01 Feb 2023, Accepted 18 May 2023, Published online: 04 Jun 2023

References

  • Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat Rev Immunol. 2021;21(7):426–11. doi: 10.1038/s41577-020-00488-6. Epub 2021/01/28; PubMed PMID: 33510490; PubMed Central PMCID: PMC7841384
  • Kostic AD, Gevers D, Pedamallu CS, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–298. doi:10.1101/gr.126573.111. Epub 2011/10/20; PubMed PMID: 22009990; PubMed Central PMCID: PMC3266036.
  • McCoy AN, Araujo-Perez F, Azcarate-Peril A, et al. Fusobacterium is associated with colorectal adenomas. PLoS ONE. 2013;8(1):e53653. doi:10.1371/journal.pone.0053653. Epub 2013/01/22; PubMed PMID: 23335968; PubMed Central PMCID: PMC3546075.
  • Domokos Z, Uhrin E, Szabo B, et al. Patients with inflammatory bowel disease have a higher chance of developing periodontitis: a systematic review and meta-analysis. Front Med. 2022;9:1020126. doi:10.3389/fmed.2022.1020126. Epub 2022/11/08; PubMed PMID: 36425101; PubMed Central PMCID: PMC9679143.
  • Swidsinski A, Dorffel Y, Loening-Baucke V, et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut. 2011;60(1):34–40. doi: 10.1136/gut.2009.191320. Epub 2009/11/18; PubMed PMID: 19926616.
  • Bale BF, Doneen AL, Vigerust DJ. High-risk periodontal pathogens contribute to the pathogenesis of atherosclerosis. Postgrad Med J. 2017;93(1098):215–220. doi:10.1136/postgradmedj-2016-134279. Epub 2016/12/03; PubMed PMID: 27899684; PubMed Central PMCID: PMC5520251.
  • Pyysalo MJ, Pyysalo LM, Pessi T, et al. The connection between ruptured cerebral aneurysms and odontogenic bacteria. J Neurol Neurosurg Psychiatry. 2013;84(11):1214–1218. doi: 10.1136/jnnp-2012-304635. Epub 2013/06/14; PubMed PMID: 23761916
  • Williams MD, Kerber CA, Tergin HF. Unusual presentation of Lemierre’s syndrome due to Fusobacterium nucleatum. J Clin Microbiol. 2003;41(7):3445–3448. doi: 10.1128/jcm.41.7.3445-3448.2003. Epub 2003/07/05; PubMed PMID: 12843117; PubMed Central PMCID: PMC165296
  • Sparks Stein P, Steffen MJ, Smith C, et al. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimer’s Dementia. 2012;8(3):196–203. doi:10.1016/j.jalz.2011.04.006. Epub 2012/05/02 ; PubMed PMID: 22546352; PubMed Central PMCID: PMC3712346.
  • Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol. 2015;23:141–147. doi:10.1016/j.mib.2014.11.013. Epub 2015/01/13; PubMed PMID: 25576662; PubMed Central PMCID: PMC4323942.
  • Gauthier S, Tetu A, Himaya E, et al. The origin of Fusobacterium nucleatum involved in intra-amniotic infection and preterm birth. J Matern-Fetal Neonatal Med. 2011;24(11):1329–1332. doi: 10.3109/14767058.2010.550977. Epub 2011/02/15; PubMed PMID: 21314291.
  • Han YW, Fardini Y, Chen C, et al. Term stillbirth caused by oral Fusobacterium nucleatum. Obstetrics Gynecol. 2010;115(2):442–445. doi: 10.1097/AOG.0b013e3181cb9955. Epub 2010/04/30; PubMed PMID: 20093874; PubMed Central PMCID: PMC3004155.
  • Wang X, Buhimschi CS, Temoin S, et al. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS ONE. 2013;8(2):e56131. doi:10.1371/journal.pone.0056131. Epub 2013/02/26. PubMed PMID: 23437088; PubMed Central PMCID: PMC3577789.
  • Bohrer JC, Kamemoto LE, Almeida PG, et al. Acute chorioamnionitis at term caused by the oral pathogen Fusobacterium nucleatum. Hawaii J Med Public Health. 2012;71(10): 280–281. Epub 2012/11/02. PubMed PMID: 23115747; PubMed Central PMCID: PMC3484970.
  • Barak S, Oettinger-Barak O, Machtei EE, et al. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J Periodontol. 2007;78(4):670–676. doi:10.1902/jop.2007.060362. Epub 2007/04/03 PubMed PMID: 17397314.
