646
Views
0
CrossRef citations to date
0
Altmetric
Original Article

CKIP-1 mediates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells partially via p38 signaling pathway

, , , , , , & show all
Article: 2236427 | Received 14 Dec 2022, Accepted 08 Jul 2023, Published online: 20 Jul 2023

References

  • Kuboniwa M, Houser JR, Hendrickson EL, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017;2(11):1493–11. doi: 10.1038/s41564-017-0021-6
  • Huck O, Mulhall H, Rubin G, et al. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol. 2020;47(2):202–212. doi: 10.1111/jcpe.13214
  • Huang X, Ma L, Wang X, et al. Ckip-1 Mediates P. gingivalis-suppressed cementoblast mineralization. J Dent Res. 2022;101(5):599–608. doi: 10.1177/00220345211054744
  • Beertsen W, McCulloch CA, Sodek J. The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000. 1997;13(1):20–40. doi: 10.1111/j.1600-0757.1997.tb00094.x
  • Singhatanadgit W, Donos N, Olsen I. Isolation and characterization of stem cell clones from adult human ligament. Tissue Eng Part A. 2009;15(9):2625–2636. doi: 10.1089/ten.tea.2008.0442
  • Barrera-Ortega CC, Hoz-Rodríguez L, Arzate H, et al. Comparison of the osteogenic, adipogenic, chondrogenic and cementogenic differentiation potential of periodontal ligament cells cultured on different biomaterials. Mater Sci Eng C Mater Biol Appl. 2017;76:1075–1084. doi: 10.1016/j.msec.2017.03.213
  • Ni C, Zhou J, Kong N, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials. 2019;206:115–132. doi: 10.1016/j.biomaterials.2019.03.039
  • De Filippis A, Fiorentino M, Guida L, et al. Vitamin D reduces the inflammatory response by Porphyromonas gingivalis infection by modulating human β-defensin-3 in human gingival epithelium and periodontal ligament cells. Int Immunopharmacol. 2017;47:106–117. doi: 10.1016/j.intimp.2017.03.021
  • Yamamoto T, Kita M, Oseko F, et al. Cytokine production in human periodontal ligament cells stimulated with Porphyromonas gingivalis. J Periodontal Res. 2006;41(6):554–559. doi: 10.1111/j.1600-0765.2006.00905.x
  • Pattamapun K, Tiranathanagul S, Yongchaitrakul T, et al. Activation of MMP-2 by Porphyromonas gingivalis in human periodontal ligament cells. J Periodontal Res. 2003;38(2):115–121. doi: 10.1034/j.1600-0765.2003.01650.x
  • Fu L, Zhang L. Physiological functions of CKIP-1: From molecular mechanisms to therapy implications. Ageing Res Rev. 2019;53:100908. doi: 10.1016/j.arr.2019.05.002
  • Nie J, Liu L, He F, et al. CKIP-1: a scaffold protein and potential therapeutic target integrating multiple signaling pathways and physiological functions. Ageing Res Rev. 2013;12(1):276–281. doi: 10.1016/j.arr.2012.07.002
  • Fan J, Liu L, Liu Q, et al. CKIP-1 limits foam cell formation and inhibits atherosclerosis by promoting degradation of Oct-1 by REGγ. Nat Commun. 2019;10(1):425. doi: 10.1038/s41467-018-07895-3
  • Zhang L, Wang Y, Xiao F, et al. CKIP-1 regulates macrophage proliferation by inhibiting TRAF6-mediated Akt activation. Cell Res. 2014;24(6):742–761. doi: 10.1038/cr.2014.53
  • Li D, Zhu H, Liang C, et al. CKIP-1 suppresses the adipogenesis of mesenchymal stem cells by enhancing HDAC1-associated repression of C/EBPα. J Mol Cell Biol. 2014;6(5):368–379. doi: 10.1093/jmcb/mju034
  • Li L, Xie P, Lin W, et al. CKIP-1 augments autophagy in steatotic hepatocytes by inhibiting Akt/mTOR signal pathway. Exp Cell Res. 2020;397(1):112341. doi: 10.1016/j.yexcr.2020.112341
  • Chen Y, Liu W, Wang Y, et al. Casein kinase 2 interacting protein-1 regulates M1 and M2 inflammatory macrophage polarization. Cell Signal. 2017;33:107–121. doi: 10.1016/j.cellsig.2017.02.015
