1,269
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Manipulating the diseased oral microbiome: the power of probiotics and prebiotics

, ORCID Icon & ORCID Icon
Article: 2307416 | Received 20 Oct 2023, Accepted 14 Jan 2024, Published online: 31 Jan 2024

References

  • Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–16. doi: 10.1016/S0140-6736(03)12489-0
  • Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota - introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–1412. doi: 10.1093/jn/125.6.1401
  • Fuller R. Probiotics in human medicine. Gut. 1991;32(4):439–42. doi: 10.1136/gut.32.4.439
  • Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol. 2010;7(9):503–14. doi: 10.1038/nrgastro.2010.117
  • Holzapfel WH, Haberer P, Snel J, et al. Overview of gut flora and probiotics. Int J Food Microbiol. 1998;41(2):85–101. doi: 10.1016/S0168-1605(98)00044-0
  • Isolauri E, Sutas Y, Kankaanpaa P, et al. Probiotics: effects on immunity. Am J Clin Nutr. 2001;73(2):444S–450S. doi: 10.1093/ajcn/73.2.444s
  • Majamaa H, Isolauri E. Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immun. 1997;99(2):179–185. doi: 10.1016/S0091-6749(97)70093-9
  • de Groot, PF, Belzer C, Aydin Ö, et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PloS One. 2017;12(12):e0188475. doi: 10.1371/journal.pone.0188475
  • Long J, Cai Q, Steinwandel M, et al. Association of oral microbiome with type 2 diabetes risk. J Periodontal Res. 2017;52(3):636–43. doi: 10.1111/jre.12432
  • Brusca SB, Abramson SB, Scher JU. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol. 2014;26(1):101–7. doi: 10.1097/BOR.0000000000000008
  • Zhang X, Zhang DY, Jia HJ, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905. doi: 10.1038/nm.3914
  • Mankia K, Cheng Z, Do T, et al. Prevalence of periodontal disease and periodontopathic bacteria in anti–cyclic citrullinated protein antibody–positive at-risk adults without arthritis. JAMA Netw Open. 2019;2(6):e195394–e. doi: 10.1001/jamanetworkopen.2019.5394
  • Zijian C, Thuy D, Kulveer M, et al. Dysbiosis in the oral microbiomes of anti-CCP positive individuals at risk of developing rheumatoid arthritis. Ann Rheum Dis. 2021;80(2):162. doi: 10.1136/annrheumdis-2020-216972
  • El Kholy K, Genco RJ, Van Dyke TE. Oral infections and cardiovascular disease. Trends Endocrinol Metab. 2015;26(6):315–21. doi: 10.1016/j.tem.2015.03.001
  • Ordovas JM, Mooser V. Metagenomics: the role of the microbiome in cardiovascular diseases. Curr Opin Lipidol. 2006;17(2):157–161. doi: 10.1097/01.mol.0000217897.75068.ba
  • Pritchard AB, Crean S, Olsen I, et al. Periodontitis, microbiomes and their role in Alzheimer’s disease. Front Aging Neurosci query. 2017;9. doi: 10.3389/fnagi.2017.00336
  • Shoemark DK, Allen SJ. The microbiome and disease: reviewing the links between the oral microbiome, aging, and Alzheimer’s disease. J Alzheimers Dis. 2015;43(3):725–38. doi: 10.3233/JAD-141170
  • Singhrao SK, Olsen I. Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer’s disease. J Oral Microbiol. 2019;11(1):1563405. doi: 10.1080/20002297.2018.1563405
  • Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res. 1994;8(2):263–71. doi: 10.1177/08959374940080022001
  • Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol. 2009;1(1):1949. doi: 10.3402/jom.v1i0.1949
  • Marsh PD, Head DA, Devine DA. Ecological approaches to oral biofilms: control without killing. Caries Res. 2015;49(Suppl. 1):46–54. doi: 10.1159/000377732
  • Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontal. 2017;44(S18):S12–S22. doi: 10.1111/jcpe.12679
  • Kollath W. Nutrition and the tooth system; general review with special reference to vitamins. Deut Zahnaerztl Z. 1953;8(11):Suppl 7–16.