  • Kolenbrander PE, London J. Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol. 1993;175(11):3247–3252. doi: 10.1128/jb.175.11.3247-3252.1993. Epub 1993/06/01. PubMed PMID: 8501028; PubMed Central PMCID: PMC204720
  • Krishnan K, Chen T, Paster BJ. A practical guide to the oral microbiome and its relation to health and disease. Oral Dis. 2017;23(3):276–286. doi:10.1111/odi.12509. Epub 2016/05/25. PubMed PMID: 27219464; PubMed Central PMCID: PMC5122475.
  • Vander Haar EL, So J, Gyamfi-Bannerman C, et al. Fusobacterium nucleatum and adverse pregnancy outcomes: epidemiological and mechanistic evidence. Anaerobe. 2018;50:55–59. doi:10.1016/j.anaerobe.2018.01.008. Epub 2018/02/08. PubMed PMID: 29409815.
  • Moulder JW. Phagocytosis: the Trojan horse of intracellular parasitism. Trans Kans Acad Sci (1903-). 1975;78(1–2):105–118. PMID: 1236561.
  • Meltzer MS, Gendelman HE. Mononuclear phagocytes as targets, tissue reservoirs, and immunoregulatory cells in human immunodeficiency virus disease. Curr Top Microbiol Immunol. 1992;181:239–263. doi:10.1007/978-3-642-77377-8_9. PubMed PMID: 1424782.
  • Meltzer MS, Skillman DR, Gomatos PJ, et al. Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol. 1990;8(1):169–194. doi:10.1146/annurev.iy.08.040190.001125. PubMed PMID: 2188662.
  • Zuck M, Ellis T, Venida A, et al. Extrusions are phagocytosed and promote Chlamydia survival within macrophages. Cell Microbiol. 2017;19(4):e12683. doi:10.1111/cmi.12683. Epub 2016/11/21. PubMed PMID: 27739160.
  • Peluso R, Haase A, Stowring L, et al. A trojan horse mechanism for the spread of visna virus in monocytes. Virology. 1985;147(1):231–236. doi:10.1016/0042-6822(85)90246-6. PubMed PMID: 2998068.
  • Charlier C, Nielsen K, Daou S, et al. Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun. 2009;77(1):120–127. doi: 10.1128/IAI.01065-08. Epub 2008/10/20. PubMed PMID: 18936186; PubMed Central PMCID: PMC2612285
  • Drevets DA, Dillon MJ, Schawang JS, et al. The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol. 2004;172(7):4418–4424. doi:10.4049/jimmunol.172.7.4418. PubMed PMID: 15034057.
  • Santiago-Tirado FH, Onken MD, Cooper JA, et al. Trojan horse transit contributes to blood-brain barrier crossing of a eukaryotic pathogen. MBio. 2017;8(1): doi:10.1128/mBio.02183-16. Epub 20170131. PubMed PMID: 28143979; PubMed Central PMCID: PMC5285505.
  • Coelho C, Camacho E, Salas A, et al. Intranasal Inoculation of Cryptococcus neoformans in mice produces nasal infection with rapid brain dissemination. mSphere. 2019;4(4): doi:10.1128/mSphere.00483-19. Epub 20190807. PubMed PMID: 31391283; PubMed Central PMCID: PMC6686232.
  • Gaylord EA, Choy HL, TL D. Dangerous liaisons: interactions of cryptococcus neoformans with host phagocytes. Pathogens. 2020;9(11):891. doi:10.3390/pathogens9110891. Epub 20201027. PubMed PMID: 33121050; PubMed Central PMCID: PMC7692806.
  • Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, et al. HIV and mature dendritic cells: trojan exosomes riding the trojan horse? PLOS Pathog. 2010;6(3):e1000740. doi:10.1371/journal.ppat.1000740. Epub 20100326. PubMed PMID: 20360840; PubMed Central PMCID: PMC2845607.
  • McDonald EM, Anderson J, Wilusz J, et al. Zika virus replication in myeloid cells during acute infection is vital to viral dissemination and pathogenesis in a mouse model. J Virol. 2020;94(21): doi:10.1128/JVI.00838-20. Epub 20201014 PubMed PMID: 32847848; PubMed Central PMCID: PMC7565634.
  • Xu P, Shan C, Dunn TJ, et al. Role of microglia in the dissemination of zika virus from mother to fetal brain. PLoS Negl Trop Dis. 2020;14(7):e0008413. doi:10.1371/journal.pntd.0008413. Epub 20200706. PubMed PMID: 32628667; PubMed Central PMCID: PMC7365479.
