370
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic characterization of glyoxalase pathway in oral streptococci and its contribution to interbacterial competition

ORCID Icon, , ORCID Icon &
Article: 2322241 | Received 06 Jan 2024, Accepted 16 Feb 2024, Published online: 03 Mar 2024

References

  • Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett. 2016;590(21):3905–15.
  • Lee C, Park C. Bacterial responses to glyoxal and methylglyoxal: reactive electrophilic species. Int J Mol Sci. 2017;18(1):169.
  • Beisswenger PJ. Methylglyoxal in diabetes: link to treatment, glycaemic control and biomarkers of complications. Biochem Soc Trans. 2014;42(2):450–456.
  • Chakraborty S, Karmakar K, Chakravortty D. Cells producing their own nemesis: understanding methylglyoxal metabolism. IUBMB Life. 2014;66(10):667–678.
  • Allaman I, Bélanger M, Magistretti PJ. Methylglyoxal, the dark side of glycolysis. Front Neurosci. 2015;9:23.
  • Leone A, Nigro C, Nicolò A, et al. The dual-role of methylglyoxal in tumor progression – novel therapeutic approaches. Front Oncol. 2021;11. doi: 10.3389/fonc.2021.645686
  • Chaplen FWR, Fahl WE, Cameron DC. Evidence of high levels of methylglyoxal in cultured Chinese hamster ovary cells. Proc Natl Acad Sci USA. 1998;95(10):5533–5538.
  • Maiden MF, Pham C, Kashket S. Glucose toxicity effect and accumulation of methylglyoxal by the periodontal anaerobe Bacteroides forsythus. Anaerobe. 2004;10(1):27–32.
  • Rachman H, Kim N, Ulrichs T, et al. Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation. PLoS One. 2006;1(1):e29.
  • Booth IR, Ferguson GP, Miller S, et al. Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans. 2003;31(6):1406–1408.
  • Cooper RA. Metabolism of methylglyoxal in microorganisms. Annu Rev Microbiol. 1984;38(1):49–68.
  • Ozyamak E, Black SS, Walker CA, et al. The critical role of S-lactoylglutathione formation during methylglyoxal detoxification in Escherichia coli. Mol Microbiol. 2010;78(6):1577–1590.
  • Zhang MM, Ong CL, Walker MJ, et al. Defence against methylglyoxal in group a Streptococcus: a role for glyoxylase I in bacterial virulence and survival in neutrophils? Pathog Dis. 2016;74(2):ftv122.
  • Korithoski B, Levesque CM, Cvitkovitch DG. Involvement of the detoxifying enzyme lactoylglutathione lyase in Streptococcus mutans aciduricity. J Bacteriol. 2007;189(21):7586–7592.
  • Reiger M, Lassak J, Jung K. Deciphering the role of the type II glyoxalase isoenzyme YcbL (GlxII-2) in Escherichia coli. FEMS Microbiol Lett. 2015;362(2):1–7.
  • MacLean MJ, Ness LS, Ferguson GP, et al. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K + efflux system in Escherichia coli. Mol Microbiol. 1998;27(3):563–571.
  • Anaya-Sanchez A, Feng Y, Berude JC, et al. Detoxification of methylglyoxal by the glyoxalase system is required for glutathione availability and virulence activation in Listeria monocytogenes. PLoS Pathog. 2021;17(8):e1009819.
  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
  • Preshaw PM, Alba AL, Herrera D, et al. Periodontitis and diabetes: a two-way relationship. Diabetologia. 2012;55(1):21–31.
  • Ferizi L, Bimbashi V, Kelmendi J. Association between metabolic control and oral health in children with type 1 diabetes mellitus. BMC Oral Health. 2022;22(1):502.
  • Syrjälä AM, Niskanen MC, Ylöstalo P, et al. Metabolic control as a modifier of the association between salivary factors and dental caries among diabetic patients. Caries Res. 2003;37(2):142–147.
  • De lima AKA, Amorim Dos Santos J, Stefani CM, et al. Diabetes mellitus and poor glycemic control increase the occurrence of coronal and root caries: a systematic review and meta-analysis. Clin Oral Investig. 2020;24(11):3801–3812.
