550
Views
0
CrossRef citations to date
0
Altmetric
Research Article

P. gingivalis alters lung microbiota and aggravates disease severity of COPD rats by up-regulating Hsp90α/MLKL

, , , , , , , & show all
Article: 2334588 | Received 15 May 2023, Accepted 19 Mar 2024, Published online: 27 Mar 2024

References

  • Gomes-Filho IS, Cruz SSD, Trindade SC, et al. Periodontitis and respiratory diseases: a systematic review with meta-analysis. Oral Dis. 2020;26(2):439–11. doi: 10.1111/odi.13228
  • Zeng X-T, Tu M-L, Liu D-Y, et al. Periodontal disease and risk of chronic obstructive pulmonary disease: a meta-analysis of observational studies. PLoS One. 2012;7(10):e46508. doi: 10.1371/journal.pone.0046508
  • 2020 global strategy for prevention, diagnosis and management of COPD. Available from: https://goldcopd.org/gold-reports/
  • Viniol C, Vogelmeier CF. Exacerbations of COPD. Eur Respir Rev. 2018;27(147):27. doi: 10.1183/16000617.0103-2017
  • Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421–438. doi: 10.1016/j.ccm.2020.06.007
  • Kelly N, Winning L, Irwin C, et al. Periodontal status and chronic obstructive pulmonary disease (COPD) exacerbations: a systematic review. BMC Oral Health. 2021;21(1):21. doi: 10.1186/s12903-021-01757-z
  • Pragman AA, Kim HB, Reilly CS, et al. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10):e47305. doi: 10.1371/journal.pone.0047305
  • Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the “healthy” Smoker and in COPD. PLoS One. 2011;6(2):6. doi: 10.1371/journal.pone.0016384
  • Melo-Dias S, Valente C, Andrade L, et al. Saliva as a non-invasive specimen for COPD assessment. Respir Res. 2022;23(1):23. doi: 10.1186/s12931-022-01935-9
  • Bui FQ, Almeida-da-Silva CLC, Huynh B, et al. Association between periodontal pathogens and systemic disease. Biomed J. 2019;42(1):27–35. doi: 10.1016/j.bj.2018.12.001
  • Takahashi T, Muro S, Tanabe N, et al. Relationship between periodontitis-related antibody and frequent exacerbations in chronic obstructive pulmonary disease. PLoS One. 2012;7(7):e40570. doi: 10.1371/journal.pone.0040570
  • Tan L, Wang H, Li C, et al. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease. J Periodontal Res. 2014;49(6):760–769. doi: 10.1111/jre.12159
  • Whiteside SA, McGinniss JE, Collman RG. The lung microbiome: progress and promise. J Clin Invest. 2021;131(15):131. doi: 10.1172/JCI150473
  • Budden KF, Shukla SD, Rehman SF, et al. Functional effects of the microbiota in chronic respiratory disease. Lancet Respir Med. 2019;7(10):907–920. doi: 10.1016/S2213-2600(18)30510-1
  • Wang L, Hao K, Yang T, et al. Role of the lung microbiome in the pathogenesis of chronic obstructive pulmonary disease. Chinese Med J. 2017;130(17):2107–2111. doi: 10.4103/0366-6999.211452
  • Yan Z, Chen B, Yang Y, et al. Multi-omics analyses of airway host–microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions. Nat Microbiol. 2022;7(9):1361–1375. doi: 10.1038/s41564-022-01196-8
  • Wang Z, Locantore N, Haldar K, et al. Inflammatory endotype–associated airway microbiome in chronic obstructive pulmonary disease clinical stability and exacerbations: a multicohort longitudinal analysis. Am J Respir Crit Care Med. 2021;203(12):1488–1502. doi: 10.1164/rccm.202009-3448OC
  • Leung JM, Tiew PY, Mac Aogain M, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22(4):634–650. doi: 10.1111/resp.13032
  • Armitage MN, Spittle DA, Turner AM. A systematic review and meta-analysis of the prevalence and impact of pulmonary bacterial colonisation in stable state chronic obstructive pulmonary disease (COPD). Biomedicines. 2022;10(1):10. doi: 10.3390/biomedicines10010081
  • Kamio N, Hayata M, Tamura M, et al. Porphyromonas gingivalis enhances pneumococcal adhesion to human alveolar epithelial cells by increasing expression of host platelet-activating factor receptor. FEBS Lett. 2021;595(11):1604–1612. doi: 10.1002/1873-3468.14084
  • Okabe T, Kamiya Y, Kikuchi T, et al. Porphyromonas gingivalis Components/Secretions synergistically enhance pneumonia caused by streptococcus pneumoniae in mice. Int J Mol Sci. 2021;22(23):22. doi: 10.3390/ijms222312704
  • Li Q, Pan C, Teng D, et al. Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway. Microbes Infect. 2014;16(1):17–27. doi: 10.1016/j.micinf.2013.10.006
  • Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16–27. doi: 10.1016/j.jaci.2016.05.011
  • Jacobsen AV, Lowes KN, Tanzer MC, et al. HSP90 activity is required for MLKL oligomerisation and membrane translocation and the induction of necroptotic cell death. Cell Death Dis. 2016;7(1):e2051–e2051. doi: 10.1038/cddis.2015.386
  • Zhao XM, Chen Z, Zhao JB, et al. Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis. 2016;7(2):e2089–e2089. doi: 10.1038/cddis.2015.390
  • Samson AL, Zhang Y, Geoghegan ND, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020;11(1):3151. doi: 10.1038/s41467-020-16887-1