  • Bierly AL, Shufesky WJ, Sukhumavasi W, et al. Dendritic cells expressing plasmacytoid marker PDCA-1 are trojan horses during toxoplasma gondii infection. J Immunol. 2008;181(12):8485–8491. doi: 10.4049/jimmunol.181.12.8485. PubMed PMID: 19050266; PubMed Central PMCID: PMC2626190
  • Njiri OA, Zhang X, Zhang Y, et al. CD209 C-Type lectins promote host invasion, dissemination, and infection of toxoplasma gondii. Front Immunol. 2020;11:656. doi:10.3389/fimmu.2020.00656. Epub 2020/04/23. PubMed PMID: 32391004; PubMed Central PMCID: PMC7190871.
  • Carrion J, Scisci E, Miles B, et al. Microbial carriage state of peripheral blood dendritic cells (DCs) in chronic periodontitis influences DC differentiation, atherogenic potential. J Immunol. 2012;189(6):3178–3187. doi:10.4049/jimmunol.1201053. Epub 20120813. PubMed PMID: 22891282; PubMed Central PMCID: PMC3459682.
  • Horn J, Stelzner K, Rudel T, et al. Inside job: staphylococcus aureus host-pathogen interactions. Int J Med Microbiol. 2018;308(6):607–624. doi: 10.1016/j.ijmm.2017.11.009. Epub 20171126. PubMed PMID: 29217333
  • Thwaites GE, Gant V. Are bloodstream leukocytes trojan horses for the metastasis of staphylococcus aureus? Nat Rev Microbiol. 2011;9(3):215–222. doi: 10.1038/nrmicro2508. Epub 20110207. PubMed PMID: 21297670
  • Weiner ZP, Glomski IJ. Updating perspectives on the initiation of bacillus anthracis growth and dissemination through its host. Infect Immun. 2012;80(5):1626–1633. doi: 10.1128/IAI.06061-11. Epub 20120221. PubMed PMID: 22354031; PubMed Central PMCID: PMC3347428
  • Kurgan S, Kansal S, Nguyen D, et al. Strain-specific impact of fusobacterium nucleatum on neutrophil function. J Periodontol. 2017;88(4):380–389. doi:10.1902/jop.2016.160212. Epub 2016/10/21. PubMed PMID: 27762731.
  • Kaplan CW, Ma X, Paranjpe A, et al. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun. 2010;78(11):4773–4778. doi:10.1128/IAI.00567-10. Epub 20100907. PubMed PMID: 20823215; PubMed Central PMCID: PMC2976331.
  • Kalmar JR, Arnold RR, Warbington ML, et al. Superior leukocyte separation with a discontinuous one-step ficoll-hypaque gradient for the isolation of human neutrophils. J Immunol Methods. 1988;110(2):275–281. doi:10.1016/0022-1759(88)90115-9. Epub 1988/06/13. PubMed PMID: 3379316.
  • Polak D, Shapira L, Weiss EI, et al. The role of coaggregation between Porphyromonas gingivalis and Fusobacterium nucleatum on the host response to mixed infection. J Clin Periodontol. 2012;39(7):617–625. doi: 10.1111/j.1600-051X.2012.01889.x. Epub 2012/05/23. PubMed PMID: 22607053
  • Tabrizi SN, Robins-Browne RM. Elimination of extracellular bacteria by antibiotics in quantitative assays of bacterial ingestion and killing by phagocytes. J Immunol Methods. 1993;158(2):201–206. doi: 10.1016/0022-1759(93)90215-s. Epub 1993/02/03. PubMed PMID: 8429226
  • Ellett F, Jalali F, Marand AL, et al. Microfluidic arenas for war games between neutrophils and microbes. Lab Chip. 2019;19(7):1205–1216. doi: 10.1039/C8LC01263F. PMID: 30865740; PMCID: PMC6544356.
  • Ellett F, Elks PM, Robertson AL, et al. Defining the phenotype of neutrophils following reverse migration in zebrafish. J Leukocyte Biol. 2015;98(6):975–981. doi: 10.1189/jlb.3MA0315-105R. Epub 2015/06/14. PubMed PMID: 26071567; PubMed Central PMCID: PMC4661044
  • Ellett F, Marand AL, Irimia D. Multifactorial assessment of neutrophil chemotaxis efficiency from a drop of blood. J Leukoc Biol. 2022;111(6):1175–1184 doi:10.1002/JLB.3MA0122-378RR. Epub: 2022/01/31. PubMed PMID: 35100458; PubMed Central PMCID: PMC9133106.
