655
Views
0
CrossRef citations to date
0
Altmetric
Research article

MAT2A inhibition suppresses inflammation in Porphyromonas gingivalis-infected human gingival fibroblasts

, , , & ORCID Icon
Article: 2292375 | Received 18 Nov 2022, Accepted 03 Dec 2023, Published online: 15 Dec 2023

References

  • Könönen E, Gursoy M, Gursoy UK. Periodontitis: a multifaceted disease of tooth-supporting tissues. J Clin Med. 2019;8(8):1135. doi: 10.3390/jcm8081135
  • Kumar PS, Monteiro MF, Dabdoub SM, et al. Subgingival host-microbial interactions in hyperglycemic individuals. J Dent Res. 2020;99(6):650–11. doi: 10.1177/0022034520906842
  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3(1):17038. doi: 10.1038/nrdp.2017.38
  • Yu N, Van Dyke TE. Periodontitis: a host mediated disruption of microbial homeostasis. Curr Oral Health Rep. 2020;7(1):3–11. doi: 10.1007/s40496-020-00256-4
  • Mysak J, Podzimek S, Sommerova P, et al. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014;2014:476068. doi: 10.1155/2014/476068
  • Socransky SS, Haffajee AD, Cugini MA, et al. Microbial complexes in subgingival plaque. J Clinic Periodontology. 1998;25(2):134–44. doi: 10.1111/j.1600-051X.1998.tb02419.x
  • Jiang Y, Song B, Brandt BW, et al. Comparison of red-complex bacteria between saliva and subgingival plaque of periodontitis patients: a systematic review and meta-analysis. Front Cell Infect Microbiol. 2021;11:727732. doi: 10.3389/fcimb.2021.727732
  • Carrouel F, Viennot S, Santamaria J, et al. Quantitative molecular detection of 19 major pathogens in the interdental biofilm of periodontally healthy young adults. Front Microbiol. 2016;7:840. doi: 10.3389/fmicb.2016.00840
  • Imamura T. The role of gingipains in the pathogenesis of periodontal disease. J Periodontol. 2003;74(1):111–118. doi: 10.1902/jop.2003.74.1.111
  • Song LT, Tada H, Nishioka T, et al. Porphyromonas gingivalis gingipains-mediated degradation of plasminogen activator inhibitor-1 leads to delayed wound healing responses in human endothelial cells. J Innate Immun. 2022;14(4):306–319. doi: 10.1159/000519737
  • Liu R, Desta T, Raptis M, et al. Gingivalis and E. coli lipopolysaccharides exhibit different systemic but similar local induction of inflammatory markers. J Periodontol. 2008;79(7):1241–7. doi: 10.1902/jop.2008.070575
  • Cardoso EM, Reis C, Manzanares-Céspedes MC. Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgrad Med. 2018;130(1):98–104. doi: 10.1080/00325481.2018.1396876
  • Belstrøm D, Damgaard C, Könönen E, et al. Salivary cytokine levels in early gingival inflammation. J Oral Microbiol. 2017;9(1):1364101. doi: 10.1080/20002297.2017.1364101
  • Bhattarai G, Poudel SB, Kook SH, et al. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater. 2016 Jan;29:398–408.
  • Su W, Shi J, Zhao Y, et al. Gingival fibroblasts dynamically reprogram cellular metabolism during infection of Porphyromonas gingivalis. Arch Oral Biol. 2021;121:104963. doi: 10.1016/j.archoralbio.2020.104963
  • Tomé D. Amino acid metabolism and signalling pathways: potential targets in the control of infection and immunity. Nutr Diabetes. 2021;11(1):20. doi: 10.1038/s41387-021-00164-1
  • Shen T, Wang T. Metabolic reprogramming in COVID-19. Int J Mol Sci. 2021 Oct 25;22(21):11475.