  • Lilly DM, Stillwell RH. Probiotics - growth promoting factors produced by microorganisms. Science. 1965;147(3659):747±. doi: 10.1126/science.147.3659.747
  • Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66(5):365–378. doi: 10.1111/j.1365-2672.1989.tb05105.x
  • Martín R, Langella P. Emerging health concepts in the probiotics field: streamlining the definitions. Front Microbiol. 2019;10(1047). doi: 10.3389/fmicb.2019.01047
  • Gibson GR, Probert HM, Van Loo J, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev. 2004;17(2):259–75. doi: 10.1079/NRR200479
  • Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi: 10.1038/nrgastro.2017.75
  • Roberfroid M. Prebiotics: the concept revisited. J Nutr. 2007;137(3):830S–837S. doi: 10.1093/jn/137.3.830S
  • Maekawa T, Hajishengallis G. Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res. 2014;49(6):785–91. doi: 10.1111/jre.12164
  • Näse L, Hatakka K, Savilahti E, et al. Effect of long–term consumption of a probiotic bacterium, Lactobacillus rhamnosus GG, in milk on dental caries and caries risk in children. Caries Res. 2001;35(6):412–20. doi: 10.1159/000047484
  • Alkaya B, Laleman I, Keceli S, et al. Clinical effects of probiotics containing bacillus species on gingivitis: a pilot randomized controlled trial. J Periodontal Res. 2017;52(3):497–504. doi: 10.1111/jre.12415
  • Burton JP, Drummond BK, Chilcott CN, et al. Influence of the probiotic Streptococcus salivarius strain M18 on indices of dental health in children: a randomized double-blind, placebo-controlled trial. J Med Microbiol. 2013;62(6):875–884. doi: 10.1099/jmm.0.056663-0
  • Hedayati-Hajikand T, Lundberg U, Eldh C, et al. Effect of probiotic chewing tablets on early childhood caries–a randomized controlled trial. BMC Oral Health. 2015;15(1):112. doi: 10.1186/s12903-015-0096-5
  • İ̇̇nce G, Gürsoy H, İ̇̇pçi ŞD, et al. Clinical and biochemical evaluation of lozenges containing Lactobacillus reuteri as an adjunct to non-surgical periodontal therapy in chronic periodontitis. J Periodontol. 2015;86(6):746–54. doi: 10.1902/jop.2015.140612
  • Jørgensen MR, Keller MK, Kragelund C, et al. Lactobacillus reuteri supplements do not affect salivary IgA or cytokine levels in healthy subjects: a randomized, double-blind, placebo-controlled, cross-over trial. Acta Odontol Scand. 2016;74(5):399–404. doi: 10.3109/00016357.2016.1169439
  • Rodriguez G, Ruiz B, Faleiros S, et al. Probiotic compared with standard milk for high-caries children: a cluster randomized trial. J Dent Res. 2016;95(4):402–7. doi: 10.1177/0022034515623935
  • Seidel CL, Gerlach RG, Weider M, et al. Influence of probiotics on the periodontium, the oral microbiota and the immune response during orthodontic treatment in adolescent and adult patients (ProMB trial): study protocol for a prospective, double-blind, controlled, randomized clinical trial. BMC Oral Health. 2022;22(1):148. doi: 10.1186/s12903-022-02180-8
  • Stecksén-Blicks C, Sjöström I, Twetman S. Effect of long-term consumption of milk supplemented with probiotic lactobacilli and fluoride on dental caries and general health in preschool children: a cluster-randomized study. Caries Res. 2009;43(5):374–81. doi: 10.1159/000235581
  • Tekce M, Ince G, Gursoy H, et al. Clinical and microbiological effects of probiotic lozenges in the treatment of chronic periodontitis: a 1‐year follow‐up study. J Clin Periodontol. 2015;42(4):363–72. doi: 10.1111/jcpe.12387
  • Twetman S, Derawi B, Keller M, et al. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid. Acta Odontol Scand. 2009;67(1):19–24. doi: 10.1080/00016350802516170
  • Vivekananda M, Vandana K, Bhat K. Effect of the probiotic Lactobacilli reuteri (prodentis) in the management of periodontal disease: a preliminary randomized clinical trial. J Oral Microbiol. 2010;2(1):5344. doi: 10.3402/jom.v2i0.5344
  • Sharma A, Rath GK, Chaudhary SP, et al. Lactobacillus brevis CD2 lozenges reduce radiation- and chemotherapy-induced mucositis in patients with head and neck cancer: a randomized double-blind placebo-controlled study. Eur J Cancer. 2012;48(6):875–81. doi: 10.1016/j.ejca.2011.06.010
  • Gruner D, Paris S, Schwendicke F. Probiotics for managing caries and periodontitis: systematic review and meta-analysis. J Dent. 2016;48:16–25. doi: 10.1016/j.jdent.2016.03.002
  • Ikram S, Hassan N, Raffat MA, et al. Systematic review and meta-analysis of double-blind, placebo-controlled, randomized clinical trials using probiotics in chronic periodontitis. J Investig Clin Dent. 2018;9(3):e12338. doi: 10.1111/jicd.12338
  • Mundula T, Ricci F, Barbetta B, et al. Effect of probiotics on oral candidiasis: a systematic review and meta-analysis. Nutrients. 2019;11(10):2449. doi: 10.3390/nu11102449
  • Seminario-Amez M, Lopez-Lopez J, Estrugo-Devesa A, et al. Probiotics and oral health: a systematic review. Med Oral Patol Oral Cir Bucal. 2017;22(3):e282–e8. doi: 10.4317/medoral.21494
