441
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The antimicrobial effect of different vitamin D compounds on Streptococcus mutans and their impact on glycosyltransferase expression

, & ORCID Icon
Article: 2327758 | Received 02 Dec 2023, Accepted 26 Feb 2024, Published online: 27 Mar 2024

References

  • Cherukuri G, Veeramachaneni C, Rao GV, et al. Insight into status of dental caries vaccination: A review. J Conserv Dent. 2021;23(6):544–12. doi: 10.4103/JCD.JCD_402_20
  • Health Metrics and Evaluation (IHME). Global burden of disease study 2017. United States of America; 2017. https://ghdx.healthdata.org/record/ihme-data/gbd-2017-burden-risk-1990-2017
  • Simón-Soro A, Mira A. Solving the etiology of dental caries. Trends Microbiol. 2015 Feb;23(2):76–82. doi: 10.1016/j.tim.2014.10.010. Epub 2014 Nov 27. PMID: 25435135.
  • Conrads G. Imad About. Pathophysiology of dental caries. Caries excavation: evolution of treating cavitated carious lesions, 27, S. In: Karger AG, editor. Monographs in oral science. 2018. pp. 1–10. ff1 0.1159/000487826ff. ffhal-03547399f
  • Chatterjee T, Das SM. Antimicrobial efficacy of some medicinal plant extract against Streptococcus mutans causing dental caries. J Med Plants. 2017;5:315–317.
  • Beighton D, Manji F, Baelum V, et al. Associations between salivary levels of Streptococcus mutans, Streptococcus sobrinus, lactobacilli, and caries experience in Kenyan adolescents. J Dent Res. 1989 Aug;68(8):1242–1246. doi: 10.1177/00220345890680080601. PMID: 2632612.
  • Quivey RG Jr, Grayhack EJ, Faustoferri RC, et al. Functional profiling in streptococcus mutans: construction and examination of a genomic collection of gene deletion mutants. Mol Oral Microbiol. 2015;30(6):474–495. doi: 10.1111/omi.12107
  • Ooshima T, Matsumura M, Hoshino T, et al. Contributions of three glucosyltransferases to sucrose-dependent adherence of streptococcus mutans. J Dent Res. 2001;80(7):1672–1677. doi: 10.1177/00220345010800071401
  • Aoki H, Shiroza T, Hayakawa M, et al. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect Immun. 1986;53(3):587–594. doi: 10.1128/iai.53.3.587-594.1986
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989 Jul 57;(7):2079–85. doi: 10.1128/iai.57.7.2079-2085.1989. PMID: 2543630; PMCID: PMC313844
  • Tamesada M, Kawabata S, Fujiwara T, et al. Synergistic effects of streptococcal glucosyltransferases on adhesive biofilm formation. J Dent Res. 2004;83(11):874–879. doi: 10.1177/154405910408301110
  • Cho H, Ren Z, Divaris K, et al. Selenomonas sputigena acts as a pathobiont mediating spatial structure and biofilm virulence in early childhood caries. Nat Commun. 2023;14(1):2919. doi: 10.1038/s41467-023-38346-3
  • Xiao J, Koo H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by streptococcus mutans in biofilms. J Appl Microbiol. 2010;108(6):2103–2113. doi: 10.1111/j.1365-2672.2009.04616.x
  • Hojo S, Takahashi N, Yamada T. Acid profile in carious dentin. J Dent Res. 1991;70(3):182–186. doi: 10.1177/00220345910700030501
  • Quivey RG Jr, Kuhnert WL, Hahn K. Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med. 2001;12(4):301–314. doi: 10.1177/10454411010120040201
