1,544
Views
0
CrossRef citations to date
0
Altmetric
Microbiome Modulators and Oral Health

The effects of nitrate on the oral microbiome: a systematic review investigating prebiotic potential

, , &
Article: 2322228 | Received 20 Sep 2023, Accepted 15 Feb 2024, Published online: 27 Feb 2024

References

  • Shannon OM, Easton C, Shepherd AI, et al. Dietary nitrate and population health: a narrative review of the translational potential of existing laboratory studies. BMC Sports Sci Med Rehabil. 2021;13(1):1–14. doi: 10.1186/s13102-021-00292-2
  • Martin K. Dietary nitrates, nitrites, and food safety: Risks versus benefits. Act Scie Nutr. 2021;5(6):65–76. doi: 10.31080/ASNH.2020.05.0884
  • Stanaway L, Rutherfurd-Markwick K, Page R, et al. Performance and health benefits of dietary nitrate supplementation in older adults: a systematic review. Nutrients. 2017;9(11):1171. doi: 10.3390/nu9111171
  • Bryan NS, Burleigh MC, Easton C. The oral microbiome, nitric oxide and exercise performance. Nitric Oxide. 2022;125-126:23–30. doi: 10.1016/j.niox.2022.05.004
  • McDonagh STJ, Wylie LJ, Thompson C, et al. Potential benefits of dietary nitrate ingestion in healthy and clinical populations: a brief review. Eur J Sport Sci. 2019;19(1):15–29. doi: 10.1080/17461391.2018.1445298
  • Rosier BT, Takahashi N, Zaura E, et al. The importance of nitrate reduction for oral health. J Dent Res. 2022;101(8):887–897. doi: 10.1177/00220345221080982
  • Rosier BT, Buetas E, Moya-Gonzalvez EM, et al. Nitrate as a potential prebiotic for the oral microbiome. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-69931-x
  • Morou-Bermúdez E, Torres-Colón JE, Bermúdez NS, et al. Pathways linking oral bacteria, nitric oxide metabolism, and health. J Dent Res. 2022;101(6):623–631. doi: 10.1177/00220345211064571
  • Nazir MA. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int J Health Sci (Qassim). 2017;11(2):72–80.
  • Saleem HG, Seers CA, Sabri AN, et al. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol. 2016;16(1):1–9. doi: 10.1186/s12866-016-0833-1
  • Paul O, Arora P, Mayer M, et al. Inflammation in periodontal disease: possible link to vascular disease. Front Physiol. 2021;11. doi: 10.3389/fphys.2020.609614
  • Verspecht T, Rodriguez Herrero E, Khodaparast L, et al. Development of antiseptic adaptation and cross-adaptation in selected oral pathogens in vitro. Sci Rep. 2019;9(1). doi: 10.1038/s41598-019-44822-y
  • Murray CJL, Ikuta KS, Sharara F, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet (London, England). 2022;399(10325):629–655.
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi: 10.1179/2047773215Y.0000000030
  • Burleigh M, Liddle L, Muggeridge DJ, et al. Dietary nitrate supplementation alters the oral microbiome but does not improve the vascular responses to an acute nitrate dose. Nitric Oxide. 2019;89:54–63. doi: 10.1016/j.niox.2019.04.010
  • Jockel-Schneider Y, Goßner SK, Petersen N, et al. Stimulation of the nitrate-nitrite-NO-metabolism by repeated lettuce juice consumption decreases gingival inflammation in periodontal recall patients: a randomized, double-blinded, placebo-controlled clinical trial. J Clinic Periodontol. 2016;43(7):603–608. doi: 10.1111/jcpe.12542
  • Jockel-Schneider Y, Schlagenhauf U, Stölzel P, et al. Nitrate-rich diet alters the composition of the oral microbiota in periodontal recall patients. J Periodontol. 2021;92(11):1536–1545. doi: 10.1002/JPER.20-0778
  • Hohensinn B, Haselgrübler R, Müller U, et al. Sustaining elevated levels of nitrite in the oral cavity through consumption of nitrate-rich beetroot juice in young healthy adults reduces salivary pH. Nitric Oxide. 2016;60:10–15. doi: 10.1016/j.niox.2016.08.006
  • PRISMA. PRISMA 2020 checklist; 2021 [cited 2022 Nov 1]. Available from: http://www.prisma-statement.org
  • Scottish Intercollegiate Guidelines Network. Algorithm for classifying study design for questions of effectiveness; 2021 [cited 2022 Nov 2022]. Available from: https://www.sign.ac.uk/assets/study_design.pdf
  • University of Strathclyde. Systematic Review Steps; 2022 [cited 2022 Nov 1]. Available from: https://guides.lib.strath.ac.uk/systematic/steps
  • Centre for Evidence-Based Management. Critical Appraisal Of a Controlled Study; 2019 [cited 2022 Nov 2]. Available from: https://cebma.org/resources-and-tools/what-is-critical-appraisal/
  • Critical Appraisal Skills Programme. CASP Randomised Controlled Trial Checklist; 2022 [cited 2022 Nov 2]. Available from: https://casp-uk.net/casp-tools-checklists/
  • Greenhalgh T, Robert G, Bate P, et al. Diffusion of innovations in health service organisations a systematic literature review: appendix 2, critical appraisal checklists. London: BMJ. 2005.