  • Cagetti MG, Mastroberardino S, Milia E, et al. The use of probiotic strains in caries prevention: a systematic review. Nutrients. 2013;5(7):2530–50. doi: 10.3390/nu5072530
  • Martin-Cabezas R, Davideau J-L, Tenenbaum H, et al. Clinical efficacy of probiotics as an adjunctive therapy to non-surgical periodontal treatment of chronic periodontitis: a systematic review and meta-analysis. J Clin Periodontol. 2016;43(6):520–30. doi: 10.1111/jcpe.12545
  • Liu J, Liu Z, Huang J, et al. Effect of probiotics on gingival inflammation and oral microbiota: a meta-analysis. Oral Dis. 2022;28(4):1058–67. doi: 10.1111/odi.13861
  • Azad MAK, Sarker M, Li T, et al. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int. 2018;2018:9478630–. doi: 10.1155/2018/9478630
  • Srivastava S, Saha S, Kumari M, et al. Effect of probiotic curd on salivary pH and Streptococcus mutans: a double blind parallel randomized controlled trial. J Clin Diagn Res. 2016;10(2):ZC13–6. doi: 10.7860/JCDR/2016/15530.7178
  • Saha S, Tomaro-Duchesneau C, Rodes L, et al. Investigation of probiotic bacteria as dental caries and periodontal disease biotherapeutics. Benef Microbes. 2014;5(4):447–60. doi: 10.3920/BM2014.0011
  • Morales A, Carvajal P, Silva N, et al. Clinical effects of Lactobacillus rhamnosus in non-surgical treatment of chronic periodontitis: a randomized placebo-controlled trial with 1-year follow-up. J Periodontol. 2016;87(8):944–52. doi: 10.1902/jop.2016.150665
  • Teughels W, Durukan A, Ozcelik O, et al. Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo‐controlled study. J Clin Periodontol. 2013;40(11):1025–35. doi: 10.1111/jcpe.12155
  • Ikram S, Hassan N, Baig S, et al. Clinical efficacy of probiotics as an adjunct to scaling and root planning in the treatment of chronic periodontitis. Ann Abbasi Shaheed H. 2019;24(1):31–37. doi: 10.58397/ashkmdc.v24i1.24
  • Kim Y-J, Lee S-H. Inhibitory effect of Lactococcus lactis HY 449 on cariogenic biofilm. J Microbiol Biotechnol. 2016;26(11):1829–35. doi: 10.4014/jmb.1604.04008
  • Kuru BE, Laleman I, Yalnizoglu T, et al. The influence of a Bifidobacterium animalis probiotic on gingival health: a randomized controlled clinical trial. J Periodontol. 2017;88(11):1115–23. doi: 10.1902/jop.2017.170213
  • Lee K, Walker AR, Chakraborty B, et al. Novel probiotic mechanisms of the oral bacterium Streptococcus sp. A12 as explored with functional genomics. Appl Environ Microbiol. 2019;85(21). doi: 10.1128/AEM.01335-19
  • Holmes ZC, Villa MM, Durand HK, et al. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. Microbiome. 2022;10(1):114. doi: 10.1186/s40168-022-01307-x
  • Ismail HM, Spall M, Evans-Molina C, et al. Evaluating the effect of prebiotics on the gut microbiome profile and β cell function in youth with newly diagnosed type 1 diabetes: protocol of a pilot randomized controlled trial. Pilot And Feasibility Stud. 2023;9(1):150. doi: 10.1186/s40814-023-01373-4
  • Ni Lochlainn M, Nessa A, Sheedy A, et al. The PROMOTe study: targeting the gut microbiome with prebiotics to overcome age-related anabolic resistance: protocol for a double-blinded, randomised, placebo-controlled trial. BMC Geriatr. 2021;21(1):407. doi: 10.1186/s12877-021-02301-y
  • Slomka V, Hernandez‐Sanabria E, Herrero ER, et al. Nutritional stimulation of commensal oral bacteria suppresses pathogens: the prebiotic concept. J Clin Periodontol. 2017;44(4):344–52. doi: 10.1111/jcpe.12700
  • Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun. 1989;57(10):3204–9. doi: 10.1128/iai.57.10.3204-3209.1989
  • Qu X, Wu Z, Pang B, et al. From nitrate to nitric oxide: the role of salivary glands and oral bacteria. J Dental Res. 2016;95(13):1452–1456. doi: 10.1177/0022034516673019
  • Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, et al. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health. Front Microbiol. 2020;11:555465. doi: 10.3389/fmicb.2020.555465
  • Morou-Bermúdez E, Torres-Colón J, Bermúdez N, et al. Pathways linking oral bacteria, nitric oxide metabolism, and health. J Dent Res. 2022;101(6):623–31. doi: 10.1177/00220345211064571
  • Rosier B, Buetas E, Moya-Gonzalvez E, et al. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep. 2020;10(1):1–15. doi: 10.1038/s41598-020-69931-x
  • Konde S, Ravindran S, Agarwal M, et al. Prebiotics-a primeval measure to combat dental caries: a short-term clinical study. Int J Clin Pediatr Dent. 2022;15(Suppl 2):S234–s8. doi: 10.5005/jp-journals-10005-2165
  • Nunpan H, Suwannachart C, Wayakanon K. Effect of prebiotics-enhanced probiotics on the growth of Streptococcus mutans. Int J Microbiol. 2019;2019:1–7. doi: 10.1155/2019/4623807
  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–858. doi: 10.1016/S0140-6736(18)32279-7
  • Hujoel PP, Lingström P. Nutrition, dental caries and periodontal disease: a narrative review. J Clin Periodontol. 2017;44(S18):S79–S84. doi: 10.1111/jcpe.12672
