357
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Secretome analysis and virulence assessment in Abiotrophia defectiva

, &
Article: 2307067 | Received 13 Aug 2023, Accepted 11 Jan 2024, Published online: 12 Feb 2024

References

  • Chowdhury S, German ML. Rare but not infrequent: infective endocarditis caused by Abiotrophia defectiva. Case Rep Infect Dis. 2018;2018:5186520. doi: 10.1155/2018/5186520
  • Cerceo E, Christie JD, Nachamkin I, et al. Central nervous system infections due to Abiotrophia and granulicatella species: an emerging challenge? Diagn Microbiol Infect Dis. 2004;48(3):161–14. doi: 10.1016/j.diagmicrobio.2003.10.009
  • Escarcega E, Trovato C, Idahosa O, et al. Abiotrophia defectiva Endocarditis: An Easy Miss. Clin Pract Cases Emerg Med. 2017;1(3):229–231. doi: 10.5811/cpcem.2017.3.33126
  • Birlutiu V, Birlutiu RM. Endocarditis due to abiotrophia defectiva, a biofilm-related infection associated with the presence of fixed braces: a case report. Medicine (Baltimore). 2017;96(46):e8756. doi: 10.1097/MD.0000000000008756
  • Rhodes HM, Hirigoyen D, Shabnam L, et al. Infective endocarditis due to abiotrophia defectiva and granulicatella spp. complicated by infectious intracranial cerebral aneurysms: a report of three cases and review of the literature. J Med Microbiol. 2016;65(6):493–9. doi: 10.1099/jmm.0.000260
  • Lin CH, Hsu RB. Infective endocarditis caused by nutritionally variant streptococci. Am J Med Sci. 2007;334(4):235–9. doi: 10.1097/MAJ.0b013e3180a6eeab
  • Nygren D, Alverbrandt M, Sunnerhagen T, et al. Aortitis caused by Abiotrophia defectiva: description of two cases. Infect Dis Rep. 2018;10(3):7746. doi: 10.4081/idr.2018.7746
  • ElSalhy M, Soderling E, Honkala E, et al. Salivary microbiota and caries occurrence in Mutans Streptococci-positive school children. Eur J Paediatr Dent. 2016;17(3):188–92.
  • Corby PM, Bretz WA, Hart TC, et al. Heritability of oral microbial species in caries-active and caries-free twins. Twin Res Hum Genet. 2007;10(6):821–8. doi: 10.1375/twin.10.6.821
  • Rego RO, Oliveira CA, dos Santos-Pinto A, et al. Clinical and microbiological studies of children and adolescents receiving orthodontic treatment. Am J Dent. 2010;23(6):317–23.
  • Birlutiu V, Birlutiu RM, Costache VS. Viridans streptococcal infective endocarditis associated with fixed orthodontic appliance managed surgically by mitral valve plasty: a case report. Medicine (Baltimore). 2018;97(27):e11260. doi: 10.1097/MD.0000000000011260
  • Karched M, Bhardwaj RG, Inbamani A, et al. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe. 2015;35(Pt A):13–20. doi: 10.1016/j.anaerobe.2015.04.013
  • Hung WC, Tseng SP, Chen HJ, et al. Use of groESL as a target for identification of Abiotrophia, Granulicatella, and gemella species. J Clin Microbiol. 2010;48(10):3532–8. doi: 10.1128/JCM.00787-10
  • Green ER, Mecsas J, Kudva IT. Bacterial secretion systems: an overview. Microbiol Spectr. 2016;4(1). doi: 10.1128/microbiolspec.VMBF-0012-2015
  • Kanamoto T, Sato S, Nakashima H, et al. Proliferation of mitogen-stimulated human peripheral blood mononuclear cells is inhibited by extracellular arginine deiminase of Granulicatella elegans isolated from the human mouth. J Infect Chemother. 2007;13(5):353–355. doi: 10.1007/s10156-007-0546-3
  • Abdullah SN, Farmer EA, Spargo L, et al. Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe. 2013;23:102–8. doi: 10.1016/j.anaerobe.2013.07.001
  • Patti JM, Hook M. Microbial adhesins recognizing extracellular matrix macromolecules. Curr Opin Cell Biol. 1994;6(5):752–8. doi: 10.1016/0955-0674(94)90104-X