  • Mathias JR, Perrin BJ, Liu TX, et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukocyte Biol. 2006;80(6):1281–1288. doi: 10.1189/jlb.0506346. Epub 2006/09/12. PubMed PMID: 16963624
  • Ellett F, Pase L, Hayman JW, et al. Mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 2011;117(4):e49–56. doi:10.1182/blood-2010-10-314120. Epub 2010/11/19. PubMed PMID: 21084707; PubMed Central PMCID: PMC3056479.
  • Stirling DR, Suleyman O, Gil E, et al. Analysis tools to quantify dissemination of pathology in zebrafish larvae. Sci Rep. 2020; 10(1):3149. doi:10.1038/s41598-020-59932-1. PubMed PMID: 32081863; PubMed Central PMCID: PMC7035342.
  • Bhuiyan MS, Ellett F, Murray GL, et al. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A. 2016;113(34):9599–9604. doi:10.1073/pnas.1523116113. Epub 2016/08/11. PubMed PMID: 27506797; PubMed Central PMCID: PMC5003227.
  • Ellett F, Pazhakh V, Pase L, et al. Macrophages protect Talaromyces marneffei conidia from myeloperoxidase-dependent neutrophil fungicidal activity during infection establishment in vivo. PLOS Pathog. 2018;14(6):e1007063. doi:10.1371/journal.ppat.1007063. Epub 2018/06/09. PubMed PMID: 29883484; PubMed Central PMCID: PMC6010348.
  • Hamza B, Irimia D. Whole blood human neutrophil trafficking in a microfluidic model of infection and inflammation. Lab Chip. 2015;15(12):2625–2633. doi:10.1039/c5lc00245a. Epub 2016/06/21. PubMed PMID: 25987163; PubMed Central PMCID: PMC4457540.
  • Ellett F, Jorgensen J, Frydman GH, et al. Neutrophil interactions stimulate evasive hyphal branching by aspergillus fumigatus. PLOS Pathog. 2017;13(1):e1006154. doi: 10.1371/journal.ppat.1006154. Epub 2017/01/12. PubMed PMID: 28076396; PubMed Central PMCID: PMC5261818
  • Jones CN, Ellett F, Robertson AL, et al. Bifunctional small molecules enhance neutrophil activities against aspergillus fumigatus in vivo and in vitro. Front Immunol. 2019;10:644. doi:10.3389/fimmu.2019.00644. Epub 2019/04/27. PubMed PMID: 31024528; PubMed Central PMCID: PMC6465576.
  • Stirling DR, Suleyman O, Gil E, et al. Analysis tools to quantify dissemination of pathology in zebrafish larvae. Sci Rep. 2020;10(1):1–10.
  • Prajsnar TK, Hamilton R, Garcia‐lara J, et al. A privileged intraphagocyte niche is responsible for disseminated infection of S taphylococcus aureus in a zebrafish model. Cell Microbiol. 2012;14(10):1600–1619. PMID: 22694745 PMCID: PMC3470706. doi: 10.1111/j.1462-5822.2012.01826.x Epub 2012/07/04.
  • Hopke A, Scherer A, Kreuzburg S, et al. Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat Commun. 2020;11(1):12031. doi:10.1038/s41467-020-15834-4. Epub 2020/04/27. PubMed PMID: 32341348; PubMed Central PMCID: PMC7184738.
  • Renshaw SA, Loynes CA, Trushell DM et al, A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108(13):3976–3978. doi: 10.1182/blood-2006-05-024075. Epub 2006/08/22. PMID: 16926288
  • Guo M, Reynolds H, Stinson M, et al. Isolation and characterization of a human neutrophil aggregation defective mutant of Fusobacterium nucleatum. FEMS Immunol Med Microbiol. 2000;27(3):241–246. doi: 10.1111/j.1574-695X.2000.tb01436.x. PubMed PMID: 10683469
  • Parhi L, Abed J, Shhadeh A, et al. Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc. Cell Rep. 2022;38(12):110537. doi:10.1016/j.celrep.2022.110537. PubMed PMID: 35320712.