  • Baker JL, Faustoferri RC, Quivey RG Jr. Acid-adaptive mechanisms of streptococcus mutans–the more we know, the more we don’t. Mol Oral Microbiol. 2017;32(2):107. doi: 10.1111/omi.12162
  • Bender GR, Sutton SV, Marquis RE. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun. 1986;53(2):331–338. doi: 10.1128/iai.53.2.331-338.1986
  • Hata S, Mayanagi H. Acid diffusion through extracellular polysaccharides produced by various mutants of streptococcus mutans. Arch Oral Biol. 2003;48(6):431–438. doi: 10.1016/S0003-9969(03)00032-3
  • Guo C, Gombart AF. The antibiotic effects of vitamin D. Endocr Metab Immune Disord Drug Targets. 2014;14(4):255–266. doi: 10.2174/1871530314666140709085159
  • Roman BI. The expanding role of chemistry in optimizing proteins for human health applications: Miniperspective. J Med Chem. 2021;64(11):7179–7188. doi: 10.1021/acs.jmedchem.1c00294
  • Garcia SS, Blackledge MS, Michalek S, et al. Targeting of streptococcus mutans biofilms by a novel small molecule prevents dental caries and preserves the oral microbiome. J Dent Res. 2017;96(7):807–814. doi: 10.1177/0022034517698096
  • Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev. 2017;46:104–113. doi: 10.1016/j.gde.2017.07.003
  • Yang S, Zhang J, Yang R, et al. Small molecule compounds, a novel strategy against streptococcus mutans. Pathogens. 2021;10(12):1540. doi: 10.3390/pathogens10121540
  • Saputo S, Faustoferri RC, Quivey RG Jr. A drug repositioning approach reveals that streptococcus mutans is susceptible to a diverse range of established antimicrobials and nonantibiotics. Antimicrob Agents Chemother. 2018b;62(1):e01674–17. doi: 10.1128/AAC.01674-17
  • National Diet Nutritional Survey. 2021. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1019663/Follow_up_stud_2020_main_report.pdf
  • Petersen PE. Challenges to improvement of oral health in the 21st century – the approach of the WHO global oral health programme. Int Dent J. 2004;54:329–343. doi: 10.1111/j.1875-595X.2004.tb00009.x
  • Deane S, Schroth RJ, Sharma A, et al. Combined deficiencies of 25-hydroxyvitamin D and anemia in preschool children with severe early childhood caries: a case–control study. Paediatr Child Health. 2018;23(3):e40–e45. doi: 10.1093/pch/pxx150
  • Gupta A, Chhonkar A, Arya V. Comparison of vitamin D level of children with severe early childhood caries and children with no caries. Int J Clin Pediatr Dent. 2018;11(3):199–204. doi: 10.5005/jp-journals-10005-1511
  • Kim IJ, Lee HS, Ju HJ, et al. A cross-sectional study on the association between vitamin D levels and caries in the permanent dentition of Korean children. 2018 Dec 1–16. doi: 10.1186/s12903-018-0505-7
  • Zhou F, Zhou Y, Shi J. The association between serum 25-hydroxyvitamin D levels and dental caries in US adults. 2020;26:1537–154. doi: 10.1111/odi.13360
  • Almoudi MMM, HASSAN MIA, Hassanain AT, et al. The antibacterial effects of vitamin D3 against mutans streptococci: an in vitro study. Eur Oral Res. 2021;55(1):8–15. doi: 10.26650/eor.20210119
  • Weinstein MP, Patel JB, Bobenchik A, et al. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing. 2019;88–89.
  • Clinical and Laboratory Standards Institute. Methods for dilution susceptibility tests for bacteria that grow aerobically; approved standard. CLSI Doc. 11th ed. Wayne, PA. 2018. p. M7–A8.
