2,029
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans

, , , , , , , & ORCID Icon show all
Article: 2225257 | Received 21 Nov 2022, Accepted 08 Jun 2023, Published online: 18 Jun 2023

References

  • Pitts NB, Zero DT, Marsh PD, et al. Dental caries, nature reviews. Disease Primers. 2017;3(1):17030. doi: 10.1038/nrdp.2017.30
  • Sabharwal A, Stellrecht E, Scannapieco FA. Associations between dental caries and systemic diseases: a scoping review. BMC Oral Health. 2021;21(1). doi: 10.1186/s12903-021-01803-w
  • Vos T, Lim SS, Abbafati C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396(10258):1204–13. doi: 10.1016/S0140-6736(20)30925-9
  • Wen PYF, Chen MX, Zhong YJ, et al. Global burden and inequality of dental caries, 1990 to 2019. J Dent Res. 2022;101(4):392–399. doi: 10.1177/00220345211056247
  • Peres MA, Macpherson LMD, Weyant RJ, et al. Oral diseases: a global public health challenge. Lancet. 2019;394(10194):249–260. doi: 10.1016/S0140-6736(19)31146-8
  • Lin Y, Chen J, Zhou X, et al. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides. Crit Rev Microbiol. 2021;47(5):667–677. doi: 10.1080/1040841X.2021.1915959
  • Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans. Microbiol Spectr. 2019;7(1). doi: 10.1128/microbiolspec.GPP3-0051-2018
  • Mieher JL, Larson MR, Schormann N, et al. Glucan binding protein C of Streptococcus mutans mediates both sucrose-independent and sucrose-dependent adherence. Infect Immun. 2018;86(7). doi: 10.1128/IAI.00146-18
  • Krzysciak W, Jurczak A, Koscielniak D, et al. The virulence of Streptococcus mutans and the ability to form biofilms. Eur J Clin Microbiol Infect Dis. 2014;33(4):499–515. doi: 10.1007/s10096-013-1993-7
  • Cross BW, Ruhl S. Glycan recognition at the saliva - oral microbiome interface. Cell Immunol. 2018;333:19–33. doi: 10.1016/j.cellimm.2018.08.008
  • Brady LJ, Maddocks SE, Larson MR, et al. The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol. 2010;77(2):276–286. doi: 10.1111/j.1365-2958.2010.07212.x
  • Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral streptococci, Microbiol Spectr. 2018;6(5). doi: 10.1128/microbiolspec.GPP3-0042-2018
  • Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci. 2021;13(1):30. doi: 10.1038/s41368-021-00137-1
  • Klein MI, Hwang G, Santos PH, et al. Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol. 2015;5:10. doi: 10.3389/fcimb.2015.00010
  • Karygianni L, Ren Z, Koo H, et al. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 2020;28(8):668–681. doi: 10.1016/j.tim.2020.03.016
  • Ellepola K, Truong T, Liu Y, et al. Multi-omics analyses reveal synergistic carbohydrate metabolism in Streptococcus mutans-Candida albicans mixed-species biofilms. Infect Immun. 2019;87(10). doi: 10.1128/IAI.00339-19
  • Banerjee P, Sahoo PK, Sheenu AA, et al. Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Aspects Med. 2021;81:101001. doi: 10.1016/j.mam.2021.101001
  • Commichau FM, Dickmanns A, Gundlach J, et al. A jack of all trades: the multiple roles of the unique essential second messenger cyclic di-AMP. Mol Microbiol. 2015;97(2):189–204. doi: 10.1111/mmi.13026
  • Bai Y, Yang J, Zhou X, et al. Mycobacterium tuberculosis Rv3586 (DacA) is a diadenylate cyclase that converts ATP or ADP into c-di-AMP. PLoS ONE. 2012;7(4):e35206. doi: 10.1371/journal.pone.0035206