  • Yang HB, Xu YY, Zhao XN, et al. Acetylation of MAT IIα represses tumour cell growth and is decreased in human hepatocellular cancer. Nat Commun. 2015;6(1):6973. doi: 10.1038/ncomms7973
  • Gobert AP, Latour YL, Asim M, et al. Bacterial pathogens hijack the innate immune response by activation of the Reverse transsulfuration pathway. MBio. 2019;10(5): doi: 10.1128/mBio.02174-19
  • Detich N, Hamm S, Just G, et al. The methyl donor S-Adenosylmethionine inhibits active demethylation of DNA: a candidate novel mechanism for the pharmacological effects of S-Adenosylmethionine. J Biol Chem. 2003;278(23):20812–20820. doi: 10.1074/jbc.M211813200
  • Suzuki S, Yamada S. Epigenetics in susceptibility, progression, and diagnosis of periodontitis. Jpn Dent Sci Rev. 2022;58:183–192. doi: 10.1016/j.jdsr.2022.06.001
  • Shimizu-Saito K, Horikawa S, Kojima N, et al. Differential expression of S-adenosylmethionine synthetase isozymes in different cell types of rat liver. Hepatology. 1997;26(2):424–431. doi: 10.1002/hep.510260224
  • Murray B, Barbier-Torres L, Fan W, et al. Methionine adenosyltransferases in liver cancer. World J Gastroenterol. 2019;25(31):4300–4319. doi: 10.3748/wjg.v25.i31.4300
  • Yang H, Li TW, Peng J, et al. Insulin-like growth factor 1 activates methionine adenosyltransferase 2A transcription by multiple pathways in human colon cancer cells. Biochem J. 2011;436(2):507–516. doi: 10.1042/BJ20101754
  • Zhang T, Zheng Z, Liu Y, et al. Overexpression of methionine adenosyltransferase II alpha (MAT2A) in gastric cancer and induction of cell cycle arrest and apoptosis in SGC-7901 cells by shRNA-mediated silencing of MAT2A gene. Acta Histochem. 2013;115(1):48–55. doi: 10.1016/j.acthis.2012.03.006
  • Luo H, Song Y, Zhang JA, et al. MAT2A facilitates PDCD6 methylation and promotes cell growth under glucose deprivation in cervical cancer. Cell Death Discov. 2022;8(1):176. doi: 10.1038/s41420-022-00987-6
  • Secker KA, Bloechl B, Keppeler H, et al. MAT2A as key regulator and therapeutic target in MLLr leukemogenesis. Cancers (Basel). 2020;12(5):1342. doi: 10.3390/cancers12051342
  • Kominsky DJ, Keely S, MacManus CF, et al. An endogenously anti-inflammatory role for methylation in mucosal inflammation identified through metabolite profiling. J Immunol. 2011;186(11):6505–6514. doi: 10.4049/jimmunol.1002805
  • Kang H, Guo Q, Dong Y, et al. Inhibition of MAT2A suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss. FASEB J. 2022;36(2):e22167. doi: 10.1096/fj.202101205RR
  • Andrejeva G, Rathmell JC. Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 2017;26(1):49–70. doi: 10.1016/j.cmet.2017.06.004
  • Ji J, Tong X, Huang X, et al. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. Biomed Mater. 2015 Jul 8;10(4):045005. doi: 10.1088/1748-6041/10/4/045005
  • Shi J, Li J, Su W, et al. Loss of periodontal ligament fibroblasts by RIPK3-MLKL-mediated necroptosis in the progress of chronic periodontitis. Sci Rep. 2019;9(1):2902. doi: 10.1038/s41598-019-39721-1
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001 Dec;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Kelly B, Pearce EL. Amino assets: how amino acids support immunity. Cell Metab. 2020;32(2):154–175. doi: 10.1016/j.cmet.2020.06.010