  • Okada Y, Kitada K, Takagaki M, et al. Inoue M. Endocardiac infectivity and binding to extracellular matrix proteins of oral abiotrophia species. FEMS Immunol Med Microbiol. 2000;27(3):257–61. doi: 10.1111/j.1574-695X.2000.tb01438.x
  • Senn L, Entenza JM, Prod’hom G. Adherence of abiotrophia defectiva and granulicatella species to fibronectin: is there a link with endovascular infections? FEMS Immunol Med Microbiol. 2006;48(2):215–7. doi: 10.1111/j.1574-695X.2006.00142.x
  • Karched M, Bhardwaj RG, Tiss A, et al. Proteomic analysis and virulence assessment of granulicatella adiacens secretome. Front Cell Infect Microbiol. 2019;9:104. doi: 10.3389/fcimb.2019.00104
  • Karched M, Bhardwaj RG, Asikainen SE. Coaggregation and biofilm growth of granulicatella spp. With fusobacterium nucleatum and aggregatibacter actinomycetemcomitans. BMC Microbiol. 2015;15(1):114. doi: 10.1186/s12866-015-0439-z
  • Hiller K, Schobert M, Hundertmark C, et al. JVirGel: calculation of virtual two-dimensional protein gels. Nucleic Acids Res. 2003;31(13):3862–3865. doi: 10.1093/nar/gkg536
  • Bendtsen JD, Nielsen H, von Heijne G, et al. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340(4):783–95. doi: 10.1016/j.jmb.2004.05.028
  • Kall L, Krogh A, Sonnhammer EL. Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 2007;35(Web Server issue):W429–32. doi: 10.1093/nar/gkm256
  • Yu NY, Wagner JR, Laird MR, et al. Psortb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608–15. doi: 10.1093/bioinformatics/btq249
  • Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature Biotechnol. 2019;37(4):420–3. doi: 10.1038/s41587-019-0036-z
  • Bendtsen JD, Nielsen H, Widdick D, et al. Prediction of twin-arginine signal peptides. BMC Bioinf. 2005;6(1):167. doi: 10.1186/1471-2105-6-167
  • Rose RW, Bruser T, Kissinger JC, et al. Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol. 2002;45(4):943–50. doi: 10.1046/j.1365-2958.2002.03090.x
  • Bendtsen JD, Kiemer L, Fausboll A, et al. Non-classical protein secretion in bacteria. BMC Microbiol. 2005;5(1):58. doi: 10.1186/1471-2180-5-58
  • Bagos PG, Tsirigos KD, Liakopoulos TD, et al. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a hidden Markov Model. J Proteome Res. 2008;7(12):5082–93. doi: 10.1021/pr800162c
  • Krogh A, Larsson B, von Heijne G, et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–580. doi: 10.1006/jmbi.2000.4315
  • Yuan Z, Mattick JS, Teasdale RD. SVMtm: support vector machines to predict transmembrane segments. J Comput Chem. 2004;25(5):632–6. doi: 10.1002/jcc.10411
  • Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–9. doi: 10.1093/bioinformatics/14.4.378
  • Hernandez S, Ferragut G, Amela I, et al. MultitaskProtDB: a database of multitasking proteins. Nucleic Acids Res. 2014;42(Database issue):D517–20. doi: 10.1093/nar/gkt1153
  • Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200–D3. doi: 10.1093/nar/gkw1129
  • Ye J, Zhang Y, Cui H, et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 2018;46(W1):W71–W75. doi: 10.1093/nar/gky400
  • Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinf. 2008;9(1):62. doi: 10.1186/1471-2105-9-62
  • Chen L, Zheng D, Liu B, et al. VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 2016;44(D1):D694–7. doi: 10.1093/nar/gkv1239
  • von Mering C, Jensen LJ, Snel B, et al. STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433–7. doi: 10.1093/nar/gki005