  • Xiong ZQ, Fan YZ, Song X, et al. The second messenger c-di-AMP mediates bacterial exopolysaccharide biosynthesis: a review. Mol Biol Rep. 2020;47(11):9149–9157. doi: 10.1007/s11033-020-05930-5
  • Ye M, Zhang JJ, Fang X, et al. DhhP, a cyclic di-AMP phosphodiesterase of Borrelia burgdorferi, is essential for cell growth and virulence. Infect Immun. 2014;82(5):1840–1849. doi: 10.1128/IAI.00030-14
  • Huynh TN, Luo S, Pensinger D, et al. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci USA. 2015;112(7):E747–56. doi: 10.1073/pnas.1416485112
  • Cheng X, Zheng X, Zhou X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol. 2016;18(3):904–922. doi: 10.1111/1462-2920.13123
  • Peng X, Michalek S, Wu H. Effects of diadenylate cyclase deficiency on synthesis of extracellular polysaccharide matrix of Streptococcus mutans revisit. Environ Microbiol. 2016;18(11):3612–3619. doi: 10.1111/1462-2920.13440
  • Peng X, Zhang Y, Bai G, et al. Cyclic di-AMP mediates biofilm formation. Mol Microbiol. 2016;99(5):945–959. doi: 10.1111/mmi.13277
  • Ji X, Zou J, Peng HB, et al. Alarmone Ap4A is elevated by aminoglycoside antibiotics and enhances their bactericidal activity. Proc Natl Acad Sci USA. 2019;116(19):9578–9585. doi: 10.1073/pnas.1822026116
  • Randerath K, Janeway CM, Stephenson ML, et al. Isolation and characterization of dinucleoside tetra- and tri-phosphates formed in the presence of lysyl-Srna synthetase. Biochem Biophys Res Commun. 1966;24(1):98–105. doi: 10.1016/0006-291X(66)90416-5
  • Ofir-Birin Y, Fang PF, Bennett SP, et al. Structural switch of Lysyl-Trna synthetase between translation and transcription. Mol Molecular Cell. 2013;49(1):30–42. doi: 10.1016/j.molcel.2012.10.010
  • Ferguson F, McLennan AG, Urbaniak MD, et al. Copeland, Re-evaluation of diadenosine tetraphosphate (Ap4a) from a stress metabolite to bona fide secondary messenger. Front Mol Biosci. 2020;7:606807. doi: 10.3389/fmolb.2020.606807
  • Zheng T, Jing M, Gong T, et al. Deletion of the yqeK gene leads to the accumulation of Ap4A and reduced biofilm formation in Streptococcus mutans. Mol Oral Microbiol. 2021;37(1): 9–21. doi: 10.1111/omi.12356
  • Chen J, Zhang A, Xiang Z, et al. EpsR negatively regulates Streptococcus mutans exopolysaccharide synthesis. J Dent Res. 2021;100(9):968–976. doi: 10.1177/00220345211000668
  • Gong T, He X, Chen J, et al. Transcriptional profiling reveals the importance of RcrR in the regulation of multiple sugar transportation and biofilm formation in Streptococcus mutans. mSystems. 2021;6(4):e0078821. doi: 10.1128/mSystems.00788-21
  • Li Z, Xiang Z, Zeng J, et al. A GntR family transcription factor in Streptococcus mutans regulates biofilm formation and expression of multiple sugar transporter genes. Front Microbiol. 2018;9:3224. doi: 10.3389/fmicb.2018.03224
  • Jing ML, Zheng T, Gong T, et al. AhrC negatively regulates Streptococcus mutans arginine biosynthesis. Microbiol Spectr. 2022;10(4): e0072122. doi: 10.1128/spectrum.00721-22
  • Zeng L, Chakraborty B, Farivar T, et al. Coordinated regulation of the EIIMan an fruRKI operons of Streptococcus mutans by global and fructose-specific pathways. Environ Microbiol. 2017;83(21). doi: 10.1128/AEM.01403-17
  • Liao S, Bitoun JP, Nguyen AH, et al. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation. Mol Oral Microbiol. 2015;30(4):255–268. doi: 10.1111/omi.12090