  • Moye ZD, Zeng L, Burne RA. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans. J Oral Microbiol. 2014;6(1):24878. doi: 10.3402/jom.v6.24878
  • Lee S-H, Kim Y-J. A comparative study of the effect of probiotics on cariogenic biofilm model for preventing dental caries. Arch Microbiol. 2014;196(8):601–9. doi: 10.1007/s00203-014-0998-7
  • Ren Z, Chen L, Li J, et al. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity. J Oral Microbiol. 2016;8(1):31095–. doi: 10.3402/jom.v8.31095
  • Çaglar E, Sandalli N, Twetman S, et al. Effect of yogurt with Bifidobacterium DN-173 010 on salivary mutans streptococci and lactobacilli in young adults. Acta Odontol Scand. 2005;63(6):317–20. doi: 10.1080/00016350510020070
  • Cildir SK, Germec D, Sandalli N, et al. Reduction of salivary mutans streptococci in orthodontic patients during daily consumption of yoghurt containing probiotic bacteria. Eur J Orthod. 2009;31(4):407–11. doi: 10.1093/ejo/cjn108
  • Singh R, Damle SG, Chawla A. Salivary mutans streptococci and lactobacilli modulations in young children on consumption of probiotic ice-cream containing Bifidobacterium lactis Bb12 and Lactobacillus acidophilus La5. Acta Odontol Scand. 2011;69(6):389–94. doi: 10.3109/00016357.2011.572289
  • Nagarajappa R, Daryani H, Sharda AJ, et al. Effect of chocobar ice cream containing bifidobacterium on salivary Streptococcus mutans and lactobacilli: a randomised controlled trial. Oral Health Prev Dent. 2015;13(3):213–8. doi: 10.3290/j.ohpd.a32673
  • Haukioja A, Yli‐Knuuttila H, Loimaranta V, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria in vitro. Oral Microbiol Immun. 2006;21(5):326–32. doi: 10.1111/j.1399-302X.2006.00299.x
  • Lin C-W, Chen Y-T, Ho H-H, et al. Lozenges with probiotic strains enhance oral immune response and health. Oral Dis. 2022;28(6):1723–32. doi: 10.1111/odi.13854
  • Ma D, Forsythe P, Bienenstock J. Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor alpha-induced interleukin-8 expression. Infect Immun. 2004;72(9):5308–14. doi: 10.1128/IAI.72.9.5308-5314.2004
  • Messora MR, Pereira LJ, Foureaux R, et al. Favourable effects of Bacillus subtilis and Bacillus licheniformis on experimental periodontitis in rats. Arch Oral Biol. 2016;66:108–119. doi: 10.1016/j.archoralbio.2016.02.014
  • Schaefer L, Auchtung TA, Hermans KE, et al. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology. 2010;156(6):1589–99. doi: 10.1099/mic.0.035642-0
  • Fuller R, Gibson GR. Modification of the intestinal microflora using probiotics and prebiotics. Scand J Gastroenterol. 1997;32(sup222):28–31. doi: 10.1080/00365521.1997.11720714
  • Jamali Z, Aminabadi NA, Samiei M, et al. Impact of chlorhexidine pretreatment followed by Probiotic Streptococcus salivarius strain K12 on halitosis in children: a randomised controlled clinical trial. Oral Health Prev Dent. 2016;14(4):305–13. doi: 10.3290/j.ohpd.a36521
  • Laleman I, Yilmaz E, Ozcelik O, et al. The effect of a streptococci containing probiotic in periodontal therapy: a randomized controlled trial. J Clin Periodontol. 2015;42(11):1032–41. doi: 10.1111/jcpe.12464
  • Hillman J, McDonell E, Cramm T, et al. A spontaneous lactate dehydrogenase deficient mutant of Streptococcus rattus for use as a probiotic in the prevention of dental caries. J Appl Microbiol. 2009;107(5):1551–8. doi: 10.1111/j.1365-2672.2009.04333.x
  • Hillman JD, Andrews SW, Dzuback AL. Acetoin production by wild-type strains and a lactate dehydrogenase-deficient mutant of Streptococcus mutans. Infect Immun. 1987;55(6):1399–402. doi: 10.1128/iai.55.6.1399-1402.1987
  • Fitzgerald RJ, Adams BO, Sandham HJ, et al. Cariogenicity of a lactate dehydrogenase-deficient mutant of Streptococcus mutans serotype c in gnotobiotic rats. Infect Immun. 1989;57(3):823–6. doi: 10.1128/iai.57.3.823-826.1989
  • Gupta S, Marwah N. ‘Use a thorn to draw thorn’ replacement therapy for prevention of dental caries. Int J Clin Pediatr Dent. 2010;3(3):125–137. doi: 10.5005/jp-journals-10005-1068
  • Hillman JD. Lactate dehydrogenase mutants of Streptococcus mutans: isolation and preliminary characterization. Infect Immun. 1978;21(1):206–12. doi: 10.1128/iai.21.1.206-212.1978
  • Hillman JD. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek. 2002;82(1–4):361–366. doi: 10.1023/A:1020695902160
  • Pan W, Mao T, Xu QA, et al. A new gcrR-deficient Streptococcus mutans mutant for replacement therapy of dental caries. Sci World J. 2013;2013:460202. doi: 10.1155/2013/460202
  • Sun J-H, Xu Q-A, Fan M-W. A new strategy for the replacement therapy of dental caries. Med Hypotheses. 2009;73(6):1063–4. doi: 10.1016/j.mehy.2009.04.045
  • Tanzer J, Freedman ML, Fitzgerald RJ. Diminished virulence of glucan synthesis-defective mutants of Streptococcus mutans. Infect Immun. 1974;10(1):197–203. doi: 10.1128/iai.10.1.197-203.1974
  • Tanzer JM, Freedman ML. Genetic alterations of Streptococcus mutans’ virulence. Adv Exp Med Biol. 1978;107:661–672.
