444
Views
0
CrossRef citations to date
0
Altmetric
Microbiome Modulators and Oral Health

Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence

, , & ORCID Icon
Article: 2339161 | Received 30 Jan 2024, Accepted 01 Apr 2024, Published online: 10 Apr 2024

References

  • Uribe SE, Innes N, Maldupa I. The global prevalence of early childhood caries: a systematic review with meta-analysis using the WHO diagnostic criteria. Int J Paed Dentistry. 2021;31(6):817–11. doi: 10.1111/ipd.12783
  • Zou J, Du Q, Ge L, et al. Expert consensus on early childhood caries management. Int J Oral Sci. 2022;14(1):35. doi: 10.1038/s41368-022-00186-0
  • Duque C, Chrisostomo DA, Souza ACA, et al. Understanding the predictive potential of the oral microbiome in the development and progression of early childhood caries. Curr Pediatr Rev. 2023;19(2):121–138. doi: 10.2174/1573396318666220811124848
  • O’Connell LM, Santos R, Springer G, et al. Site-specific profiling of the dental mycobiome reveals strong taxonomic shifts during progression of early-childhood caries. Appl Environ Microbiol. 2020;86(7):e02825–19. doi: 10.1128/AEM.02825-19
  • Pitts NB, Zero DT, Marsh PD, et al. Dental caries. Nat Rev Dis Primers. 2017;3(1):17030.
  • Ribeiro AA, Paster BJ. Dental caries and their microbiomes in children: what do we do now? J Oral Microbiol. 2023;15(1):2198433. doi: 10.1080/20002297.2023.2198433
  • Cvanova M, Ruzicka F, Kukletova M, et al. Candida species and selected behavioral factors co-associated with severe early childhood caries: case-control study. Front Cell Infect Microbiol. 2022;12. doi: 10.3389/fcimb.2022.943480
  • Bachtiar EW, Bachtiar BM. Relationship between Candida albicans and Streptococcus mutans in early childhood caries, evaluated by quantitative PCR. F1000Res. 2018;7:1645. doi: 10.12688/f1000research.16275.2
  • Bowen WH, Burne RA, Wu H, et al. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018;26(3):229–242. doi: 10.1016/j.tim.2017.09.008
  • AL Bataineh MT, Soares NC, Semreen MH, et al. Candida albicans PPG1, a serine/threonine phosphatase, plays a vital role in central carbon metabolisms under filament-inducing conditions: a multi-omics approach. PLOS One. 2021;16(12):e0259588.
  • Khan F, Bamunuarachchi NI, Tabassum N, et al. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. Biofouling. 2021;37(6):626–655. doi: 10.1080/08927014.2021.1948538
  • Xiang Z, Wakade RS, Ribeiro AA, et al. Human tooth as a fungal niche: Candida albicans traits in dental plaque isolates. MBio. 2023;14(1):e0276922. doi: 10.1128/mbio.02769-22
  • Baraniya D, Chen T, Nahar A, et al. Supragingival mycobiome and inter-kingdom interactions in dental caries. J Oral Microbiol. 2020;12(1):1729305. doi: 10.1080/20002297.2020.1729305
  • Xiao J, Grier A, Faustoferri RC, et al. Association between Oral Candida and bacteriome in children with severe ECC. J Dent Res. 2018;97(13):1468–1476. doi: 10.1177/0022034518790941
  • Xiao J, Moon Y, Li L, et al. Candida albicans carriage in children with severe early childhood caries (S-ECC) and maternal relatedness. PLOS One. 2016;11(10):e0164242. doi: 10.1371/journal.pone.0164242
  • Pérez JC. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes. 2021;13(1):1979877. doi: 10.1080/19490976.2021.1979877
  • Burne RA. Oral Streptococci… products of their environment. J Dent Res. 1998;77(3):445–452. doi: 10.1177/00220345980770030301
  • Ellepola K, Truong T, Liu Y, et al. Multi-omics analyses reveal synergistic carbohydrate metabolism in Streptococcus mutans-Candida albicans mixed-species biofilms. Infect Immun. 2019;87(10):e00339–19. doi: 10.1128/IAI.00339-19
  • He J, Kim D, Zhou X, et al. RNA-Seq reveals enhanced sugar metabolism in Streptococcus mutans co-cultured with Candida albicans within mixed-species biofilms. Front Microbiol. 2017;8:1036. doi: 10.3389/fmicb.2017.01036
  • Kim D, Sengupta A, Niepa THR, et al. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 2017;7(1):41332.
  • Janus MM, Crielaard W, Volgenant CMC, et al. Candida albicans alters the bacterial microbiome of early in vitro oral biofilms. J Oral Microbiol. 2017;9(1):1270613. doi: 10.1080/20002297.2016.1270613
  • Hwang G, Liu Y, Kim D, et al. Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLOS Pathog. 2017;13(6):e1006407. doi: 10.1371/journal.ppat.1006407
  • Zhou Y, Cheng L, Liao B, et al. Candida albicans CHK1 gene from two-component system is essential for its pathogenicity in oral candidiasis. Appl Microbiol Biotechnol. 2021;105(6):2485–2496. doi: 10.1007/s00253-021-11187-0