  • Padilla-Vaca F, Mondragon-Jaimes V, Franco B. General aspects of two-component regulatory circuits in bacteria: domains, signals and roles. Curr Protein Pept Sci. 2017;18(10):990–1004. doi: 10.2174/1389203717666160809154809
  • Smith EG, Spatafora GA. Gene regulation in S. mutans: complex control in a complex environment. J Dent Res. 2012;91(2):133–141. doi: 10.1177/0022034511415415
  • Senadheera MD, Guggenheim B, Spatafora GA, et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol. 2005;187(12):4064–4076. doi: 10.1128/JB.187.12.4064-4076.2005
  • Lei L, Long L, Yang X, et al. The VicRK two-component system regulates Streptococcus mutans virulence. Curr Issues Mol Biol. 2019;32:167–200. doi: 10.21775/cimb.032.167
  • Biswas S, Biswas I. Regulation of the glucosyltransferase (gtfBC) operon by CovR in Streptococcus mutans. J Bacteriol. 2006;188(3):988–998. doi: 10.1128/JB.188.3.988-998.2006
  • Zhang HY, Xia MY, Zhang B, et al. Sucrose selectively regulates Streptococcus mutans polysaccharide by GcrR. Environ Microbiol. 2022;24(3):1395–1410. doi: 10.1111/1462-2920.15887
  • Downey JS, Mashburn-Warren L, Ayala EA, et al. In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: implications for overlapping stress response pathways. PLoS ONE. 2014;9(12):e115975. doi: 10.1371/journal.pone.0115975
  • Stipp RN, Boisvert H, Smith DJ, et al. CovR and VicRK regulate cell surface biogenesis genes required for biofilm formation in Streptococcus mutans. PLoS ONE. 2013;8(3):e58271. doi: 10.1371/journal.pone.0058271
  • Deng Y, Yang Y, Zhang B, et al. The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism. Int J Oral Sci. 2021;13(1):45. doi: 10.1038/s41368-021-00149-x
  • Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Molecular Cell. 2011;43(6):880–891. doi: 10.1016/j.molcel.2011.08.022
  • Wagner EGH, Romby P. Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet. 2015;90(90):133–208. doi: 10.1016/bs.adgen.2015.05.001
  • Reyer MA, Chennakesavalu S, Heideman EM, et al. Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators. Cell Rep. 2021;36(13):109764. doi: 10.1016/j.celrep.2021.109764
  • Lee HJ, Hong SH. Analysis of microRNA-size, small RNAs in Streptococcus mutans by deep sequencing. FEMS Microbiol Lett. 2012;326(2):131–136. doi: 10.1111/j.1574-6968.2011.02441.x
  • Zhu WH, Liu SS, Liu J, et al. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans. J Med Microbiol. 2018;67(5):641–651. doi: 10.1099/jmm.0.000718
  • Krieger MC, Merritt J, Raghavan R, et al. Genome-wide identification of novel sRnas in Streptococcus mutans. J Bacteriol. 2022;204(4). doi: 10.1128/jb.00577-21
  • Yin L, Zhu W, Chen D, et al. Small noncoding RNA sRNA0426 is involved in regulating biofilm formation in Streptococcus mutans. Microbiologyopen. 2020;9(9):e1096. doi: 10.1002/mbo3.1096
  • Liu SS, Zhu WH, Zhi QH, et al. Analysis of sucrose-induced small RNAs in Streptococcus mutans in the presence of different sucrose concentrations. Appl Microbiol Biotechnol. 2017;101(14):5739–5748. doi: 10.1007/s00253-017-8346-x
  • Viegas SC, Silva IJ, Saramago M, et al. Regulation of the small regulatory RNA MicA by ribonuclease III: a target-dependent pathway. Nucleic Acids Res. 2011;39(7):2918–2930. doi: 10.1093/nar/gkq1239
  • Mao MY, Yang YM, Li KZ, et al. The rnc gene promotes exopolysaccharide synthesis and represses the vicRKX gene expressions via microRNA-Size small RNAs in Streptococcus mutans. Front Microbiol. 2016;7:678. doi: 10.3389/fmicb.2016.00687