  • Hillman J, Yaphe B, Johnson K. Colonization of the human oral cavity by a strain of Streptococcus mutans. J Dent Res. 1985;64(11):1272–4. doi: 10.1177/00220345850640110301
  • Wang Y, Dong J, Wang J, et al. Assessing the drug resistance profiles of oral probiotic lozenges. J Oral Microbiol. 2022;14(1):2019992. doi: 10.1080/20002297.2021.2019992
  • Spielberg S. Jurassic park. USA: Universal Pictures; 1993.
  • Galbraith S, Marschner IC, Marschner IC. Guidelines for the design of clinical trials with longitudinal outcomes. Control Clin Trials. 2002;23(3):257–273. doi: 10.1016/S0197-2456(02)00205-2
  • Witte MB, Thornton FJ, Tantry U, et al. L-Arginine supplementation enhances diabetic wound healing: involvement of the nitric oxide synthase and arginase pathways. Metab Clin Exp. 2002;51(10):1269–73. doi: 10.1053/meta.2002.35185
  • Suchner U, Heyland D, Peter K. Immune-modulatory actions of arginine in the critically ill. Br J Nutr. 2002;87(S1):S121–S32. doi: 10.1079/BJN2001465
  • Kang K, Shu X-L, Zhong J-X, et al. Effect of L-arginine on immune function: a meta-analysis. Asia Pac J Clin Nutr. 2014;23(3):351.
  • Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr. 2000;130(11):2626–9. doi: 10.1093/jn/130.11.2626
  • Kraivaphan P, Amornchat C, Triratana T, et al. Two-year caries clinical study of the efficacy of novel dentifrices containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. Caries Res. 2013;47(6):582–90. doi: 10.1159/000353183
  • Tada A, Nakayama-Imaohji H, Yamasaki H, et al. Cleansing effect of acidic L-arginine on human oral biofilm. BMC Oral Health. 2016;16(1):40. doi: 10.1186/s12903-016-0194-z
  • Wolff M, Schenkel A. The anticaries efficacy of a 1.5% arginine and fluoride toothpaste. Adv Dent Res. 2018;29(1):93–7. doi: 10.1177/0022034517735298
  • Liu Y-L, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci. 2012;4(3):135–40. doi: 10.1038/ijos.2012.54
  • Huang X, Schulte RM, Burne RA, et al. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res. 2015;49(2):165–76. doi: 10.1159/000365296
  • Nascimento MM, Burne RA. Caries prevention by arginine metabolism in oral biofilms: translating science into clinical success. Curr Oral Health Rep. 2014;1(1):79–85. doi: 10.1007/s40496-013-0007-2
  • Griswold AR, Chen Y-Y, Burne RA. Analysis of an agmatine deiminase gene cluster in Streptococcus mutans UA159. J Bacteriol. 2004;186(6):1902–1904. doi: 10.1128/JB.186.6.1902-1904.2004
  • Griswold AR, Nascimento MM, Burne RA. Distribution, regulation and role of the agmatine deiminase system in mutans streptococci. Oral Microbiol Immunol. 2009;24(1):79–82. doi: 10.1111/j.1399-302X.2008.00459.x
  • Nascimento M, Gordan V, Garvan C, et al. Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immun. 2009;24(2):89–95. doi: 10.1111/j.1399-302X.2008.00477.x
  • Nascimento MM, Browngardt C, Xiaohui X, et al. The effect of arginine on oral biofilm communities. Mol Oral Microbiol. 2014;29(1):45–54. doi: 10.1111/omi.12044
  • Nascimento M, Alvarez A, Huang X, et al. Metabolic profile of supragingival plaque exposed to arginine and fluoride. J Dent Res. 2019;98(11):1245–52. doi: 10.1177/0022034519869906
  • Zheng X, He J, Wang L, et al. Ecological effect of arginine on oral microbiota. Sci Rep. 2017;7(1):1–10. doi: 10.1038/s41598-017-07042-w
  • Koopman JE, Hoogenkamp MA, Buijs MJ, et al. Changes in the oral ecosystem induced by the use of 8% arginine toothpaste. Arch Oral Biol. 2017;73:79–87. doi: 10.1016/j.archoralbio.2016.09.008
  • Kuriki N, Asahi Y, Sotozono M, et al. Next-generation sequencing for determining the effect of arginine on human dental biofilms using an in situ model. Pharmacy. 2021;9(1):18. doi: 10.3390/pharmacy9010018
  • Sessler DI, Alman BA, Treggiari MM, et al. Pro-con debate: interdisciplinary perspectives on industry-sponsored research. J Arthroplasty. 2023;38(6):986–991. doi: 10.1016/j.arth.2023.02.018
  • Goldman AS, Yee R, Holmgren CJ, et al. Global affordability of fluoride toothpaste. Global Health. 2008;4(1):7. doi: 10.1186/1744-8603-4-7
  • O Mullane D, Baez R, Jones S, et al. Fluoride and oral health. Community Dent Health. 2016;33(2):69–99.