  • Ruhl S, Cisar JO, Sandberg AL. Identification of polymorphonuclear leukocyte and HL-60 cell receptors for adhesins of streptococcus gordonii and actinomyces naeslundii. Infect Immun. 2000;68(11):6346–6354. doi: 10.1128/IAI.68.11.6346-6354.2000. PubMed PMID: 11035744; PubMed Central PMCID: PMC97718
  • Dahlgren C, Carlsson SR, Karlsson A, et al. The lysosomal membrane glycoproteins Lamp-1 and Lamp-2 are present in mobilizable organelles, but are absent from the azurophil granules of human neutrophils. Biochem J. 1995;311(Pt 2):667–674. doi: 10.1042/bj3110667. PubMed PMID: 7487911; PubMed Central PMCID: PMC1136051
  • Karlsson A, Carlsson SR, Dahlgren C. Identification of the lysosomal membrane glycoprotein Lamp-1 as a receptor for type-1-fimbriated (mannose-specific) Escherichia coli. Biochem Biophys Res Commun. 1996;219(1):168–172. doi: 10.1006/bbrc.1996.0200. PubMed PMID: 8619802
  • Vozza EG, Mulcahy ME, McLoughlin RM. Making the most of the host; targeting the autophagy pathway facilitates staphylococcus aureus intracellular survival in neutrophils. Front Immunol. 2021;12:667387. doi:10.3389/fimmu.2021.667387. Epub 20210616. PubMed PMID: 34220813; PubMed Central PMCID: PMC8242348.
  • Farrugia C, Stafford GP, Potempa J, et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 2021;288(5):1479–1495. doi:10.1111/febs.15486. Epub 20200801 PubMed PMID: 32681704.
  • Inagaki S, Kimizuka R, Kokubu E, et al. Treponema denticola invasion into human gingival epithelial cells. Microb Pathog. 2016;94:104–111. doi:10.1016/j.micpath.2016.01.010. Epub 2016/01/22. PubMed PMID: 26806000.
  • Laskay T, van Zandbergen G, Solbach W. Neutrophil granulocytes–Trojan horses for leishmania major and other intracellular microbes? Trends Microbiol. 2003;11(5):210–214. doi: 10.1016/s0966-842x(03)00075-1. Epub 2003/06/05 PubMed PMID: 12781523
  • Gresham HD, Lowrance JH, Caver TE, et al. Survival of staphylococcus aureus inside neutrophils contributes to infection. J Immunol. 2000;164(7):3713–3722. doi: 10.4049/jimmunol.164.7.3713. Epub 2000/03/22. PubMed PMID: 10725730
  • Barkaway A, Rolas L, Joulia R, et al. Age-related changes in the local milieu of inflamed tissues cause aberrant neutrophil trafficking and subsequent remote organ damage. Immunity. 2021. DOI:10.1016/j.immuni.2021.04.025. Epub 2021/05/26. PubMed PMID: 34033752.
  • Colom B, Bodkin JV, Beyrau M, et al. Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity. 2015;42(6):1075–1086. doi:10.1016/j.immuni.2015.05.010. Epub 2015/06/07. PubMed PMID: 26047922; PubMed Central PMCID: PMC4504024.
  • Owen-Woods C, Joulia R, Barkaway A, et al. Local microvascular leakage promotes trafficking of activated neutrophils to remote organs. J Clin Invest. 2020;130(5):2301–2318. doi:10.1172/JCI133661. Epub 2020/01/24. PubMed PMID: 31971917; PubMed Central PMCID: PMC7190919.
  • Woodfin A, Voisin MB, Beyrau M, et al. The junctional adhesion molecule JAM-C regulates polarized transendothelial migration of neutrophils in vivo. Nat Immunol. 2011;12(8):761–769. doi:10.1038/ni.2062. Epub 2011/06/28. PubMed PMID: 21706006; PubMed Central PMCID: PMC3145149.
  • Holmes GR, Anderson SR, Dixon G, et al. Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. J R Soc Interface. 2012;9(77):3229–3239. doi:10.1098/rsif.2012.0542. Epub 2012/09/07. PubMed PMID: 22951343; PubMed Central PMCID: PMC3481594.
  • Robertson AL, Holmes GR, Bojarczuk AN, et al. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med. 2014;6(225):225ra29. doi:10.1126/scitranslmed.3007672. Epub 2014/02/28. PubMed PMID: 24574340; PubMed Central PMCID: PMC4247228.
  • Hamza B, Wong E, Patel S, et al. Retrotaxis of human neutrophils during mechanical confinement inside microfluidic channels. Integr Biol (Camb). 2014;6(2):175–183. doi: 10.1039/c3ib40175h. Epub 2014/01/15. PubMed PMID: 24419464; PubMed Central PMCID: PMC3928968