  • Mao MY, Li M, Lei L, et al. The regulator gene rnc is closely involved in biofilm formation in Streptococcus mutans. Caries Res. 2018;52(5):347–358. doi: 10.1159/000486431
  • Kulkarni JA, Witzigmann D, Thomson SB, et al. The current landscape of nucleic acid therapeutics. Nat Nanotechnol. 2021;16(6):630–643. doi: 10.1038/s41565-021-00898-0
  • Lei L, Stipp RN, Chen T, et al. Activity of Streptococcus mutans VicR is modulated by antisense RNA. J Dent Res. 2018;97(13):1477–1484. doi: 10.1177/0022034518781765
  • Lei L, Zhang B, Mao M, et al. Carbohydrate metabolism regulated by antisense vicR RNA in cariogenicity. J Dent Res. 2020;99(2):204–213. doi: 10.1177/0022034519890570
  • Lei L, Yang Y, Wu S, et al. Mechanisms by which small RNAs affect bacterial activity. J Dent Res. 2019;98(12):1315–1323. doi: 10.1177/0022034519876898
  • Moon SP, Balana AT, Pratt MR. Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis. Curr Opin Chem Biol. 2021;64:76–89. doi: 10.1016/j.cbpa.2021.05.007
  • Ma QZ, Zhang Q, Chen Y, et al. Post-translational modifications in oral bacteria and their functional impact. Front Microbiol. 2021;12. doi: 10.3389/fmicb.2021.784923
  • Li ZY, Zhang CZ, Li C, et al. S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans. PLOS Pathog. 2020;16(7):e1008774. doi: 10.1371/journal.ppat.1008774
  • Lei L, Zeng JM, Wang LY, et al. Quantitative acetylome analysis reveals involvement of glucosyltransferase acetylation in Streptococcus mutans biofilm formation. Env Microbiol Rep. 2021;13(2):86–97. doi: 10.1111/1758-2229.12907
  • Ma QZ, Pan YY, Chen Y, et al. Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence. PLOS Pathog. 2021;17(12):e1010134. doi: 10.1371/journal.ppat.1010134
  • Li Z, Wu Q, Zhang Y, et al. Systematic analysis of lysine malonylation in Streptococcus mutans. Front Cell Infect Microbiol. 2022;12:1078572. doi: 10.3389/fcimb.2022.1078572
  • Marraffini LA. CRISPR-Cas immunity in prokaryotes. Nature. 2015;526(7571):55–61. doi: 10.1038/nature15386
  • Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 2015;13(11):722–736. doi: 10.1038/nrmicro3569
  • Gong T, Zeng J, Tang B, et al. CRISPR-Cas systems in oral microbiome: from immune defense to physiological regulation. Mol Oral Microbiol. 2020;35(2):41–48. doi: 10.1111/omi.12279
  • Zhang A, Chen J, Gong T, et al. Deletion of csn2 gene affects acid tolerance and exopolysaccharide synthesis in Streptococcus mutans. Mol Oral Microbiol. 2020;35(5):211–221. doi: 10.1111/omi.12308
  • Tang B, Gong T, Zhou X, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity. Arch Oral Biol. 2019;99:190–197. doi: 10.1016/j.archoralbio.2019.01.016
  • Zeng L, Burne RA. Seryl-phosphorylated HPr regulates CcpA-independent carbon catabolite repression in conjunction with PTS permeases in Streptococcus mutans. Mol Microbiol. 2010;75(5):1145–1158. doi: 10.1111/j.1365-2958.2009.07029.x
  • Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. Biochim Biophys Acta Biomembr. 2020;1862(11):183412. doi: 10.1016/j.bbamem.2020.183412
  • Zeng L, Das S, Burne RA. Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol. 2010;192(9):2434–2444. doi: 10.1128/JB.01624-09
  • Moye ZD, Burne RA, Zeng L, et al. Uptake and metabolism of N-Acetylglucosamine and glucosamine by Streptococcus mutans. Appl Environ Microbiol. 2014;80(16):5053–5067. doi: 10.1128/AEM.00820-14