  • Whelton H, Spencer A, Do L, et al. Fluoride revolution and dental caries: evolution of policies for global use. J Dent Res. 2019;98(8):837–46. doi: 10.1177/0022034519843495
  • Marquis RE. Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol. 1995;41(11):955–964. doi: 10.1139/m95-133
  • Belli W, Buckley D, Marquis R. Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5. Can J Microbiol. 1995;41(9):785–791. doi: 10.1139/m95-108
  • Tenuta L, Cerezetti R, Del Bel Cury A, et al. Fluoride release from CaF2 and enamel demineralization. Int Jou of Medi Res & Hea Sci. 2020;9(5):20–32. doi: 10.1177/154405910808701105
  • Lynch R, Navada R, Walia R. Low‐levels of fluoride in plaque and saliva and their effects on the demineralisation and remineralisation of enamel; role of fluoride toothpastes. Int Dent J. 2004;54(S5):304–309. doi: 10.1111/j.1875-595X.2004.tb00003.x
  • Koopman JE, van der Kaaij NC, Buijs MJ, et al. The effect of fixed orthodontic appliances and fluoride mouthwash on the oral microbiome of adolescents–a randomized controlled clinical trial. PloS One. 2015;10(9):e0137318. doi: 10.1371/journal.pone.0137318
  • Reilly C, Goettl M, Steinmetz M, et al. Short‐term effects of povidone iodine and sodium fluoride therapy on plaque levels and microbiome diversity. Oral Dis. 2016;22(2):155–61. doi: 10.1111/odi.12407
  • López-López A, Mira A. Shifts in composition and activity of oral biofilms after fluoride exposure. Microbial Ecol. 2020;80(3):1–10. doi: 10.1007/s00248-020-01531-8
  • Carda-Diéguez M, Moazzez R, Mira A. Functional changes in the oral microbiome after use of fluoride and arginine containing dentifrices: a metagenomic and metatranscriptomic study. Microbiome. 2022;10(1):1–20. doi: 10.1186/s40168-022-01338-4
  • Zheng X, Cheng X, Wang L, et al. Combinatorial effects of arginine and fluoride on oral bacteria. J Dent Res. 2015;94(2):344–53. doi: 10.1177/0022034514561259
  • Bijle MNA, Ekambaram M, Lo EC, et al. The combined antimicrobial effect of arginine and fluoride toothpaste. Sci Rep. 2019;9(1):1–10. doi: 10.1038/s41598-019-44612-6
  • Santarpia R, Lavender S, Gittins E, et al. A 12-week clinical study assessing the clinical effects on plaque metabolism of a dentifrice containing 1.5% arginine, an insoluble calcium compound and 1,450 ppm fluoride. Am J Dent. 2014;27(2):100–105.
  • Wolff M, Corby P, Klaczany G, et al. In vivo effects of a new dentifrice containing 1.5% arginine and 1450 ppm fluoride on plaque metabolism. J Clin Dent. 2013;24 Spec no A:A45.
  • Yin W, Hu D, Li X, et al. The anti-caries efficacy of a dentifrice containing 1.5% arginine and 1450 ppm fluoride as sodium monofluorophosphate assessed using quantitative light-induced fluorescence (QLF). J Dent. 2013;41:S22–S8. doi: 10.1016/j.jdent.2010.04.004
  • Li X, Zhong Y, Jiang X, et al. Randomized clinical trial of the efficacy of dentifrices containing 1.5% arginine, an insoluble calcium compound and 1450 ppm fluoride over two years. J Clin Dent. 2015;26(1):7–12.
  • Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3(1):17038. doi: 10.1038/nrdp.2017.38
  • Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16(12):745–59. doi: 10.1038/s41579-018-0089-x
  • Shetty S, Srigiri SK, Sheikh KH. A comparative clinical, microbiological and biochemical evaluation of guided periodontal pocket recolonisation (GPR) using synbiotics as an adjunct to scaling and root planing in patients with chronic periodontitis: a Pilot project. 2020.
  • Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;29(6):248–57. doi: 10.1111/omi.12065
  • Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20. doi: 10.1016/S0140-6736(05)67728-8
  • Devine DA, Marsh PD, Meade J. Modulation of host responses by oral commensal bacteria. J Oral Microbiol. 2015;7(1):26941. doi: 10.3402/jom.v7.26941
  • Myers S, Do T, Meade JL, et al. Immunomodulatory streptococci that inhibit CXCL8 secretion and NFκB activation are common members of the oral microbiota. J Med Microbiol. 2021;70(3). doi: 10.1099/jmm.0.001329
  • Cosseau C, Devine DA, Dullaghan E, et al. The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infect Immun. 2008;76(9):4163–75. doi: 10.1128/IAI.00188-08
  • Gheisary Z, Mahmood R, Harri Shivanantham A, et al. The clinical, microbiological, and immunological effects of probiotic supplementation on prevention and treatment of periodontal diseases: a systematic review and meta-analysis. Nutrients. 2022;14(5):1036. doi: 10.3390/nu14051036
  • Lima LM, Motisuki C, Madalena Palomari Spolidorio D, et al. In vitro evaluation of probiotics microorganisms adhesion to an artificial caries model. Eur J Clin Nutr. 2005;59(7):884–6. doi: 10.1038/sj.ejcn.1602158
  • Wu C-Y, He S-J, Mar K, et al. Inhibition of Streptococcus mutans by a commercial yogurt drink. J Dent Sci. 2019;14(2):198–205. doi: 10.1016/j.jds.2018.11.007