  • Fuss IJ, Kanof ME, Smith PD, et al. Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr Protoc Immunol. 2009;Chapter 7:Unit7 1. doi: 10.1002/0471142735.im0701s85
  • Kim YS, Yoon NK, Karisa N, et al. Identification of novel immunogenic proteins against Streptococcus parauberis in a zebrafish model by reverse vaccinology. Microb Pathog. 2019;127:56–9. doi: 10.1016/j.micpath.2018.11.053
  • Manna S, Waring A, Papanicolaou A, et al. The transcriptomic response of streptococcus pneumoniae following exposure to cigarette smoke extract. Sci Rep. 2018;8(1):15716. doi: 10.1038/s41598-018-34103-5
  • Noar RD, Daub ME. Transcriptome sequencing of mycosphaerella fijiensis during association with Musa acuminata reveals candidate pathogenicity genes. BMC Genomics. 2016;17(1):690. doi: 10.1186/s12864-016-3031-5
  • Kim HS, Im HN, An DR, et al. The cell shape-determining Csd6 protein from Helicobacter pylori constitutes a new family of L,D-Carboxypeptidase. J Biol Chem. 2015;290(41):25103–17. doi: 10.1074/jbc.M115.658781
  • Bohle LA, Riaz T, Egge-Jacobsen W, et al. Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics. 2011;12:135. doi: 10.1186/1471-2164-12-135
  • Pradel N, Ye C, Livrelli V, et al. Contribution of the twin arginine translocation system to the virulence of enterohemorrhagic Escherichia coli O157: H7. Infect Immun. 2003;71(9):4908–16. doi: 10.1128/IAI.71.9.4908-4916.2003
  • Lavander M, Ericsson SK, Broms JE, et al. The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun. 2006;74(3):1768–1776. doi: 10.1128/IAI.74.3.1768-1776.2006
  • Lammertyn E, Anne J. Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiol Lett. 2004;238(2):273–279. doi: 10.1111/j.1574-6968.2004.tb09767.x
  • Steen BR, Zuyderduyn S, Toffaletti DL, et al. Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell. 2003;2(6):1336–49. doi: 10.1128/EC.2.6.1336-1349.2003
  • Chen Q, Li Y, Wang J, et al. cpubi4 Is Essential for Development and Virulence in Chestnut Blight Fungus. Front Microbiol. 2018;9:1286. doi: 10.3389/fmicb.2018.01286
  • Houben EN, Korotkov KV, Bitter W. Take five - type VII secretion systems of mycobacteria. Biochim Biophys Acta. 2014;1843(8):1707–1716. doi: 10.1016/j.bbamcr.2013.11.003
  • Warne B, Harkins CP, Harris SR, et al. The Ess/type VII secretion system of staphylococcus aureus shows unexpected genetic diversity. BMC Genomics. 2016;17(1):222. doi: 10.1186/s12864-016-2426-7
  • Bottai D, Groschel MI, Brosch R. Type VII secretion systems in gram-positive bacteria. Curr Top Microbiol Immunol. 2017;404:235–265.
  • Li P, Jiang W, Yu Q, et al. Ubiquitination and degradation of GBPs by a Shigella effector to suppress host defence. Nature. 2017;551(7680):378–83. doi: 10.1038/nature24467
  • Akhter Y, Thakur S. Targets of ubiquitin like system in mycobacteria and related actinobacterial species. Microbiol Res. 2017;204:9–29. doi: 10.1016/j.micres.2017.07.002
  • Kaihami GH, Almeida JR, Santos SS, et al. Involvement of a 1-Cys peroxiredoxin in bacterial virulence. PLOS Pathog. 2014;10(10):e1004442. doi: 10.1371/journal.ppat.1004442
  • Carrera M, Bohme K, Gallardo JM, et al. Characterization of foodborne strains of staphylococcus aureus by shotgun proteomics: functional networks, virulence factors and species-specific peptide biomarkers. Front Microbiol. 2017;8:2458. doi: 10.3389/fmicb.2017.02458
  • Cavanagh JP, Pain M, Askarian F, et al. Comparative exoproteome profiling of an invasive and a commensal Staphylococcus haemolyticus isolate. J Proteomics. 2019;197:106–14. doi: 10.1016/j.jprot.2018.11.013