  • Song IS, Han K, Park YM, et al. Type 2 diabetes as a risk indicator for dental caries in Korean adults: the 2011–2012 Korea national health and nutrition examination survey. Community Dent Health. 2017;34(3):169–175.
  • Schmolinsky J, Kocher T, Rathmann W, et al. Diabetes status affects long-term changes in coronal caries - the SHIP study. Sci Rep. 2019;9(1):15685.
  • Beheshti M, Badner V, Shah P, et al. Association of diabetes and dental caries among U.S. adolescents in the NHANES dataset. Pediatr Dent. 2021;43(2):123–128.
  • Quivey RG, Kuhnert WL, Hahn K. Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med. 2001;12(4):301–314.
  • Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26(3):229–242.
  • Burne RA. Oral Streptococci … products of their environment. J Dent Res. 1998;77(3):445–452.
  • Rice KC, Turner ME, Carney OV, et al. Modification of the Streptococcus mutans transcriptome by LrgAB and environmental stressors. Microb Genom. 2017;3(2):e000104.
  • Tinder EL, Faustoferri RC, Buckley AA, et al. Analysis of the Streptococcus mutans proteome during acid and oxidative stress reveals modules of protein coexpression and an expanded role for the TreR transcriptional regulator. mSystems. 2022;7(2):e01272–21.
  • Kim TH, Park SC, Lee K-C, et al. Structural and DNA-binding studies of the PadR-like transcriptional regulator BC1756 from Bacillus cereus. Biochem Biophys Res Commun. 2019;515(4):607–613.
  • Velsko IM, Chakraborty B, Nascimento MM, et al. Species designations belie phenotypic and genotypic heterogeneity in oral streptococci. mSystems. 2018;3(6):e00158–18.
  • Culp DJ, Hull W, Bremgartner MJ, et al. In vivo colonization with candidate oral probiotics attenuates colonization and virulence of Streptococcus mutans. Appl Environ Microbiol. 2020;87(4). doi: 10.1128/AEM.02490-20
  • Biswas I, Jha JK, Fromm N. Shuttle expression plasmids for genetic studies in Streptococcus mutans. Microbiology. 2008;154(8):2275–2282.
  • Zeng L, Burne RA. Essential roles of the sppRA fructose-phosphate phosphohydrolase operon in carbohydrate metabolism and virulence expression by Streptococcus mutans. J Bacteriol. 2019;201(2):e00586–18.
  • Zeng L, Chakraborty B, Farivar T, et al. Coordinated regulation of the EII man and fruRKI operons of Streptococcus mutans by global and fructose-specific pathways. Appl Environ Microbiol. 2017;83(21):e01403–17.
  • Zeng L, Burne RA. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans. Mol Microbiol. 2008;70(1):197–208.
  • Zeng L, Burne RA. Comprehensive mutational analysis of sucrose-metabolizing pathways in Streptococcus mutans reveals novel roles for the sucrose phosphotransferase system permease. J Bacteriol. 2013;195(4):833–843.
  • Puccio T, Misra BB, Kitten T. Time-course analysis of Streptococcus sanguinis after manganese depletion reveals changes in glycolytic and nucleic acid metabolites. Metabolomics. 2021;17(5):44.
  • Aragno M, Mastrocola R. Dietary sugars and endogenous formation of advanced glycation endproducts: emerging mechanisms of disease. Nutrients. 2017;9(4):385.
  • Manini P, La Pietra P, Panzella L, et al. Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. Carbohydr Res. 2006;341(11):1828–1833.
  • Lee O, Bruce WR, Dong Q, et al. Fructose and carbonyl metabolites as endogenous toxins. Chem Biol Interact. 2009;178(1–3):332–339.
  • Zheng X, Zhang K, Zhou X, et al. Involvement of gshAB in the interspecies competition within oral biofilm. J Dent Res. 2013;92(9):819–824.