  • Sato T, Nakazawa F. Coaggregation between Prevotella oris and Porphyromonas gingivalis. Journal Of Microbiology, Immunol Infect. 2014;47(3):182–186. doi: 10.1016/j.jmii.2012.09.005
  • Ito R, Ishihara K, Shoji M, et al. Hemagglutinin/Adhesin domains of Porphyromonas gingivalis play key roles in coaggregation with Treponema denticola. FEMS Immunol Med Microbiol. 2010;60(3):251–60. doi: 10.1111/j.1574-695X.2010.00737.x
  • Rickard AH, Gilbert P, High NJ, et al. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 2003;11(2):94–100. doi: 10.1016/S0966-842X(02)00034-3
  • Hezel M, Weitzberg E. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 2015;21(1):7–16. doi: 10.1111/odi.12157
  • Sánchez GA, Miozza VA, Delgado A, et al. Total salivary nitrates and nitrites in oral health and periodontal disease. Nitric Oxide. 2014;36:31–5. doi: 10.1016/j.niox.2013.10.012
  • Rosier BT, Takahashi N, Zaura E, et al. The importance of nitrate reduction for oral health. J Dent Res. 2022;101(8):887–97. doi: 10.1177/00220345221080982
  • Schreiber F, Stief P, Gieseke A, et al. Denitrification in human dental plaque. BMC Biol. 2010;8(1):24. doi: 10.1186/1741-7007-8-24
  • Wang Y, Huang X, He F. Mechanism and role of nitric oxide signaling in periodontitis. Exp Ther Med. 2019;18(5):3929–35. doi: 10.3892/etm.2019.8044
  • Alamri MM, Williams B, Le Guennec A, et al. Metabolomics analysis in saliva from periodontally healthy, gingivitis and periodontitis patients. J Periodont Res. 2023;58(6):1272–80. doi: 10.1111/jre.13183
  • Citterio F, Romano F, Meoni G, et al. Changes in the salivary metabolic profile of generalized periodontitis patients after non-surgical periodontal therapy: a metabolomic analysis using nuclear magnetic resonance spectroscopy. J Clin Med. 2020;9(12):3977. doi: 10.3390/jcm9123977
  • Rzeznik M, Triba MN, Levy P, et al. Identification of a discriminative metabolomic fingerprint of potential clinical relevance in saliva of patients with periodontitis using 1H nuclear magnetic resonance (NMR) spectroscopy. PloS One. 2017;12(8):e0182767. doi: 10.1371/journal.pone.0182767
  • Wei Y, Shi M, Nie Y, et al. Integrated analysis of the salivary microbiome and metabolome in chronic and aggressive periodontitis: a pilot study. Front Microbiol. 2022;13:959416. doi: 10.3389/fmicb.2022.959416
  • Li K, Wang J, Du N, et al. Salivary microbiome and metabolome analysis of severe early childhood caries. BMC Oral Health. 2023;23(1):30. doi: 10.1186/s12903-023-02722-8
  • Musalem-Dominguez O, Montiel-Company JM, Ausina-Márquez V, et al. Salivary metabolomic profile associated with cariogenic risk in children. J Dent. 2023;136:104645. doi: 10.1016/j.jdent.2023.104645
  • Wang Y, Zhang Y, Pan T, et al. Metabolic differences of the oral microbiome related to dental caries - A pilot study. Arch Oral Biol. 2022;141:105471. doi: 10.1016/j.archoralbio.2022.105471
  • Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?”. J Dent Res. 2015;94(12):1628–37. doi: 10.1177/0022034515606045
  • Takahashi N, Yamada T. Glucose and lactate metabolism by Actinomyces naeslundii. Critical Rev Oral Biol Med. 1999;10(4):487–503. doi: 10.1177/10454411990100040501
  • Takahashi N, Washio J, Mayanagi G. Metabolomic approach to oral biofilm characterization—A future direction of biofilm research. J Oral Biosci. 2012;54(3):138–43. doi: 10.1016/j.job.2012.02.005
  • Heimisdottir LH, Lin BM, Cho H, et al. Metabolomics insights in early childhood caries. J Dent Res. 2021;100(6):615–22. doi: 10.1177/0022034520982963
  • Wen ZT, Liao S, Bitoun JP, et al. Streptococcus mutans displays altered stress responses while enhancing biofilm formation by Lactobacillus casei in mixed-species consortium. Front Cell Infect Microbiol. 2017;7:524. doi: 10.3389/fcimb.2017.00524
  • Zhang Q, Li J, Lu W, et al. Multi-omics reveals the inhibition of Lactiplantibacillus plantarum CCFM8724 in Streptococcus mutans-Candida albicans mixed-species biofilms. Microorganisms. 2021;9(11):2368. doi: 10.3390/microorganisms9112368
  • Belda-Ferre P, Williamson J, Simón-Soro Á, et al. The human oral metaproteome reveals potential biomarkers for caries disease. Proteomics. 2015;15(20):3497–3507. doi: 10.1002/pmic.201400600
  • Seibold GM, Breitinger KJ, Kempkes R, et al. The glgB-encoded glycogen branching enzyme is essential for glycogen accumulation in Corynebacterium glutamicum. Microbiology. 2011;157(11):3243–51. doi: 10.1099/mic.0.051565-0
  • Yazdani R, Albujeer AN, Rahnama E, et al. Effect of xylitol on salivary Streptococcus mutans: a systematic review and meta-analysis. J Contemp Med Sci. 2019;5(2):64–70. doi: 10.22317/jcms.v5i2.582
  • Lee Y-E, Kim J-H, Cho M-J, et al. Effect of xylitol on dental caries prevention: a literature review. J Korean Soc Dent Hyg. 2019;19(4):449–465.
