733
Views
0
CrossRef citations to date
0
Altmetric
AC-Microbiome Modulators and Oral Health

Multiomics analysis reveals the genetic and metabolic characteristics associated with the low prevalence of dental caries

, , , , , , , & show all
Article: 2277271 | Received 18 Aug 2023, Accepted 25 Oct 2023, Published online: 02 Nov 2023

References

  • Kassebaum NJ, Smith AGC, Bernabé E, et al. Global, regional, and National prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990-2015: a systematic analysis for the global Burden of diseases, injuries, and risk factors. J Dent Res. 2017;96(4):380–15. doi: 10.1177/0022034517693566
  • Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015;23(2):76–82. doi: 10.1016/j.tim.2014.10.010
  • Yildiz G, Ermis RB, Calapoglu NS, et al. Gene-environment interactions in the etiology of dental caries. J Dent Res. 2016;95(1):74–79. doi: 10.1177/0022034515605281
  • Kutsch VK, Young DA. New directions in the etiology of dental caries disease. J Calif Dent Assoc. 2011;39(10):716–721. doi: 10.1080/19424396.2011.12221949
  • Gross EL, Leys EJ, Gasparovich SR, et al. Bacterial 16S sequence analysis of severe caries in young permanent teeth. J Clin Microbiol. 2010;48(11):4121–4128. doi: 10.1128/JCM.01232-10
  • Aas JA, Griffen AL, Dardis SR, et al. Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol. 2008;46(4):1407–1417. doi: 10.1128/JCM.01410-07
  • He J, Tu Q, Ge Y, et al. Taxonomic and functional analyses of the supragingival microbiome from caries-affected and caries-Free Hosts. Microb Ecol. 2018;75(2):543–554. doi: 10.1007/s00248-017-1056-1
  • Ling Z, Kong J, Jia P, et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol. 2010;60(3):677–690. doi: 10.1007/s00248-010-9712-8
  • Boisen G, Davies JR, Neilands J. Acid tolerance in early colonizers of oral biofilms. BMC Microbiol. 2021;21(1):45. doi: 10.1186/s12866-021-02089-2
  • Shaffer JR, Wang X, Desensi RS, et al. Genetic susceptibility to dental caries on pit and fissure and smooth surfaces. Caries Res. 2012;46(1):38–46. doi: 10.1159/000335099
  • Ma F, Chen S, Yu X, et al. Comparison of the caries status of 12-year-old Baiku Yao children with Zhuang and Han children in Guangxi and analysis of the influencing factors. Chin J Pract Stomatol. 2019;12(12):729–734. doi: 10.19538/j.kq.2019.12.006
  • Ma F Study on Caries Associated Environmental Factors, Gene Polymorphism and Their Interaction in Bai Ku Yao Children Aged 12 Years Old [Ph.D. Thesis]. Guangxi Medical University; 2021. doi:10.27038/d.cnki.ggxyu.2021.000166
  • Ma F, He H, Chen S, et al. Associations of PART1 and DEFB1 polymorphisms with dental caries in twelve-year-old children in Southern China: a cross-sectional study. BMC Pediatr. 2023;23(1):6. doi: 10.1186/s12887-022-03678-4
  • Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi: 10.1126/science.abj6987
  • Lou H, Gao Y, Xie B, et al. Haplotype-resolved de novo assembly of a Tujia genome suggests the necessity for high-quality population-specific genome references. Cell Syst. 2022;13(4):321–333.e6. doi: 10.1016/j.cels.2022.01.006
  • Chao KH, Zimin AV, Pertea M, et al. The first gapless, reference-quality, fully annotated genome from a Southern Han Chinese individual. G3 Bethesda Md. 2023;13(3):jkac321. doi: 10.1093/g3journal/jkac321
  • Zheng W, He Y, Guo Y, et al. Large-scale genome sequencing redefines the genetic footprints of high-altitude adaptation in Tibetans. Genome Biol. 2023;24(1):73. doi: 10.1186/s13059-023-02912-1
  • Belda-Ferre P, Alcaraz LD, Cabrera-Rubio R, et al. The oral metagenome in health and disease. Isme J. 2012;6(1):46–56. doi: 10.1038/ismej.2011.85
  • Corby PM, Lyons-Weiler J, Bretz WA, et al. Microbial risk indicators of early childhood caries. J Clin Microbiol. 2005;43(11):5753–5759. doi: 10.1128/JCM.43.11.5753-5759.2005
  • Luong AD, Buzid A, Luong JHT. Important roles and potential uses of Natural and synthetic antimicrobial peptides (AMPs) in oral diseases: cavity, periodontal disease, and Thrush. J Funct Biomater. 2022;13(4):175. doi: 10.3390/jfb13040175