  • Wu Z, Shao J, Ren H, et al. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence. Vet Microbiol. 2016;187:64–9. doi: 10.1016/j.vetmic.2016.03.017
  • Liang X, Chen YY, Ruiz T, et al. New cell surface protein involved in biofilm formation by streptococcus parasanguinis. Infect Immun. 2011;79(8):3239–3248. doi: 10.1128/IAI.00029-11
  • Murphy TF, Brauer AL, Johnson A, et al. ATP-Binding cassette (ABC) transporters of the human respiratory tract pathogen, moraxella catarrhalis: role in virulence. PloS One. 2016;11(7):e0158689. doi: 10.1371/journal.pone.0158689
  • Zhou B, Yang Y, Chen T, et al. The oligopeptide ABC transporter OppA4 negatively regulates the virulence factor OspC production of the lyme disease pathogen. Ticks Tick Borne Dis. 2018;9(5):1343–1349. doi: 10.1016/j.ttbdis.2018.06.006
  • Maqbool A, Horler RS, Muller A, et al. The substrate-binding protein in bacterial ABC transporters: dissecting roles in the evolution of substrate specificity. Biochem Soc Trans. 2015;43(5):1011–1017. doi: 10.1042/BST20150135
  • Deng CY, Deng AH, Sun ST, et al. The periplasmic PDZ domain-containing protein Prc modulates full virulence, envelops stress responses, and directly interacts with dipeptidyl peptidase of xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 2014;27(2):101–112. doi: 10.1094/MPMI-08-13-0234-R
  • Lee C, Laimins LA. Role of the PDZ domain-binding motif of the oncoprotein E6 in the pathogenesis of human papillomavirus type 31. J Virol. 2004;78(22):12366–77. doi: 10.1128/JVI.78.22.12366-12377.2004
  • Tonikian R, Zhang Y, Sazinsky SL, et al. A specificity map for the PDZ domain family. PLoS Biol. 2008;6(9):e239. doi: 10.1371/journal.pbio.0060239
  • Zhang J, Ding SG, Zhong LJ, et al. Difference analysis on proteome of Helicobacter pylori in patients with peptic ulcer, gastritis, and gastric cancer. Zhonghua Yi Xue Za Zhi. 2006;86(38):2690–2694.
  • Lanotte P, Perivier M, Haguenoer E, et al. Proteomic biomarkers associated with streptococcus agalactiae invasive genogroups. PloS One. 2013;8(1):e54393. doi: 10.1371/journal.pone.0054393
  • Poonam Yennamalli RM, Bisht GS, Shrivastava R. Ribosomal maturation factor (RimP) is essential for survival of nontuberculous mycobacteria Mycobacterium fortuitum under in vitro acidic stress conditions. 3 Biotech. 2019;9(4):127. doi: 10.1007/s13205-019-1659-y
  • Kikuchi H, Kim S, Watanabe K, et al. Brucella abortusd-alanyl-D-alanine carboxypeptidase contributes to its intracellular replication and resistance against nitric oxide. FEMS Microbiol Lett. 2006;259(1):120–5. doi: 10.1111/j.1574-6968.2006.00253.x
  • Spidlova P, Senitkova I, Link M, et al. Identification of two substrates of FTS_1067 protein - an essential virulence factor of Francisella tularensis. Acta Microbiol Immunol Hung. 2017;64(1):37–49. doi: 10.1556/030.63.2016.013
  • Ye Y, Li H, Ling N, et al. Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. Int J Food Microbiol. 2016;217:182–8. doi: 10.1016/j.ijfoodmicro.2015.08.025
  • Cho Y, Park S, Barate AK, et al. Proteomic analysis of outer membrane proteins in Salmonella enterica enteritidis. J Microbiol Biotechnol. 2015;25(2):288–95. doi: 10.4014/jmb.1410.10052
  • Mesnage S, Dellarole M, Baxter NJ, et al. Molecular basis for bacterial peptidoglycan recognition by LysM domains. Nat Commun. 2014;5(1):4269. doi: 10.1038/ncomms5269
  • Garmory HS, Titball RW. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun. 2004;72(12):6757–63. doi: 10.1128/IAI.72.12.6757-6763.2004