  • van Loveren C. Sugar alcohols: what is the evidence for caries-preventive and caries-Therapeutic Effects? Caries Res. 2004;38(3):286–293. doi: 10.1159/000077768
  • Rafeek R, Carrington CV, Gomez A, et al. Xylitol and sorbitol effects on the microbiome of saliva and plaque. J Oral Microbiol. 2019;11(1):1536181. doi: 10.1080/20002297.2018.1536181
  • Takahashi N, Washio J. Metabolomic effects of xylitol and fluoride on plaque biofilm in vivo. J Dent Res. 2011;90(12):1463–8. doi: 10.1177/0022034511423395
  • Maehara H, Iwami Y, Mayanagi H, et al. Synergistic inhibition by combination of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism. Caries Res. 2005;39(6):521–528. doi: 10.1159/000088190
  • Chen HW, Zhou W, Liao Y, et al. Analysis of metabolic profiles of generalized aggressive periodontitis. J Periodont Res. 2018;53(5):894–901. doi: 10.1111/jre.12579
  • Barnes V, Ciancio S, Shibly O, et al. Metabolomics reveals elevated macromolecular degradation in periodontal disease. J Dent Res. 2011;90(11):1293–7. doi: 10.1177/0022034511416240
  • Takahashi N, Sato T. Dipeptide utilization by the periodontal pathogens Porphyromonas gingivalis, Prevotella intermedia, Prevotella nigrescens and Fusobacterium nucleatum. Oral Microbiol Immun. 2002;17(1):50–54. doi: 10.1046/j.0902-0055.2001.00089.x
  • Baima G, Corana M, Iaderosa G, et al. Metabolomics of gingival crevicular fluid to identify biomarkers for periodontitis: a systematic review with meta-analysis. J Periodont Res. 2021;56(4):633–45. doi: 10.1111/jre.12872
  • Kuboniwa M, Sakanaka A, Hashino E, et al. Prediction of periodontal inflammation via metabolic profiling of saliva. J Dent Res. 2016;95(12):1381–6. doi: 10.1177/0022034516661142
  • Lee CT, Li R, Zhu L, et al. Subgingival microbiome and specialized pro-resolving lipid mediator pathway profiles are correlated in periodontal inflammation. Front Immunol. 2021;12:691216. doi: 10.3389/fimmu.2021.691216
  • Guan X, Li W, Meng H. A double-edged sword: role of butyrate in the oral cavity and the gut. Mol Oral Microbiol. 2021;36(2):121–31. doi: 10.1111/omi.12322
  • Haque MM, Yerex K, Kelekis-Cholakis A, et al. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health. 2022;22(1):492. doi: 10.1186/s12903-022-02530-6
  • Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–43. doi: 10.1016/j.nut.2011.08.013
  • Chakraborty B, Burne RA, Liu S-J. Effects of arginine on Streptococcus mutans growth, virulence gene expression, and stress tolerance. Appl Environ Microbiol. 2017;83(15). doi: 10.1128/AEM.00496-17
  • Ishikawa KH, Mita D, Kawamoto D, et al. Probiotics alter biofilm formation and the transcription of Porphyromonas gingivalis virulence-associated genes. J Oral Microbiol. 2020;12(1):1805553. doi: 10.1080/20002297.2020.1805553
  • Verspecht T, Van Holm W, Boon N, et al. Potential prebiotic substrates modulate composition, metabolism, virulence and inflammatory potential of an in vitro multi-species oral biofilm. J Oral Microbiol. 2021;13(1):1910462. doi: 10.1080/20002297.2021.1910462
  • Verspecht T, Van Holm W, Boon N, et al. Comparison of the modulatory effects of three structurally similar potential prebiotic substrates on an in vitro multi-species oral biofilm. Sci Rep. 2021;11(1):15033. doi: 10.1038/s41598-021-94510-z
  • Wasfi R, Abd El-Rahman OA, Zafer MM, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans. J Cellular Molecular Medi. 2018;22(3):1972–1983. doi: 10.1111/jcmm.13496
  • AC G, Yucel-Lindberg T, Roos S, et al. Effect of Lactobacillus reuteri on cell viability and PGE2 production in human gingival fibroblasts. Probiotics & Antimicro Prot. 2017;9(3):278–283. doi: 10.1007/s12602-016-9246-6
  • Aimetti M, Cacciatore S, Graziano A, et al. Metabonomic analysis of saliva reveals generalized chronic periodontitis signature. Metabolomics. 2012;8(3):465–74. doi: 10.1007/s11306-011-0331-2
  • Traudt M, Kleinberg I. Stoichiometry of oxygen consumption and sugar, organic acid and amino acid utilization in salivary sediment and pure cultures of oral bacteria. Arch Oral Biol. 1996;41(10):965–78. doi: 10.1016/S0003-9969(96)00044-1
  • Andörfer L, Holtfreter B, Weiss S, et al. Salivary metabolites associated with a 5-year tooth loss identified in a population-based setting. BMC Med. 2021;19(1):161. doi: 10.1186/s12916-021-02035-z
  • Schulte F, King OD, Paster BJ, et al. Salivary metabolite levels in perinatally HIV-infected youth with periodontal disease. Metabolomics. 2020;16(9):1–11. doi: 10.1007/s11306-020-01719-6
  • Beck LC, Masi AC, Young GR, et al. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol. 2022;7(10):1525–35. doi: 10.1038/s41564-022-01213-w