  • Buck MD, Sowell RT, Kaech SM, et al. Metabolic instruction of immunity. Cell. 2017;169(4):570–586. doi: 10.1016/j.cell.2017.04.004
  • Sinclair LV, Howden AJ, Brenes A, et al. Antigen receptor control of methionine metabolism in T cells. Elife. 2019;8:8. doi: 10.7554/eLife.44210
  • Wheeler MA, Clark IC, Tjon EC, et al. MAFG-driven astrocytes promote CNS inflammation. Nature. 2020;578(7796):593–599. doi: 10.1038/s41586-020-1999-0
  • Murray B, Peng H, Barbier-Torres L, et al. Methionine adenosyltransferase α1 is targeted to the mitochondrial matrix and interacts with cytochrome P450 2E1 to lower its expression. Hepatology. 2019;70(6):2018–2034. doi: 10.1002/hep.30762
  • Yu W, Wang Z, Zhang K, et al. One-carbon metabolism Supports S-Adenosylmethionine and histone methylation to drive inflammatory macrophages. Mol Cell. 2019;75(6):1147–1160.e5. doi: 10.1016/j.molcel.2019.06.039
  • Pfalzer AC, Choi SW, Tammen SA, et al. S-adenosylmethionine mediates inhibition of inflammatory response and changes in DNA methylation in human macrophages. Physiol Genomics. 2014;46(17):617–623. doi: 10.1152/physiolgenomics.00056.2014
  • Le Sage F, Meilhac O, Gonthier MP. Porphyromonas gingivalis lipopolysaccharide induces pro-inflammatory adipokine secretion and oxidative stress by regulating Toll-like receptor-mediated signaling pathways and redox enzymes in adipocytes. Mol Cell Endocrinol. 2017;446:102–110. doi: 10.1016/j.mce.2017.02.022
  • Wang Y, Zhou J, Fu S, et al. Preventive effects of protocatechuic acid on LPS-Induced inflammatory response in human gingival fibroblasts via activating PPAR-γ. Inflammation. 2015;38(3):1080–1084. doi: 10.1007/s10753-014-0073-1
  • Li Y, Zhang XS, Yu JL. Acanthoic acid inhibits LPS-induced inflammatory response by activating LXRα in human umbilical vein endothelial cells. Int Immunopharmacol. 2016;32:111–115. doi: 10.1016/j.intimp.2015.12.042
  • Li L, Sun W, Wu T, et al. Caffeic acid phenethyl ester attenuates lipopolysaccharide-stimulated proinflammatory responses in human gingival fibroblasts via NF-κB and PI3K/Akt signaling pathway. Eur J Pharmacol. 2017;794:61–68. doi: 10.1016/j.ejphar.2016.11.003
  • Yang H, Sadda MR, Yu V, et al. Induction of human methionine adenosyltransferase 2A expression by tumor necrosis factor alpha. Role of NF-kappa B and AP-1. J Biol Chem. 2003;278(51):50887–96. doi: 10.1074/jbc.M307600200
  • Ampomah PB, Cai B, Sukka SR, et al. Macrophages use apoptotic cell-derived methionine and DNMT3A during efferocytosis to promote tissue resolution. Nat Metab. 2022;4(4):444–457. doi: 10.1038/s42255-022-00551-7
  • Khouly I, Braun RS, Ordway M, et al. The role of DNA methylation and histone modification in periodontal disease: a systematic review. Int J Mol Sci. 2020;21(17):6217. doi: 10.3390/ijms21176217
  • Huang J, Zhou Y. Emerging role of epigenetic regulations in periodontitis: a literature review. Am J Transl Res. 2022;14(4):2162–2183.
  • Yu H, Zhu S, Zhou B, et al. Inferring causal relationships among different histone modifications and gene expression. Genome Res. 2008;18(8):1314–24. doi: 10.1101/gr.073080.107
  • Francis M, Pandya M, Gopinathan G, et al. Histone methylation mechanisms modulate the inflammatory response of periodontal ligament progenitors. Stem Cells Dev. 2019;28(15):1015–1025. doi: 10.1089/scd.2019.0125