  • The Joanna Briggs Institute. Checklist For Quasi-Experimental Studies; 2022 [cited 2022 Nov 2]. Available from: https://jbi.global/critical-appraisal-tools
  • Centre for Evidence-Based Management. Critical Appraisal Checklist For Cross-Sectional Study; 2014 [cited 2022 Nov 2]. Available from: https://cebma.org/wp-content/uploads/Critical-Appraisal-Questions-for-a-Cross-Sectional-Study-July-2014-1.pdf
  • Strengthening the reporting of observational studies in epidemiology. STROBE Checklist For Cross-Sectional Studies; 2022 [cited 2022 Nov 2]. Available from: https://www.strobe-statement.org/checklists/
  • University of Exeter Library. Checklist For In Vitro Studies; 2022 [cited 2022 Nov 2]. Available from: https://libguides.exeter.ac.uk/c.php?g=660317&p=4708597
  • Sheth VH, Shah NP, Jain R, et al. Development and validation of a risk-of-bias tool for assessing in vitro studies conducted in dentistry: the QUIN. J Prosthet Dent. 2022. doi: 10.1016/j.prosdent.2022.05.019
  • Velmurugan S, Gan JM, Rathod KS, et al. Dietary nitrate improves vascular function in patients with hypercholesterolemia: a randomized, double-blind, placebo-controlled study. Am J Clin Nutr. 2016;103(1):25–38. doi: 10.3945/ajcn.115.116244
  • Koopman JE, Buijs MJ, Brandt BW, et al. Nitrate and the origin of saliva influence composition and short chain fatty acid production of oral microcosms. Microb Ecol. 2016;72(2):479–492. doi: 10.1007/s00248-016-0775-z
  • Vanhatalo A, Blackwell JR, L’Heureux JE, et al. Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans. Free Radic Biol Med. 2018;124:21–30. doi: 10.1016/j.freeradbiomed.2018.05.078
  • Ashworth A, Cutler C, Farnham G, et al. Dietary intake of inorganic nitrate in vegetarians and omnivores and its impact on blood pressure, resting metabolic rate and the oral microbiome. Free Radic Biol Med. 2019;138:63–72. doi: 10.1016/j.freeradbiomed.2019.05.010
  • Liddle L, Burleigh MC, Monaghan C, et al. Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: An assessment of the critical difference. Nitric Oxide. 2019;83:1–10. doi: 10.1016/j.niox.2018.12.003
  • Rosier BT, Moya-Gonzalvez EM, Corell-Escuin P, et al. Isolation and Characterization of Nitrate-Reducing Bacteria as Potential Probiotics for Oral and Systemic Health. Front Microbiol. 11. doi: 10.3389/fmicb.2020.555465
  • Vanhatalo A, L’Heureux JE, Kelly J, et al. Network analysis of nitrate-sensitive oral microbiome reveals interactions with cognitive function and cardiovascular health across dietary interventions. Redox Biol. 2021;41:101933. doi: 10.1016/j.redox.2021.101933
  • Sinha R, Zhao N, Goedert JJ, et al. Effects of processed meat and drinking water nitrate on oral and fecal microbial populations in a controlled feeding study. Environ Res. 2021;197:111084. doi:10.1016/j.envres.2021.111084
  • Rosier BT, Palazón C, García-Esteban S, et al. A single dose of nitrate increases resilience against acidification derived from sugar fermentation by the oral microbiome. Front Cell Infect Microbiol. 2021;11:692883. doi: 10.3389/fcimb.2021.692883
  • López-Ibáñez J, Martín LT, Chagoyen M, et al. Bacterial feature finder (BaFF)-a system for extracting features overrepresented in sets of prokaryotic organisms. Bioinformatics (Oxford Academia). 2019;35(18):3482–3483. doi: 10.1093/bioinformatics/btz099
  • Pignatelli P, Fabietti G, Ricci A, et al. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21(20):7538. doi: 10.3390/ijms21207538
  • Radaic A, Kapila YL. The oralome and its dysbiosis: new insights into oral microbiome-host interactions. Computat Struct Biotechnol J. 2021;19:1335–1360. doi: 10.1016/j.csbj.2021.02.010
  • Miyoshi T, Oge S, Nakata S, et al. Gemella haemolysans inhibits the growth of the periodontal pathogen porphyromonas gingivalis. Sci Rep. 2021;11(1). doi: 10.1038/s41598-021-91267-3
  • Zhou P, Manoil D, Belibasakis GN, et al. Veillonellae: beyond bridging species in oral biofilm ecology. Front Oral Health. 2021;2. doi: 10.3389/froh.2021.774115
  • Acar B, Çağlayan F, İnkaya AÇ, et al. Actinomyces-associated lesions located in the gingiva: case report of rare gingival lesions. Contemp Clin Dent. 2017;8(1):182–184. doi: 10.4103/0976-237X.205067