  • Reffuveille F, Leneveu C, Chevalier S, et al. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. Microbiology. 2011;157(Pt 11):3001–3013. doi: 10.1099/mic.0.053314-0
  • Cohn MT, Ingmer H, Mulholland F, et al. Contribution of conserved ATP-dependent proteases of Campylobacter jejuni to stress tolerance and virulence. Appl Environ Microbiol. 2007;73(24):7803–13. doi: 10.1128/AEM.00698-07
  • Burnside K, Lembo A, de Los Reyes M, et al. Regulation of hemolysin expression and virulence of staphylococcus aureus by a serine/threonine kinase and phosphatase. PloS One. 2010;5(6):e11071. doi: 10.1371/journal.pone.0011071
  • Rocco CJ, Bakaletz LO, Goodman SD, et al. Targeting the HUβ protein prevents porphyromonas gingivalis from entering into preexisting biofilms. J Bacteriol. 2018;200(11). doi: 10.1128/JB.00790-17
  • Li SX, Wu HT, Liu YT, et al. The F1Fo-ATP synthase beta subunit is required for Candida albicans pathogenicity due to its role in carbon flexibility. Front Microbiol. 2018;9:1025. doi: 10.3389/fmicb.2018.01025
  • Geddes JM, Croll D, Caza M, et al. Secretome profiling of Cryptococcus neoformans reveals regulation of a subset of virulence-associated proteins and potential biomarkers by protein kinase a. BMC Microbiol. 2015;15:206. doi: 10.1186/s12866-015-0532-3
  • Frees D, Brondsted L, Ingmer H. Bacterial proteases and virulence. Subcell Biochem. 2013;66:161–192.
  • Lynskey NN, Reglinski M, Calay D, et al. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLOS Pathog. 2017;13(8):e1006493. doi: 10.1371/journal.ppat.1006493
  • Clarke SC, Dumesic PA, Homer CM, et al. Integrated activity and genetic profiling of secreted peptidases in Cryptococcus neoformans reveals an aspartyl peptidase required for low pH survival and virulence. PLOS Pathog. 2016;12(12):e1006051. doi: 10.1371/journal.ppat.1006051
  • Tai SS, Yu C, Lee JK. A solute binding protein of Streptococcus pneumoniae iron transport. FEMS Microbiol Lett. 2003;220(2):303–8. doi: 10.1016/S0378-1097(03)00135-6
  • Wang Z, Bie P, Cheng J, et al. The ABC transporter YejABEF is required for resistance to antimicrobial peptides and the virulence of Brucella melitensis. Sci Rep. 2016;6(1):31876. doi: 10.1038/srep31876
  • Moreno-Altamirano MM, Paredes-Gonzalez IS, Espitia C, et al. Bioinformatic identification of mycobacterium tuberculosis proteins likely to target host cell mitochondria: virulence factors? Microb Inform Exp. 2012;2(1):9. doi: 10.1186/2042-5783-2-9
  • Zijnge V, Kieselbach T, Oscarsson J, et al. Proteomics of protein secretion by aggregatibacter actinomycetemcomitans. PloS One. 2012;7(7):e41662. doi: 10.1371/journal.pone.0041662
  • Stobernack T, Glasner C, Junker S, et al. Extracellular proteome and citrullinome of the oral pathogen porphyromonas gingivalis. J Proteome Res. 2016;15(12):4532–43. doi: 10.1021/acs.jproteome.6b00634
  • Terrasse R, Amoroso A, Vernet T, et al. Streptococcus pneumoniae GAPDH is released by cell lysis and interacts with Peptidoglycan. PloS One. 2015;10(4):e0125377. doi: 10.1371/journal.pone.0125377
  • Jeffery CJ. Moonlighting proteins. Trends Biochem Sci. 1999;24(1):8–11. doi: 10.1016/S0968-0004(98)01335-8
  • Henderson B, Martin AC. Protein moonlighting: a new factor in biology and medicine. Biochem Soc Trans. 2014;42(6):1671–1678. doi: 10.1042/BST20140273
  • Henderson B, Martin A, Andrews-Polymenis HL. Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun. 2011;79(9):3476–91. doi: 10.1128/IAI.00179-11
  • Wang G, Xia Y, Cui J, et al. The roles of moonlighting proteins in bacteria. Curr Issues Mol Biol. 2014;16:15–22.