  • Abranches J, Candella MM, Wen ZZT, et al. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol. 2006;188(11):3748–3756. doi: 10.1128/JB.00169-06
  • Zeng L, Burne RA. Transcriptional regulation of the cellobiose operon of Streptococcus mutans. J Bacteriol. 2009;191(7):2153–2162. doi: 10.1128/JB.01641-08
  • Abranches J, Chen YYM, Burne RA. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol. 2003;69(8):4760–4769. doi: 10.1128/AEM.69.8.4760-4769.2003
  • Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17(6):371–382. doi: 10.1038/s41579-019-0186-5
  • Rezzonico F, Duffy B. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol. 2008;8(1):154. doi: 10.1186/1471-2180-8-154
  • Yuan K, Hou L, Jin Q, et al. Comparative transcriptomics analysis of Streptococcus mutans with disruption of LuxS/AI-2 quorum sensing and recovery of methyl cycle. Arch Oral Biol. 2021;127:105137. doi: 10.1016/j.archoralbio.2021.105137
  • Hu X, Wang Y, Gao L, et al. The impairment of methyl metabolism from luxS mutation of Streptococcus mutans. Front Microbiol. 2018;9:404. doi: 10.3389/fmicb.2018.00404
  • Khalikova E, Susi P, Usanov N, et al. Purification and properties of extracellular dextranase from a Bacillus sp. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;796(2):315–326. doi: 10.1016/j.jchromb.2003.08.037
  • Suzuki N, Kim YM, Fujimoto Z, et al. Structural elucidation of dextran degradation mechanism by Streptococcus mutans dextranase belonging to glycoside hydrolase family 66. J Biol Chem. 2012;287(24):19916–19926. doi: 10.1074/jbc.M112.342444
  • Saburi W, Hondoh H, Unno H, et al. Crystallization and preliminary X-ray analysis of Streptococcus mutans dextran glucosidase. Acta Crystallogr Sect F: Struct Biol Cryst Commun. 2007;63(Pt 9):774–776. doi: 10.1107/S174430910703936X
  • Saburi W, Mori H, Saito S, et al. Structural elements in dextran glucosidase responsible for high specificity to long chain substrate. Biochim Biophys Acta. 2006;1764(4):688–698. doi: 10.1016/j.bbapap.2006.01.012
  • Yang Y, Mao M, Lei L, et al. Regulation of water-soluble glucan synthesis by the Streptococcus mutans dexA gene effects biofilm aggregation and cariogenic pathogenicity. Mol Oral Microbiol. 2019;34(2):51–63. doi: 10.1111/omi.12253
  • Hasona A, Crowley PJ, Levesque CM, et al. Streptococcal viability and diminished stress tolerance in mutants lacking the signal recognition particle pathway or YidC2. Proc Natl Acad Sci USA. 2005;102(48):17466–17471. doi: 10.1073/pnas.0508778102
  • Palmer SR, Ren Z, Hwang G, et al. Streptococcus mutans yidC1 and yidC2 impact cell envelope biogenesis, the biofilm matrix, and biofilm biophysical properties. J Bacteriol. 2019;201(1). doi: 10.1128/JB.00396-18
  • Vats N, Lee SF. Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans. Microbiol (Read). 2001;147(Pt 3):653–662. doi: 10.1099/00221287-147-3-653
  • Cobine P, Wickramasinghe WA, Harrison MD, et al. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 1999;445(1):27–30. doi: 10.1016/S0014-5793(99)00091-5
  • Singh K, Senadheera DB, Levesque CM, et al. The copYAZ operon functions in copper efflux, biofilm formation, genetic transformation, and stress tolerance in Streptococcus mutans. J Bacteriol. 2015;197(15):2545–2557. doi: 10.1128/JB.02433-14
  • Garcia SS, Du Q, Wu H. Streptococcus mutans copper chaperone, CopZ, is critical for biofilm formation and competitiveness. Mol Oral Microbiol. 2016;31(6):515–525. doi: 10.1111/omi.12150
