784
Views
0
CrossRef citations to date
0
Altmetric
Review article

Oxidative stress response: a critical factor affecting the ecological competitiveness of Streptococcus mutans

, , &
Article: 2292539 | Received 06 Jul 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions.Nat Rev Microbiol. 2018;16(12):745–7. doi: 10.1038/s41579-018-0089-x
  • Tóthová L, Kamodyová N, Červenka T, et al. Salivary markers of oxidative stress in oral diseases. Front Cell Infect Microbiol. 2015;5:73. doi: 10.3389/fcimb.2015.00073
  • Imlay JA. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature Rev Microbiol. 2013;11(7):443–454. doi: 10.1038/nrmicro3032
  • Cheng X, Redanz S, Treerat P, et al. Magnesium-dependent promotion of H2O2 production increases ecological competitiveness of oral commensal streptococci. J Dent Res. 2020;99(7):847–854. doi: https://doi.org/10.1177/0022034520912181
  • Redanz S, Cheng X, Giacaman RA, et al. Live and let die: hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol. 2018;33(5):337–352. doi: 10.1111/omi.12231
  • Chen DR, Lin HC. Research updates: cariogenic mechanism of Streptococcus mutans. Sichuan da xue xue bao yi xue ban =. J Sichuan Univ Med Sci Ed. 2022;53(2):208–213. doi: 10.12182/20220360508
  • Kono Y, Tamura M, Cueno ME, et al. S-PRG filler eluate induces oxidative stress in oral microorganism: suppression of growth and pathogenicity, and possible clinical application. Antibiotics (Basel, Switzerland). 2021;10(7):816. doi: 10.3390/antibiotics10070816
  • Xu Y, Itzek A, Kreth J. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis. Microbiol. 2014;160(Pt 12):2627–2638. doi: 10.1099/mic.0.082156-0
  • Liu Y, Palmer SR, Chang H, et al. Differential oxidative stress tolerance of Streptococcus mutans isolates affects competition in an ecological mixed-species biofilm model. Environ Microbiol Rep. 2018;10(1):12–22. doi: https://doi.org/10.1111/1758-2229.12600
  • Martin ME, Byers BR, Olson MO, et al. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J Biol Chem. 1986;261(20):9361–9367. doi: 10.1016/S0021-9258(18)67663-X
  • Derr AM, Faustoferri RC, Betzenhauser MJ, et al. Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans. Appl environ microbiol. 2012;78(4):1215–1227. doi: 10.1128/AEM.06890-11
  • Baker JL, Derr AM, Karuppaiah K, et al. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels. J Bacteriol. 2014;196(12):2166–2177. doi: 10.1128/JB.01542-14
  • Poole LB, Higuchi M, Shimada M, et al. Streptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein. Free Radic Biol Med. 2000;28(1):108–120. doi: 10.1016/s0891-5849(99)00218-x
  • Bauer PD, Trapp C, Drake D, et al. Acquisition of manganous ions by mutans group streptococci. J Bacteriol. 1993;175(3):819–825. doi: 10.1128/jb.175.3.819-825.1993
  • Yamamoto Y, Higuchi M, Poole LB, et al. Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol. 2000;182(13):3740–3747. doi: 10.1128/JB.182.13.3740-3747.2000
  • Galvão LC, Miller JH, Kajfasz JK, et al. Transcriptional and phenotypic characterization of novel Spx-regulated genes in Streptococcus mutans. PLoS One. 2015;10(4):e0124969. doi: 10.1371/journal.pone.0124969
  • Ganguly T, Kajfasz JK, Miller JH, et al. Disruption of a novel iron transport system reverses oxidative stress phenotypes of a dpr mutant strain of Streptococcus mutans. J Bacteriol. 2018;200(14):e00062–18. doi: 10.1128/JB.00062-18
  • Crepps SC, Fields EE, Galan D, et al. The SloR metalloregulator is involved in the Streptococcus mutans oxidative stress response. Mol Oral Microbiol. 2016;31(6):526–539. doi: 10.1111/omi.12147
  • Rolerson E, Swick A, Newlon L, et al. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol. 2006;188(14):5033–5044. doi: 10.1128/JB.00155-06
  • Drummond IY, DePaolo A, Krieger M, et al. Small regulatory RNAs are mediators of the Streptococcus mutans SloR regulon. J Bacteriol. 2023;205(9):e0017223. doi: 10.1128/jb.00172-23
  • Ganguly T, Peterson AM, Kajfasz JK, et al. Zinc import mediated by AdcABC is critical for colonization of the dental biofilm by Streptococcus mutans in an animal model. Mol Oral Microbiol. 2021;36(3):214–224. doi: 10.1111/omi.12337
  • Ganguly T, Peterson AM, Burkholder M, et al. ZccE is a novel P-type ATPase that protects Streptococcus mutans against Zinc Intoxication. PLOS Pathogens. 2022;18(8):e1010477. doi: 10.1371/journal.ppat.1010477