  • Tang D, Kang R, Vanden Berghe T, et al. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347–364. doi: 10.1038/s41422-019-0164-5
  • Dondelinger Y, Declercq W, Montessuit S, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7(4):971–981. doi: 10.1016/j.celrep.2014.04.026
  • Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517(7534):311–320. doi: 10.1038/nature14191
  • Hacker S, Lambers C, Hoetzenecker K, et al. Elevated HSP27, HSP70 and HSP90 alpha in chronic obstructive pulmonary disease: markers for immune activation and tissue destruction. Clin Lab. 2009;55(1–2):31–40.
  • Lu Z, Van Eeckhoutte HP, Liu G, et al. Necroptosis signaling promotes inflammation, airway remodeling, and emphysema in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2021;204(6):667–681. doi: 10.1164/rccm.202009-3442OC
  • Zhang D, Cao L, Wang Z, et al. Salidroside mitigates skeletal muscle atrophy in rats with cigarette smoke-induced COPD by up-regulating myogenin and down-regulating myostatin expression. Biosci Rep. 2019;39(11):39. doi: 10.1042/BSR20190440
  • Qi Y, Shang J-Y, Ma L-J, et al. Inhibition of AMPK expression in skeletal muscle by systemic inflammation in COPD rats. Respir Res. 2014;15(1):15. doi: 10.1186/s12931-014-0156-4
  • Yang Y, Di T, Zhang Z, et al. Dynamic evolution of emphysema and airway remodeling in two mouse models of COPD. BMC Pulm Med. 2021;21(1):134. doi: 10.1186/s12890-021-01456-z
  • Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–2319. doi: 10.1038/nprot.2016.136
  • Chen LJ, Tu ZY, Wang Y, et al. ATP5O Hypo-crotonylation caused by HDAC2 hyper- phosphorylation is a primary detrimental factor for downregulated phospholipid metabolism under chronic stress. Research. 2022;2022. doi: 10.34133/2022/9834963
  • Zheng S, Yu S, Fan X, et al. Porphyromonas gingivalis survival skills: Immune evasion. J Periodontal Res. 2021;56(6):1007–1018. doi: 10.1111/jre.12915
  • Tan L, Tan X, Pan C, et al. Relationship among clinical periodontal, microbiologic parameters and lung function in participants with chronic obstructive pulmonary disease. J Periodontol. 2019;90(2):134–140. doi: 10.1002/JPER.17-0705
  • Rosa EP, Murakami-Malaquias-da-Silva F, Palma-Cruz M, et al. The impact of periodontitis in the course of chronic obstructive pulmonary disease: pulmonary and systemic effects. Life Sci. 2020;261:261. doi: 10.1016/j.lfs.2020.118257
  • Suzuki R, Kamio N, Kaneko T, et al. Fusobacterium nucleatum exacerbates chronic obstructive pulmonary disease in elastase-induced emphysematous mice. FEBS Open Bio. 2022;12(3):638–648. doi: 10.1002/2211-5463.13369
  • Agusti A, Hogg JC, Drazen JM. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248–1256. doi: 10.1056/NEJMra1900475
  • Mammen MJ, Sethi S. COPD and the microbiome. Respirology. 2016;21(4):590–599. doi: 10.1111/resp.12732
  • Sethi S, Murphy TF. Current concepts: infection in the Pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med. 2008;359(22):2355–2365. doi: 10.1056/NEJMra0800353
  • Mayhew D, Devos N, Lambert C, et al. Longitudinal profiling of the lung microbiome in the AERIS study demonstrates repeatability of bacterial and eosinophilic COPD exacerbations. Thorax. 2018;73(5):422–430. doi: 10.1136/thoraxjnl-2017-210408
  • Avalos-Fernandez M, Alin T, Metayer C, et al. The respiratory microbiota alpha-diversity in chronic lung diseases: first systematic review and meta-analysis. Respir Res. 2022;23(1):23. doi: 10.1186/s12931-022-02132-4
  • Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax. 2018;73(4):331–338. doi: 10.1136/thoraxjnl-2017-210741
  • Madapoosi SS, Cruickshank-Quinn C, Opron K, et al. Lung microbiota and metabolites collectively associate with clinical outcomes in milder stage chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2022;206(4):427–439. doi: 10.1164/rccm.202110-2241OC
  • Zuehlke AD, Beebe K, Neckers L, et al. Regulation and function of the human HSP90AA1 gene. Gene. 2015;570(1):8–16. doi: 10.1016/j.gene.2015.06.018
  • Pezzulo AA, Tudas RA, Stewart CG, et al. HSP90 inhibitor geldanamycin reverts IL-13– and IL-17–induced airway goblet cell metaplasia. J Clin Investig. 2019;129(2):744–758. doi: 10.1172/JCI123524
  • Zhang H, Huang J, Fan XS, et al. HSP90AA1 promotes the inflammation in human gingival fibroblasts induced by Porphyromonas gingivalis lipopolysaccharide via regulating of autophagy. BMC Oral Health. 2022;22(1):22. doi: 10.1186/s12903-022-02304-0
  • Geng F, Liu J, Yin C, et al. Porphyromonas gingivalis lipopolysaccharide induced RIPK3/MLKL-mediated necroptosis of oral epithelial cells and the further regulation in macrophage activation. J Oral Microbiol. 2022;14(1):14. doi: 10.1080/20002297.2022.2041790
  • Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J Oral Microbiol. 2020;12(1):12. doi: 10.1080/20002297.2020.1801090