  • Gabe V, Kacergius T, Abu-Lafi S, et al. Inhibitory effects of ethyl gallate on streptococcus mutans biofilm formation by optical profilometry and gene expression analysis. Molecules. 2019;24(3):529. doi: 10.3390/molecules24030529
  • Van de Vel E, Sampers I, Raes K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit Rev Food Sci Nutr. 2019;59(3):357–378. doi: 10.1080/10408398.2017.1371112
  • Saputo S, Faustoferri RC, Quivey RG Jr. Vitamin D compounds are bactericidal against streptococcus mutans and target the bacitracin-associated efflux system. Antimicrob Agents Chemother. 2018a;62(1):e01675–17. doi: 10.1128/AAC.01675-17
  • Dupouy EA, Lazzeri D, Durantini EN. Photodynamic activity of cationic and non-charged Zn (II) tetrapyridinoporphyrazine derivatives: biological consequences in human erythrocytes and Escherichia coli. Photochem Photobiol Sci. 2004;3(11):992–998. doi: 10.1039/b407848a
  • Seven O, Dindar B, Aydemir S, et al. Synthesis, properties and photodynamic activities of some zinc (II) phthalocyanines against Escherichia coli and staphylococcus aureus. J Porphyrins Phthalocyanines. 2008;12(8):953–963. doi: 10.1142/S1088424608000339
  • Gordeliy VI, Kiselev MA, Lesieur P, et al. Lipid membrane structure and interactions in dimethyl sulfoxide/water mixtures. Biophys J. 1998;75(5):2343–2351. doi: 10.1016/S0006-3495(98)77678-7
  • Dyrda G, Boniewska-Bernacka E, Man D, et al. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol Biol Rep. 2019;46(3):3225–3232. doi: 10.1007/s11033-019-04782-y
  • Heipieper HJ, Neumann G, Cornelissen S, et al. Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol. 2007;74(5):961–973. doi: 10.1007/s00253-006-0833-4
  • Weber FJ, de Bont JA. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochim Biophys Acta Biomembr. 1996;1286(3):225–245. doi: 10.1016/S0304-4157(96)00010-X
  • Godse SZ, Mohini S, Patil SM, et al. Techniques for solubility enhancement of hydrophobic drugs: a review. J Adv Pharm Educ Res Oct-Dec. 2013;3(4).403–414.
  • Löhner M, Babai N, Müller T, et al. Analysis of RIM expression and function at mouse photoreceptor ribbon synapses. J Neurosci. 2017;37(33):7848–7863. doi: 10.1523/JNEUROSCI.2795-16.2017
  • Donlan RM. Role of biofilms in antimicrobial resistance. ASAIO J. 2000;46(6):S47–S52. doi: 10.1097/00002480-200011000-00037
  • Fernández L, Breidenstein EB, Hancock RE. Creeping baselines and adaptive resistance to antibiotics. Drug Resist Updat. 2011;14(1):1–21. doi: 10.1016/j.drup.2011.01.001
  • Mouton JW, Meletiadis J, Voss A, et al. Variation of MIC measurements: the contribution of strain and laboratory variability to measurement precision. J Antimicrob Chemother. 2018;73(9):2374–2379. doi: 10.1093/jac/dky232
  • Surmont PA, Martens LC. Root surface caries: an update. Clin Prev Dent. 1989;11(3):14–20.
  • Lee DH, Seo BR, Kim HY, et al. Inhibitory effect of aralia continentalis on the cariogenic properties of streptococcus mutans. J Ethnopharmacol. 2011;137(2):979–984. doi: 10.1016/j.jep.2011.07.015
  • Mishra S, Routray S, Sahu SK, et al. The role and efficacy of herbal antimicrobial agents in orthodontic treatment. J Clin Diagn Res. 2014;8(6):ZC12. doi: 10.7860/JCDR/2014/7349.4464
  • Ogawa A, Furukawa S, Fujita S, et al. Inhibition of streptococcus mutans biofilm formation by streptococcus salivarius FruA. Appl environ microbiol. 2011;77(5):1572–1580. doi: 10.1128/AEM.02066-10
  • Al-Jubori SH, AL-Murad MA, Al-Mashhadane FA. Effect of oral vitamin D3 on dental caries: an in-vivo and in-vitro study. Cureus. 2022;14(5). doi: 10.7759/cureus.25360
  • Van Loveren C. Antimicrobial activity of fluoride and its in vivo importance: identification of research questions. Caries Res. 2001;35(Suppl. 1):65–70. doi: 10.1159/000049114
  • RE M. Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol. 1995;41(11):955–964. doi: 10.1139/m95-133