  • Ribeiro LA, Azevedo V, Le Loir Y, et al. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl Environ Microbiol. 2002;68(2):910–6. doi: 10.1128/AEM.68.2.910-916.2002
  • Oliveira SC, Splitter GA. Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine. 1996;14(10):959–962. doi: 10.1016/0264-410X(96)00018-7
  • Tunio SA, Oldfield NJ, Berry A, et al. The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol. 2010;76(3):605–615. doi: 10.1111/j.1365-2958.2010.07098.x
  • Modun B, Morrissey J, Williams P. The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 2000;8(5):231–7. doi: 10.1016/S0966-842X(00)01728-5
  • Terao Y, Yamaguchi M, Hamada S, et al. Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J Biol Chem. 2006;281(20):14215–23. doi: 10.1074/jbc.M513408200
  • Madureira P, Baptista M, Vieira M, et al. Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J Immunol. 2007;178(3):1379–1387. doi: 10.4049/jimmunol.178.3.1379
  • Lu GT, Xie JR, Chen L, et al. Glyceraldehyde-3-phosphate dehydrogenase of xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence. Microbiology. 2009;155(Pt 5):1602–1612. doi: 10.1099/mic.0.023762-0
  • Liu Y, Chen S, Zhang J, et al. Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. Water Res. 2016;93:141–52. doi: 10.1016/j.watres.2016.01.060
  • Barnard-Britson S, Chi X, Nonaka K, et al. Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine: uridine-5’-aldehyde transaldolase. J Am Chem Soc. 2012;134(45):18514–18517. doi: 10.1021/ja308185q
  • Rayah A, Kanellopoulos JM, Di Virgilio F. P2 receptors and immunity. Microbes Infect. 2012;14(14):1254–62. doi: 10.1016/j.micinf.2012.07.006
  • Lee EJ, Groisman EA. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA. Nature. 2012;486(7402):271–5. doi: 10.1038/nature11090
  • Mempin R, Tran H, Chen C, et al. Release of extracellular ATP by bacteria during growth. BMC Microbiol. 2013;13(1):301. doi: 10.1186/1471-2180-13-301
  • Coutinho-Silva R, Ojcius DM. Role of extracellular nucleotides in the immune response against intracellular bacteria and protozoan parasites. Microbes Infect. 2012;14(14):1271–7. doi: 10.1016/j.micinf.2012.05.009
  • Dapunt U, Giese T, Stegmaier S, et al. The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoskelet Disord. 2016;17(1):243. doi: 10.1186/s12891-016-1091-y
  • Oscarsson J, Karched M, Thay B, et al. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol. 2008;8(1):206. doi: 10.1186/1471-2180-8-206
  • Lee VT, Schneewind O. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 2001;15(14):1725–52. doi: 10.1101/gad.896801
  • Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev. 1997;61(2):136–69. doi: 10.1128/mmbr.61.2.136-169.1997
  • Bhardwaj RG, Al-Khabbaz A, Karched M. Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and abiotrophia spp. Microb Pathog. 2018;114:90–4. doi: 10.1016/j.micpath.2017.11.037
  • Fletcher JM, Nair SP, Ward JM, et al. Analysis of the effect of changing environmental conditions on the expression patterns of exported surface-associated proteins of the oral pathogen Actinobacillus actinomycetemcomitans. Microb Pathog. 2001;30(6):359–68. doi: 10.1006/mpat.2000.0439
  • Graf AC, Leonard A, Schauble M, et al. Virulence factors produced by staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol & Cell Proteomics. 2019;18(6):1036–1053. doi: 10.1074/mcp.RA118.001120
  • Pavkova I, Kopeckova M, Klimentova J, et al. The multiple localized glyceraldehyde-3-phosphate dehydrogenase contributes to the attenuation of the Francisella tularensis dsbA deletion mutant. Front Cell Infect Microbiol. 2017;7:503. doi: 10.3389/fcimb.2017.00503