  • Levin PA, Kurtser IG, Grossman AD. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci U S A. 1999;96(17):9642–9647. doi: 10.1073/pnas.96.17.9642
  • Jorge AM, Hoiczyk E, Gomes JP, et al. EzrA contributes to the regulation of cell size in Staphylococcus aureus. PLoS ONE. 2011;6(11):e27542. doi: 10.1371/journal.pone.0027542
  • Duman R, Ishikawa S, Celik I, et al. Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci USA. 2013;110(48):E4601–E4610. doi: 10.1073/pnas.1313978110
  • Cleverley RM, Barrett JR, Basle A, et al. Structure and function of a spectrin-like regulator of bacterial cytokinesis. Nat Commun. 2014;5(1). doi: 10.1038/ncomms6421
  • Xiang ZT, Li ZB, Ren Z, et al. EzrA, a cell shape regulator contributing to biofilm formation and competitiveness in Streptococcus mutans. Mol Oral Microbiol. 2019;34(5):194–208. doi: 10.1111/omi.12264
  • Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34(1):151–160. doi: 10.1016/j.ymeth.2004.03.012
  • Oli MW, Otoo HN, Crowley PJ, et al. Functional amyloid formation by Streptococcus mutans. Microbiol-Sgm. 2012;158(12):2903–2916. doi: 10.1099/mic.0.060855-0
  • Besingi RN, Wenderska IB, Senadheera DB, et al. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. Microbiol-Sgm. 2017;163(4):488–501. doi: 10.1099/mic.0.000443
  • Gilbert P, Allison DG, McBain AJ. Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J Appl Microbiol. 2002;92(Suppl (2002)):98s–110s. doi: 10.1046/j.1365-2672.92.5s1.5.x
  • Liu J, Zhang JY, Guo LH, et al. Inactivation of a putative efflux pump (LmrB) in Streptococcus mutans results in altered biofilm structure and increased exopolysaccharide synthesis: implications for biofilm resistance. Biofouling. 2017;33(6):481–493. doi: 10.1080/08927014.2017.1323206
  • Liu J, Guo LH, Liu JW, et al. Identification of an efflux transporter LmrB regulating stress response and extracellular polysaccharide synthesis in Streptococcus mutans. Front Microbiol. 2017;8:962. doi: 10.3389/fmicb.2017.00962
  • Rainey K, Michalek SM, Wen ZT, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl Environ Microbiol. 2019;85(5). doi: 10.1128/AEM.02247-18
  • Shankar M, Hossain MS, Biswas I. Pleiotropic regulation of virulence genes in Streptococcus mutans by the conserved small protein SprV. J Bacteriol. 2017;199(8). doi: 10.1128/JB.00847-16
  • Inagaki S, Matsumoto-Nakano M, Fujita K, et al. Effects of recombinase a deficiency on biofilm formation by Streptococcus mutans, oral microbiol. Immunol. 2009;24(2):104–108. doi: 10.1111/j.1399-302X.2008.00480.x
  • Zhang J, Liu J, Ling J, et al. Inactivation of glutamate racemase (MurI) eliminates virulence in Streptococcus mutans. Microbiol Res. 2016;186-187:1–8. doi: 10.1016/j.micres.2016.02.003
  • Aleti G, Baker JL, Tang X, et al. Identification of the bacterial biosynthetic gene clusters of the oral microbiome illuminates the unexplored social language of bacteria during health and disease. MBio. 2019;10(2). doi: 10.1128/mBio.00321-19
  • Bushin LB, Clark KA, Pelczer I, et al. Charting an unexplored streptococcal biosynthetic landscape reveals a unique peptide cyclization motif. J Am Chem Soc. 2018;140(50):17674–17684. doi: 10.1021/jacs.8b10266
  • Li ZR, Sun J, Du Y, et al. Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nat Chem Biol. 2021;17(5):576–584. doi: 10.1038/s41589-021-00745-2