  • Bescos R, Ashworth A, Cutler C, et al. Effects of chlorhexidine mouthwash on the oral microbiome. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-61912-4
  • Liu T, Chen Y-C, Jeng S-L, et al. Short-term effects of chlorhexidine mouthwash and Listerine on oral microbiome in hospitalized patients. Front Cell Infect Microbiol. 2023;13:13. doi: 10.3389/fcimb.2023.1056534
  • Burleigh MC, Sculthorpe N, Henriquez FL, et al. Nitrate-rich beetroot juice offsets salivary acidity following carbohydrate ingestion before and after endurance exercise in healthy male runners. PLoS One. 2020;15(12):e0243755. doi: 10.1371/journal.pone.0243755
  • Mashima I, Nakazawa F, O’Toole GA. The interaction between streptococcus spp. And veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015;197(13):2104–2111. doi: 10.1128/JB.02512-14
  • López-Santacruz HD, López-López A, Revilla-Guarinos A, et al. Streptococcus dentisani is a common inhabitant of the oral microbiota worldwide and is found at higher levels in caries-free individuals. Int Microbiol. 2021;24(4):619–629. doi: 10.1007/s10123-021-00222-9
  • Mazurel D, Carda-Diéguez M, Langenburg T, et al. Nitrate and a nitrate-reducing Rothia aeria strain as potential prebiotic or synbiotic treatments for periodontitis. NPJ Biofilms Microbiomes. 2023;9(1):40. doi: 10.1038/s41522-023-00406-3
  • Pałka Ł, Nowakowska-Toporowska A, Dalewski B. Is chlorhexidine in Dentistry an Ally or a foe? A narrative review. Healthcare. 2022;10(5):764. doi: 10.3390/healthcare10050764
  • Brookes ZLS, Belfield LA, Ashworth A, et al. Effects of chlorhexidine mouthwash on the oral microbiome. J Dent. 2021;113:103768. doi: 10.1016/j.jdent.2021.103768
  • Chatzigiannidou I, Teughels W, Van de Wiele T, et al. Oral biofilms exposure to chlorhexidine results in altered microbial composition and metabolic profile. NPJ Biofilms Microbiomes. 2020;6(1):13. doi: 10.1038/s41522-020-0124-3
  • Kulik EM, Waltimo T, Weiger R, et al. Development of resistance of mutans streptococci and porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro. Clin Oral Invest. 2015;19(6):1547–1553. doi: 10.1007/s00784-014-1379-y
  • Wang S, Wang H, Ren B, et al. Do quaternary ammonium monomers induce drug resistance in cariogenic, endodontic and periodontal bacterial species? Dental Mater. 2017;33(10):1127–1138. doi: 10.1016/j.dental.2017.07.001
  • Nambu T, Wang D, Mashimo C, et al. Nitric Oxide Donor Modulates a Multispecies Oral Bacterial Community—An In Vitro Study. Microorganisms. 2019;7(9):353. doi: 10.3390/microorganisms7090353
  • Backlund CJ, Sergesketter AR, Offenbacher S, et al. Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens. J Dent Res. 2014;93(11):1089–1094. doi: 10.1177/0022034514529974
  • Naseem KM. The role of nitric oxide in cardiovascular diseases. Mol Aspect Med. 2005;26(1–2):33–65. doi: 10.1016/j.mam.2004.09.003
  • Bondonno CP, Blekkenhorst LC, Liu AH, et al. Vegetable-derived bioactive nitrate and cardiovascular health. Mol Aspect Med. 2018;61:83–91. doi: 10.1016/j.mam.2017.08.001
  • Fadel PJ. Nitric oxide and cardiovascular regulation. Hypertension. 2017;69(5):778–779. doi: 10.1161/HYPERTENSIONAHA.117.08999
  • Infante T, Costa D, Napoli C. Novel insights regarding nitric oxide and cardiovascular diseases. Angiology. 2021;72(5):411–425. doi: 10.1177/0003319720979243
  • Webb AJ, Patel N, Loukogeorgakis S, et al. Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite. Hypertension. 2008;51(3):784–790. doi: 10.1161/HYPERTENSIONAHA.107.103523
  • Kenjale AA, Ham KL, Stabler T, et al. Dietary nitrate supplementation enhances exercise performance in peripheral arterial disease. J Appl Physiol. 2011;110(6):1582–1591. doi: 10.1152/japplphysiol.00071.2011
  • Ivy JL. Inorganic Nitrate Supplementation for Cardiovascular Health. Methodist DeBakey Cardiovasc J. 2019;15(3):200–206. doi: 10.14797/mdcj-15-3-200
  • Jovanovski E, Bosco L, Khan K, et al. Effect of spinach, a high dietary nitrate source, on arterial stiffness and related hemodynamic measures: a randomized, controlled trial in healthy adults. Clin Nutr Res. 2015;4(3):160–167. doi: 10.7762/cnr.2015.4.3.160
  • Bedale W, Sindelar JJ, Milkowski AL. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016;120:85–92. doi: 10.1016/j.meatsci.2016.03.009