  • Azari F, Nyland L, Yu C, et al. Ultrastructural analysis of the rugose cell envelope of a member of the pasteurellaceae family. J Bacteriol. 2013;195(8):1680–1688. doi: 10.1128/JB.02149-12
  • Martinez de Tejada G, Sánchez-Gómez S, Rázquin-Olazaran I, et al. Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines. Curr Drug Targets. 2012;13(9):1121–1130. doi: 10.2174/138945012802002410
  • Sinha R, Karan R, Sinha A, et al. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Biores Technol. 2011;102(2):1516–1520. doi: 10.1016/j.biortech.2010.07.117
  • Liao Y, Brandt BW, Li J, et al. Fluoride resistance in streptococcus mutans: a mini review. Front Microbiol. 2017;9. doi: 10.3389/fmicb.2018.03093
  • Bowen WH, Koo HJCR. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011;45(1):69–86. doi: 10.1159/000324598
  • Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfD gene, coding for primer-dependent soluble glucan synthesis. Infect Immun. 1989;57(7):2079–2085. doi: 10.1128/iai.57.7.2079-2085.1989
  • Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferases for hydroxyapatite, saliva-coated hydroxyapatite, and bacterial surfaces. Arch Oral Biol. 1998;43(2):103–110. doi: 10.1016/S0003-9969(97)00111-8
  • Walker GJ, Pulkownik A, Morrey-Jones JG. Metabolism of the polysaccharides of human dental plaque: release of dextranase in batch cultures of streptococcus mutans. J Gen Microbiol. 1981;127(1):201–208. doi: 10.1099/00221287-127-1-201
  • Reese S, Guggenheim B. A novel TEM contrasting technique for extracellular polysaccharides in in vitro biofilms. Microsc Res Tech. 2007;70(9):816–822. doi: 10.1002/jemt.20471
  • Klein MI, De Baz L, Agidi S, et al. Dynamics of streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PloS One. 2010;5(10):e13478. doi: 10.1371/journal.pone.0013478
  • Klein MI, Duarte S, Xiao J, et al. Structural and molecular basis of the role of starch and sucrose in streptococcus mutans biofilm development. Appl Environ Microbiol. 2009;75(3):837–841. doi: 10.1128/AEM.01299-08
  • Yoshida A, Kuramitsu HK. Multiple Streptococcus mutans Genes Are Involved in Biofilm Formation. Appl Environ Microbiol. 2002;68(12):6283–6291. doi: 10.1128/AEM.68.12.6283-6291.2002
  • Fujiwara T, Terao Y, Hoshino T, et al. Molecular analyses of glucosyltransferase genes among strains of streptococcus mutans. FEMS Microbiol Lett. 1998;161(2):331–336. doi: 10.1111/j.1574-6968.1998.tb12965.x
  • Rölla G, Ciardi JE, Schultz SA. Adsorption of glucosyltransferase to saliva coated hydroxyapatite: possible mechanism for sucrose dependent bacterial colonization of teeth. European J Oral Sciences. 1983;91(2):112–117. doi: 10.1111/j.1600-0722.1983.tb00786.x
  • Newbrun E. Polysaccharide synthesis in plaque. Proce: micro asp den car. 1976;6(3):649–64.
  • National Health Service. (2020). Vitamin D - Vitamins and minerals. https://www.nhs.uk/conditions/vitamins-and-minerals/vitamin-d/
  • British Nutrition Foundation. 2023. Available from: https://www.nutrition.org.uk/news/2023/new-british-nutrition-foundation-survey-reveals-half-of-britons-unaware-of-the-uk-government-s-guidelines-for-vitamin-d-supplements/
  • Collingwood J. Sunshine, vitamin d and oral health. [ PhD Thesis]. University of Exeter (United Kingdom); 2021. Available from: https://ore.exeter.ac.uk/repository/bitstream/handle/10871/127204/CollingwoodJ.pdf?sequence=1&isAllowed=y
  • Glijer B, Peterfy C, Tenenhouse A. The effect of vitamin D deficiency on secretion of saliva by rat parotid gland in vivo. J Physiol. 1985 Jun;363:323–334. doi: 10.1113/jphysiol.1985.sp015713. PMID: 2410606; PMCID: PMC1192932.
  • He CS, Fraser WD, Tang J, et al. The effect of 14 weeks of vitamin D3 supplementation on antimicrobial peptides and proteins in athletes. J Sports Sci. 2016;34(1):67–74. doi: 10.1080/02640414.2015.1033642
  • Brugger SD, Baumberger C, Jost M, et al. Automated counting of bacterial colony forming units on agar plates. PloS One. 2012;7(3):e33695. doi: 10.1371/journal.pone.0033695