  • Guo L, McLean JS, Yang Y, et al. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A. 2015;112(24):7569–7574. doi: 10.1073/pnas.1506207112
  • Lin YW, Gong T, Ma QZ, et al. Nicotinamide could reduce growth and cariogenic virulence of Streptococcus mutans. J Oral Microbiol. 2022;14(1). doi: 10.1080/20002297.2022.2056291
  • Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26(3):229–242. doi: 10.1016/j.tim.2017.09.008
  • Koo H, Sheng J, Nguyen PT, et al. Co-operative inhibition by fluoride and zinc of glucosyl transferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms. FEMS Microbiol Lett. 2006;254(1):134–140. doi: 10.1111/j.1574-6968.2005.00018.x
  • Binder TP, Robyt JF. Inhibition of Streptococcus mutans 6715 glucosyltransferases by sucrose analogs modified at positions 6 and 6’. Carbohydr Res. 1985;140(1):9–20. doi: 10.1016/0008-6215(85)85045-X
  • Tanriseven A, Robyt JF. Synthesis of 4,6-dideoxysucrose, and inhibition studies of leuconostoc and Streptococcus D-glucansucrases with deoxy and chloro derivatives of sucrose modified at carbon atoms 3, 4, and 6. Carbohydr Res. 1989;186(1):87–94. doi: 10.1016/0008-6215(89)84007-8
  • Young DA, Bowen WH. The influence of sucralose on bacterial metabolism. J Dent Res. 1990;69(8):1480–1484. doi: 10.1177/00220345900690080601
  • Wright WG, Thelwell C, Svensson B, et al. Inhibition of catalytic and glucan-binding activities of a streptococcal GTF forming insoluble glucans. Caries Res. 2002;36(5):353–359. doi: 10.1159/000065962
  • Battagim J, Souza VT, Miyasaka NR, et al. Comparative study of the effect of green and roasted water extracts of mate (Ilex paraguariensis) on glucosyltransferase activity of Streptococcus mutans. J Enzyme Inhib Med Chem. 2012;27(2):232–240. doi: 10.3109/14756366.2011.585986
  • Branco-de-Almeida LS, Murata RM, Franco EM, et al. Effects of 7-epiclusianone on Streptococcus mutans and caries development in rats. Planta Med. 2011;77(1):40–45. doi: 10.1055/s-0030-1250121
  • Koo H, Nino de Guzman P, Schobel BD, et al. Influence of cranberry juice on glucan-mediated processes involved in Streptococcus mutans biofilm development. Caries Res. 2006;40(1):20–27. doi: 10.1159/000088901
  • Nakahara K, Kawabata S, Ono H, et al. Inhibitory effect of oolong tea polyphenols on glycosyltransferases of mutans Streptococci. Appl Environ Microbiol. 1993;59(4):968–973. doi: 10.1128/aem.59.4.968-973.1993
  • Eguchi Y, Kubo N, Matsunaga H, et al. Development of an antivirulence drug against Streptococcus mutans: repression of biofilm formation, acid tolerance, and competence by a histidine kinase inhibitor, walkmycin C. Antimicrob Agents Chemother. 2011;55(4):1475–1484. doi: 10.1128/AAC.01646-10
  • Muras A, Mayer C, Romero M, et al. Inhibition of Steptococcus mutans biofilm formation by extracts of tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity. J Oral Microbiol. 2018;10(1):1429788. doi: 10.1080/20002297.2018.1429788
  • Opoku-Temeng C, Zhou J, Zheng Y, et al. Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. Chem Commun. 2016;52(60):9327–9342. doi: 10.1039/C6CC03439J
  • Rao F, See RY, Zhang DW, et al. YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. J Biol Chem. 2010;285(1):473–482. doi: 10.1074/jbc.M109.040238
  • Yan JC, Gong T, Ma QZ, et al. vicR overexpression in Streptococcus mutans causes aggregation and affects interspecies competition. Mol Oral Microbiol. 2023;38(3):224–36. doi: 10.1111/omi.12407