  • Baruque-Ramos J, Hiss H, Converti A, et al. Accumulation of organic acids in cultivations of Neisseria meningitidis C. J Ind Microbiol Biotechnol. 2006;33(10):869–877. doi: 10.1007/s10295-006-0141-0
  • Gardner A, Parkes HG, So PW, et al. Determining bacterial and host contributions to the human salivary metabolome. J Oral Microbiol. 2019;11(1):1617014. doi: 10.1080/20002297.2019.1617014
  • Nyvad B, Crielaard W, Mira A, et al. Dental caries from a molecular microbiological perspective. Caries Res. 2013;47(2):89–102. doi: 10.1159/000345367
  • Ribeiro TR, Dria KJ, de Carvalho CBM, et al. Salivary peptide profile and its association with early childhood caries. Int J Paediatr Dent. 2013;23(3):225–234. doi: 10.1111/j.1365-263X.2012.01258.x
  • Beltran A, Suarez M, Rodríguez MA, et al. Assessment of compatibility between extraction methods for NMR- and LC/MS-based metabolomics. Anal Chem. 2012;84(14):5838–5844. doi: 10.1021/ac3005567
  • Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387(2):525–527. doi: 10.1007/s00216-006-0687-8
  • McInnes P, Cutting M. Core microbiome sampling protocol a HMP protocol # 07–001. Bethesda (MD): Manual of Procedures; 2010.
  • World Health Organization. Oral health surveys: basic Methods. 5th Ed. Geneva (Switzerland): WHO Press; 2013.
  • Kolmogorov M, Yuan J, Lin Y, et al. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540–546. doi: 10.1038/s41587-019-0072-8
  • Walker BJ, Abeel T, Shea T, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi: 10.1371/journal.pone.0112963
  • Zimin AV, Puiu D, Luo MC, et al. Hybrid assembly of the large and highly repetitive genome of aegilops tauschii, a progenitor of bread wheat, with the MaSuRCA mega-reads algorithm. Genome Res. 2017;27(5):787–792. doi: 10.1101/gr.213405.116
  • Gurevich A, Saveliev V, Vyahhi N, et al. QUAST: quality assessment tool for genome assemblies. Bioinforma Oxf Engl. 2013;29(8):1072–1075. doi: 10.1093/bioinformatics/btt086
  • Rhie A, Walenz BP, Koren S, et al. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21(1):245. doi: 10.1186/s13059-020-02134-9
  • Shumate A, Salzberg SL, Valencia A. Liftoff: accurate mapping of gene annotations. Bioinforma Oxf Engl. 2021;37(12):1639–1643. doi: 10.1093/bioinformatics/btaa1016
  • Ou S, Su W, Liao Y, et al. Author correction: benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol. 2022;23(1):76. doi: 10.1186/s13059-022-02645-7
  • Shumate A, Salzberg S. LiftoffTools: a toolkit for comparing gene annotations mapped between genome assemblies. F1000Res. 2022;11:1230. doi: 10.12688/f1000research.124059.1
  • Tang H, Bowers JE, Wang X, et al. Synteny and collinearity in plant genomes. Science. 2008;320(5875):486–488. doi: 10.1126/science.1153917
  • Marçais G, Delcher AL, Phillippy AM, et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol. 2018;14(1):e1005944. doi: 10.1371/journal.pcbi.1005944
  • Goel M, Sun H, Jiao WB, et al. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20(1):277. doi: 10.1186/s13059-019-1911-0
  • Goel M, Schneeberger K, Robinson P. Plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinforma Oxf Engl. 2022;38(10):2922–2926. doi: 10.1093/bioinformatics/btac196
  • O’Donnell S, Fischer G, Valencia A. MUM&Co: accurate detection of all SV types through whole-genome alignment. Bioinforma Oxf Engl. 2020;36(10):3242–3243. doi: 10.1093/bioinformatics/btaa115
  • Darling ACE, Mau B, Blattner FR, et al. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14(7):1394–1403. doi: 10.1101/gr.2289704
  • Guy L, Kultima JR, Andersson SGE. genoPlotR: comparative gene and genome visualization in R. Bioinforma Oxf Engl. 2010;26(18):2334–2335. doi: 10.1093/bioinformatics/btq413
  • Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20(4):1160–1166. doi: 10.1093/bib/bbx108
  • Madeira F, Pearce M, Tivey ARN, et al. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022;50(W1):W276–W279. doi: 10.1093/nar/gkac240
  • Nicholas KB, Nicholas HB. GeneDoc: atool for editing and annotating multiple sequence alignments. Embnew News. 1997;4: 14.
  • Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi: 10.1038/nbt.1754
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–589. doi: 10.1038/s41586-021-03819-2
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. doi: 10.1002/jcc.20084
  • Gu Z, Li L, Tang S, et al. Metabolomics Reveals that Crossbred Dairy Buffaloes Are More Thermotolerant than Holstein Cows under Chronic Heat Stress. J Agric Food Chem. 2018;66(49):12889–12897. doi: 10.1021/acs.jafc.8b02862
  • Chen Y, Chen Y, Shi C, et al. Soapnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018;7(1):1–6. doi: 10.1093/gigascience/gix120
  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923
  • Li D, Liu CM, Luo R, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinforma Oxf Engl. 2015;31(10):1674–1676. doi: 10.1093/bioinformatics/btv033
  • Zhu W, Lomsadze A, Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38(12):e132. doi: 10.1093/nar/gkq275
  • Li W, Jaroszewski L, Godzik A. Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinforma Oxf Engl. 2001;17(3):282–283. doi: 10.1093/bioinformatics/17.3.282
  • Patro R, Duggal G, Love MI, et al. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi: 10.1038/nmeth.4197
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60. doi: 10.1038/nmeth.3176
  • Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20(1):257. doi: 10.1186/s13059-019-1891-0
  • Lu J, Breitwieser FP, Thielen P, et al. Bracken: estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;3:e104. doi: 10.7717/peerj-cs.104
  • Ayad M, Van Wuyckhuyse BC, Minaguchi K, et al. The association of basic proline-rich peptides from human parotid gland secretions with caries experience. J Dent Res. 2000;79(4):976–982. doi: 10.1177/00220345000790041401
  • Ozturk A, Famili P, Vieira AR. The antimicrobial peptide DEFB1 is associated with caries. J Dent Res. 2010;89(6):631–636. doi: 10.1177/0022034510364491
  • Faheem S, Maqsood S, Hasan A, et al. Associations of early childhood caries with salivary beta defensin-3 and childhood anemia: a case-control study. BMC Oral Health. 2021;21(1):445. doi: 10.1186/s12903-021-01810-x
  • Haworth S, Esberg A, Lif Holgerson P, et al. Heritability of caries scores, trajectories, and disease subtypes. J Dent Res. 2020;99(3):264–270. doi: 10.1177/0022034519897910
  • Wang X, Shaffer JR, Weyant RJ, et al. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res. 2010;44(3):277–284. doi: 10.1159/000314676
  • Slomiany BL, Murty VL, Mandel ID, et al. Effect of lipids on the lactic acid retardation capacity of tooth enamel and cementum pellicles formed in vitro from saliva of caries-resistant and caries-susceptible human adults. Arch Oral Biol. 1990;35(3):175–180. doi: 10.1016/0003-9969(90)90052-c
  • Tomita Y, Miyake N, Yamanaka S. Lipids in human parotid saliva with regard to caries experience. J Oleo Sci. 2008;57(2):115–121. doi: 10.5650/jos.57.115
  • Reich M, Hannig C, Hannig M, et al. The lipid composition of the in situ pellicle. Arch Oral Biol. 2022;142:105493. doi: 10.1016/j.archoralbio.2022.105493
  • Washio J, Ogawa T, Suzuki K, et al. Amino acid composition and amino acid-metabolic network in supragingival plaque. Biomed Res Tokyo Jpn. 2016;37(4):251–257. doi: 10.2220/biomedres.37.251
  • Huang X, Exterkate RAM, ten Cate JM. Factors associated with alkali production from arginine in dental biofilms. J Dent Res. 2012;91(12):1130–1134. doi: 10.1177/0022034512461652