  • Pinochet-Barros A, Helmann JD. Redox sensing by Fe2+ in bacterial Fur family metalloregulators. Antioxid Redox Signaling. 2018;29(18):1858–1871. doi: 10.1089/ars.2017.7359
  • Kajfasz JK, Zuber P, Ganguly T, et al. Increased oxidative stress tolerance of a spontaneously occurring perR gene mutation in Streptococcus mutans UA159. J Bacteriol. 2021;203(8):e00535–20. doi: 10.1128/JB.00535-20
  • Ruxin TR, Schwartzman JA, Davidowitz CR, et al. Regulatory involvement of the PerR and SloR metalloregulators in the Streptococcus mutans oxidative stress response. J Bacteriol. 2021;203(11):e00678–20. doi: 10.1128/JB.00678-20
  • Nakano S, Küster-Schöck E, Grossman AD, et al. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci USA. 2003;100(23):13603–13608. doi: 10.1073/pnas.2235180100
  • Nakano MM, Hajarizadeh F, Zhu Y, et al. Loss-of-function mutations in yjbD result in ClpX- and ClpP-independent competence development of Bacillus subtilis. Mol Microbiol. 2001;42(2):383–394. doi: 10.1046/j.1365-2958.2001.02639.x
  • Kajfasz JK, Rivera-Ramos I, Abranches J, et al. Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans. J Bacteriol. 2010;192(10):2546–2556. doi: 10.1128/JB.00028-10
  • Kajfasz JK, Rivera-Ramos I, Scott-Anne K, et al. Transcription of oxidative stress genes is directly activated by SpxA1 and, to a lesser extent, by SpxA2 in Streptococcus mutans. J Bacteriol. 2015;197(13):2160–2170. doi: 10.1128/JB.00118-15
  • Galvão LC, Rosalen PL, Rivera-Ramos I, et al. Inactivation of the spxA1 or spxA2 gene of Streptococcus mutans decreases virulence in the rat caries model. Mol Oral Microbiol. 2017;32(2):142–153. doi: 10.1111/omi.12160
  • Ganguly T, Kajfasz JK, Abranches J, et al. Regulatory circuits controlling Spx levels in Streptococcus mutans. Mol Microbiol. 2020;114(1):109–126. doi: 10.1111/mmi.14499
  • Averill-Bates DA. The antioxidant glutathione. Vitamins & Hormones. 2023;121:109–141. doi: 10.1016/bs.vh.2022.09.002
  • Yamamoto Y, Kamio Y, Higuchi M. Cloning, nucleotide sequence, and disruption of Streptococcus mutans glutathione reductase gene (gor). Biosci Biotechnol Biochem. 1999;63(6):1056–1062. doi: 10.1271/bbb.63.1056
  • Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med. 2016;95:27–42. doi: 10.1016/j.freeradbiomed.2016.02.028
  • Zheng X, Zhang K, Zhou X, et al. Involvement of gshAB in the interspecies competition within oral biofilm. J Dent Res. 2013;92(9):819–824. doi: https://doi.org/10.1177/0022034513498598
  • Vergauwen B, Verstraete K, Senadheera DB, et al. Molecular and structural basis of glutathione import in gram-positive bacteria via GshT and the cystine ABC importer TcyBC of Streptococcus mutans. Mol Microbiol. 2013;89(2):288–303. doi: 10.1111/mmi.12274
  • Li Z, Zhang C, Li C, et al. S-glutathionylation proteome profiling reveals a crucial role of a thioredoxin-like protein in interspecies competition and cariogenecity of Streptococcus mutans. PLOS Pathogens. 2020;16(7):e1008774. doi: 10.1371/journal.ppat.1008774
  • Kajfasz JK, Ganguly T, Hardin EL, et al. Transcriptome responses of Streptococcus mutans to peroxide stress: identification of novel antioxidant pathways regulated by Spx. Sci Rep. 2017;7(1):16018. doi: 10.1038/s41598-017-16367-5
  • Ahn SJ, Qu MD, Roberts E, et al. Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiol. 2012;12(1):187. doi: 10.1186/1471-2180-12-187
  • Ahn SJ, Rice KC, Nojiri H. Understanding the Streptococcus mutans cid/Lrg system through CidB function. Appl environ microbiol. 2016;82(20):6189–6203. doi: 10.1128/AEM.01499-16
  • Downey JS, Mashburn-Warren L, Ayala EA, et al. In vitro manganese-dependent cross-talk between Streptococcus mutans VicK and GcrR: implications for overlapping stress response pathways. PLoS One. 2014;9(12):e115975. doi: 10.1371/journal.pone.0115975
  • Rainey K, Wilson L, Barnes S, et al. Quantitative proteomics uncovers the interaction between a virulence factor and mutanobactin synthetases in Streptococcus mutans. mSphere. 2019;4(5):e00429–19. doi: 10.1128/mSphere.00429-19
  • Wu C, Cichewicz R, Li Y, et al. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance. Appl environ microbiol. 2010;76(17):5815–5826. doi: 10.1128/AEM.03079-09
  • Cheng X, Zheng X, Zhou X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol. 2016;18(3):904–922. doi: 10.1111/1462-2920.13123
  • Zarrella TM, Bai G, Margolin W. The many roles of the bacterial second messenger cyclic di-AMP in adapting to stress cues. J Bacteriol. 2020;203(1):e00348–20. doi: 10.1128/JB.00348-20