  • Zhang L, Xia X, Zhang M, et al. Integrated analysis of genomics and proteomics reveals that CKIP-1 is a novel macrophage migration regulator. Biochem Biophys Res Commun. 2013;436(3):382–387. doi: 10.1016/j.bbrc.2013.05.109
  • Zhang L, Xing G, Tie Y, et al. Role for the pleckstrin homology domain-containing protein CKIP-1 in AP-1 regulation and apoptosis. Embo J. 2005;24(4):766–778. doi: 10.1038/sj.emboj.7600532
  • Baas D, Caussanel-Boude S, Guiraud A, et al. CKIP-1 regulates mammalian and zebrafish myoblast fusion. J Cell Sci. 2012;125(Pt 16):3790–3800. doi: 10.1242/jcs.101048
  • Ling S, Li Y, Zhong G, et al. Myocardial CKIP-1 overexpression protects from simulated microgravity-induced cardiac remodeling. Front Physiol. 2018;9:40. doi: 10.3389/fphys.2018.00040
  • Lu K, Yin X, Weng T, et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat Cell Biol. 2008;10(8):994–1002. doi: 10.1038/ncb1760
  • Yao S, Jiang C, Zhang H, et al. Visfatin regulates Pg LPS-induced proinflammatory/prodegradative effects in healthy and inflammatory periodontal cells partially via NF-κB pathway. Biochim Biophys Acta, Mol Cell Res. 2021;1868(8):119042. doi: 10.1016/j.bbamcr.2021.119042
  • Ma L, Wang X, Liu H, et al. CXXC5 mediates P. gingivalis-suppressed cementoblast functions partially via MAPK signaling network. Int J Biol Sci. 2019;15(8):1685–1695. doi: 10.7150/ijbs.35419
  • Albiero ML, Stipp RN, Saito MT, et al. Viability and osteogenic differentiation of human periodontal ligament progenitor cells are maintained after incubation with porphyromonas gingivalis protein extract. J Periodontol. 2017;88(11):e188–e199. doi: 10.1902/jop.2017.170116
  • Kato H, Taguchi Y, Tominaga K, et al. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch Oral Biol. 2014;59(2):167–175. doi: 10.1016/j.archoralbio.2013.11.008
  • Huang X, Xiao J, Wang X, et al. Irisin attenuates P. gingivalis-suppressed osteogenic/cementogenic differentiation of periodontal ligament cells via p38 signaling pathway. Biochem Biophys Res Commun. 2022;618:100–106. doi: 10.1016/j.bbrc.2022.06.001
  • Tian X-G, Gong F-F, Li X, et al. Inflammation-mediated age-dependent effects of casein kinase 2-interacting protein-1 on osteogenesis in mesenchymal stem cells. Chin Med J (Engl). 2020;133(16):1935–1942. doi: 10.1097/CM9.0000000000000951
  • He Y, Chen J-F, Yang Y-M, et al. CKIP-1 regulates the immunomodulatory function of mesenchymal stem cells. Mol Biol Rep. 2019;46(4):3991–3999. doi: 10.1007/s11033-019-04844-1
  • Peng X, Wu X, Zhang J, et al. The role of CKIP-1 in osteoporosis development and treatment. Bone Joint Res. 2018;7(2):173–178. doi: 10.1302/2046-3758.72.BJR-2017-0172.R1
  • Guo B, Zhang B, Zheng L, et al. Therapeutic RNA interference targeting CKIP-1 with a cross-species sequence to stimulate bone formation. Bone. 2014;59:76–88. doi: 10.1016/j.bone.2013.11.007
  • Song Y, Wang C, Gu Z, et al. CKIP-1 suppresses odontoblastic differentiation of dental pulp stem cells via BMP2 pathway and can interact with NRP1. Connect Tissue Res. 2019;60(2):155–164. doi: 10.1080/03008207.2018.1483355
  • Liu Q, Guo Y, Wang Y, et al. miR‑98‑5p promotes osteoblast differentiation in MC3T3‑E1 cells by targeting CKIP‑1. Mol Med Rep. 2018;17(3):4797–4802. doi: 10.3892/mmr.2018.8416
  • Zhang Y, Cheng W, Han B, et al. Let-7i-5p functions as a putative osteogenic differentiation promoter by targeting CKIP-1. Cytotechnology. 2021;73(1):79–90. doi: 10.1007/s10616-020-00444-1
  • Sakamoto T, Kobayashi M, Tada K, et al. CKIP-1 is an intrinsic negative regulator of T-cell activation through an interaction with CARMA1. PLoS One. 2014;9(1):e85762. doi: 10.1371/journal.pone.0085762
  • Yang Z, Jiang X, Zhang J, et al. Let-7a promotes microglia M2 polarization by targeting CKIP-1 following ICH. Immunol Lett. 2018;202:1–7. doi: 10.1016/j.imlet.2018.07.007