  • Kraivaphan P, Amornchat C, Triratana T, et al. Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. Caries Res. 2013;47(6):582–590. doi: 10.1159/000353183
  • Omura S, Shimizu H, Iwai Y, et al. AM-2604 A, a new antiviral antibiotic produced by a strain of Streptomyces. J Antibiot (Tokyo). 1982;35(12):1632–1637. doi: 10.7164/antibiotics.35.1632
  • Yang X, Peng T, Yang Y, et al. Antimicrobial and antioxidant activities of a new benzamide from endophytic Streptomyces sp. YIM 67086. Nat Prod Res. 2015;29(4):331–335. doi: 10.1080/14786419.2014.945174
  • Davis BA, Raubertas RF, Pearson SK, et al. The effects of benzoate and fluoride on dental caries in intact and desalivated rats. Caries Res. 2001;35(5):331–337. doi: 10.1159/000047471
  • Crielaard W, Zaura E, Schuller AA, et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med Genomics. 2011;4(1):22. doi: 10.1186/1755-8794-4-22
  • Xi R, Wang R, Wang Y, et al. Comparative analysis of the oral microbiota between iron-deficiency anaemia (IDA) patients and healthy individuals by high-throughput sequencing. BMC Oral Health. 2019;19(1):255. doi: 10.1186/s12903-019-0947-6
  • Kahharova D, Brandt BW, Buijs MJ, et al. Maturation of the oral microbiome in caries-free toddlers: a longitudinal study. J Dent Res. 2020;99(2):159–167. doi: 10.1177/0022034519889015
  • Ernst RK, Guina T, Miller SI. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis. 1999;179(Suppl 2):S326–330. doi: 10.1086/513850
  • Chen J, Li T, Zhou X, et al. Characterization of the clustered regularly interspaced short palindromic repeats sites in Streptococcus mutans isolated from early childhood caries patients. Arch Oral Biol. 2017;83:174–180. doi: 10.1016/j.archoralbio.2017.07.023
  • Byun R, Nadkarni MA, Chhour KL, et al. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004;42(7):3128–3136. doi: 10.1128/JCM.42.7.3128-3136.2004
  • Cura F, Palmieri A, Girardi A, et al. (®) 4: dental caries and bacteriological analysis. Dent Res J. 2012;9(Suppl 2):S139–141. doi: 10.4103/1735-3327.109723
  • Zhang D, Takeshita T, Furuta M, et al. Tongue microbiota composition and dental caries experience in primary school children. mSphere. 2021;6(2):e01252–20. doi: 10.1128/mSphere.01252-20
  • Hajishengallis G, Darveau RP, Curtis MA. The Keystone Pathogen Hypothesis. Nat Rev Microbiol. 2012;10(10):717–725. doi: 10.1038/nrmicro2873
  • Mathur VP, Dhillon JK. Dental caries: a disease which needs attention. Indian J Pediatr. 2018;85(3):202–206. doi: 10.1007/s12098-017-2381-6
  • Cao Y, Yin H, Wang W, et al. Killing Streptococcus mutans in mature biofilm with a combination of antimicrobial and antibiofilm peptides. Amino Acids. 2020;52(1):1–14. doi: 10.1007/s00726-019-02804-4
  • Simon-Soro A, Sherriff A, Sadique S, et al. Combined analysis of the salivary microbiome and host defence peptides predicts dental disease. Sci Rep. 2018;8(1):1484. doi: 10.1038/s41598-018-20085-x
  • Gross EL, Beall CJ, Kutsch SR, et al. Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS One. 2012;7(10):e47722. doi: 10.1371/journal.pone.0047722
  • Li Y, Ge Y, Saxena D, et al. Genetic profiling of the oral microbiota associated with severe early-childhood caries. J Clin Microbiol. 2007;45(1):81–87. doi: 10.1128/JCM.01622-06
  • Xue Y, Bao Y, Zhang Z, et al. Database Resources of the National Genomics data center, China National center for Bioinformation in 2023. Nucleic Acids Res. 2023;51(D1):D18–D28. doi: 10.1093/nar/gkac1073