  • Usui T, Shizuuchi S, Watanabe H, et al. Cytotoxicity and oxidative stress induced by the glyceraldehyde-related Maillard reaction products for HL-60 cells. Biosci Biotech Biochem. 2004;68(2):333–340.
  • Sato Y, Yamamoto Y, Kizaki H, et al. Isolation and sequence analysis of the pmi gene encoding phosphomannose isomerase of Streptococcus mutans. FEMS Microbiol Lett. 1993;114(1):61–66.
  • Abranches J, Chen YY, Burne RA. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Appl Environ Microbiol. 2003;69(8):4760–4769.
  • Nakayama K. Nucleotide sequence of Streptococcus mutans superoxide dismutase gene and isolation of insertion mutants. J Bacteriol. 1992;174(15):4928–4934.
  • Seaton K, Ahn S-J, Burne RA. Regulation of competence and gene expression in Streptococcus mutans by the RcrR transcriptional regulator. Mol Oral Microbiol. 2014;30(2):147–159.
  • Zeng L, Burne RA. Sucrose- and fructose-specific effects on the transcriptome of Streptococcus mutans, as determined by RNA sequencing. Appl Environ Microbiol. 2016;82(1):146–156.
  • Abranches J, Candella MM, Wen ZT, et al. Different Roles of EIIAB man and EII Glc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol. 2006;188(11):3748–3756.
  • Busuioc M, Buttaro BA, Piggot PJ. The pdh operon is expressed in a subpopulation of stationary-phase bacteria and is important for survival of sugar-starved Streptococcus mutans. J Bacteriol. 2010;192(17):4395–4402.
  • Korithoski B, Lévesque CM, Cvitkovitch DG. The involvement of the pyruvate dehydrogenase E1α subunit, in Streptococcus mutans acid tolerance. FEMS Microbiol Lett. 2008;289(1):13–19.
  • Feng CY, Wong S, Dong Q, et al. Hepatocyte inflammation model for cytotoxicity research: fructose or glycolaldehyde as a source of endogenous toxins. Arch Physiol Biochem. 2009;115(2):105–111.
  • Zeng L, Walker AR, Lee K, et al. Spontaneous mutants of Streptococcus sanguinis with defects in the glucose-phosphotransferase system show enhanced post-exponential-phase fitness. J Bacteriol. 2021;203(22):JB0037521.
  • Terleckyj B, Willett NP, Shockman GD. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun. 1975;11(4):649–655.
  • Ahn SJ, Burne RA. Effects of oxygen on biofilm formation and the AtlA autolysin of Streptococcus mutans. J Bacteriol. 2007;189(17):6293–6302.
  • Tong H, Zeng L, Burne RA. The EIIAB man phosphotransferase system permease regulates carbohydrate catabolite repression in Streptococcus gordonii. Appl Environ Microbiol. 2011;77(6):1957–1965.
  • Lau PC, Sung CK, Lee JH, et al. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods. 2002;49(2):193–205.
  • Seaton K, Ahn SJ, Sagstetter AM, et al. A transcriptional regulator and ABC transporters link stress tolerance, (p)PPGPP, and genetic competence in Streptococcus mutans. J Bacteriol. 2011;193(4):862–874.
  • Zheng L, Chen Z, Itzek A, et al. Catabolite control protein a controls hydrogen peroxide production and cell death in Streptococcus sanguinis. J Bacteriol. 2011;193(2):516–526.
  • Chen L, Chakraborty B, Zou J, et al. Amino sugars modify antagonistic interactions between commensal oral streptococci and Streptococcus mutans. Appl Environ Microbiol. 2019;85(10):e00370–19.
  • Zeng L, Walker AR, Burne RA, et al. Glucose phosphotransferase system modulates pyruvate metabolism, bacterial fitness, and microbial ecology in oral streptococci. J Bacteriol. 2022;205(1):e0035222.
  • Wen ZT, Burne RA. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol. 2002;68(3):1196–1203.
  • Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182(5):1374–1382.
  • Moye ZD, Zeng L, Burne RA. Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability. Appl Environ Microbiol. 2014;80(3):972–985.