  • Graus MS, Wester MJ, Lowman DW, et al. Mannan molecular substructures control nanoscale glucan exposure in Candida. Cell Rep. 2018;24(9):2432–2442.e5. doi: 10.1016/j.celrep.2018.07.088
  • Feng Y, Bian S, Pang Z, et al. Deletion of non-histidine domains of histidine kinase CHK1 diminishes the infectivity of Candida albicans in an oral mucosal model. Front Microbiol. 2022;13:855651. doi: 10.3389/fmicb.2022.855651
  • Liu Y, Wang Z, Zhou Z, et al. Candida albicans CHK1 gene regulates its cross-kingdom interactions with Streptococcus mutans to promote caries. Appl Microbiol Biotechnol. 2022;106(21):7251–7263. doi: 10.1007/s00253-022-12211-7
  • Deng Y, Yang Y, Zhang B, et al. The vicK gene of Streptococcus mutans mediates its cariogenicity via exopolysaccharides metabolism. Int J Oral Sci. 2021;13(1):45. doi: 10.1038/s41368-021-00149-x
  • Zhang Q, Ma Q, Wang Y, et al. Molecular mechanisms of inhibiting glucosyltransferases for biofilm formation in Streptococcus mutans. Int J Oral Sci. 2021;13(1):30. doi: 10.1038/s41368-021-00137-1
  • Paes Leme AF, Koo H, Bellato CM, et al. The role of sucrose in cariogenic dental biofilm formation–new insight. J Dent Res. 2006;85(10):878–887. doi: 10.1177/154405910608501002
  • Xiao J, Zeng Y, Rustchenko E, et al. Dual transcriptome of Streptococcus mutans and Candida albicans interplay in biofilms. J Oral Microbiol. 2023;15(1):2144047. doi: 10.1080/20002297.2022.2144047
  • Burgain A, Tebbji F, Khemiri I, et al. Metabolic reprogramming in the opportunistic yeast Candida albicans in response to hypoxia. mSphere. 2020;5(1):e00913–19.
  • Ma Q, Pan Y, Chen Y, et al. Acetylation of glucosyltransferases regulates Streptococcus mutans biofilm formation and virulence. PLOS Pathog. 2021;17(12):e1010134. doi: 10.1371/journal.ppat.1010134
  • Hwang G, Marsh G, Gao L, et al. Binding force dynamics of Streptococcus mutans-glucosyltransferase B to Candida albicans. J Dent Res. 2015;94(9):1310–1317. doi: 10.1177/0022034515592859
  • Koo H, Andes DR, Krysan DJ. Candida-streptococcal interactions in biofilm-associated oral diseases. PLOS Pathog. 2018;14(12):e1007342. doi: 10.1371/journal.ppat.1007342
  • Garcia-Rubio R, de Oliveira HC, Rivera J, et al. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol. 2019;10:2993. doi: 10.3389/fmicb.2019.02993
  • Gow NAR, Lenardon MD. Architecture of the dynamic fungal cell wall. Nat Rev Microbiol. 2023;21(4):248–259. doi: 10.1038/s41579-022-00796-9
  • Ballou ER, Avelar GM, Childers DS, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol. 2016;2(2):1–9. doi: 10.1038/nmicrobiol.2016.238
  • Wu R, Tao Y, Cao Y, et al. Streptococcus mutans membrane vesicles harboring glucosyltransferases augment Candida albicans biofilm development. Front Microbiol. 2020;11:581184. doi: 10.3389/fmicb.2020.581184
  • Guo H, Chen Y, Guo W, et al. Effects of extracellular DNA on dual-species biofilm formed by Streptococcus mutans and Candida albicans. Microb Pathog. 2021;154:104838. doi: 10.1016/j.micpath.2021.104838
  • Huffines JT, Scoffield JA. Disruption of Streptococcus mutans and Candida albicans synergy by a commensal streptococcus. Sci Rep. 2020;10(1):19661. doi: 10.1038/s41598-020-76744-5
  • Zeng Y, Fadaak A, Alomeir N, et al. Lactobacillus plantarum disrupts S. mutans–C. albicans cross-kingdom biofilms. Front Cell Infect Microbiol. 2022;12. doi: 10.3389/fcimb.2022.872012
  • Srivastava N, Ellepola K, Venkiteswaran N, et al. Lactobacillus plantarum 108 inhibits Streptococcus mutans and Candida albicans mixed-species biofilm formation. Antibiotics. 2020;9(8):478. doi: 10.3390/antibiotics9080478
  • Inhibitory Effect of Lactobacillus plantarum CCFM8724 towards Streptococcus mutans- and Candida albicans-Induced Caries in Rats - PubMed. [cited 2023 Jun 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/33414892/
  • Guo M, Yang K, Zhou Z, et al. Inhibitory effects of stevioside on Streptococcus mutans and Candida albicans dual-species biofilm. Front Microbiol. 2023;14:1128668. doi: 10.3389/fmicb.2023.1128668
  • Alomeir N, Zeng Y, Fadaak A, et al. Effect of Nystatin on Candida albicans - Streptococcus mutans duo-species biofilms. Arch Oral Biol. 2023;145:105582. doi: 10.1016/j.archoralbio.2022.105582
  • Chan A, Ellepola K, Truong T, et al. Inhibitory effects of xylitol and sorbitol on Streptococcus mutans and Candida albicans biofilms are repressed by the presence of sucrose. Arch Oral Biol. 2020;119:104886. doi: 10.1016/j.archoralbio.2020.104886
  • Cao Y, Lin H. Characterization and function of membrane vesicles in gram-positive bacteria. Appl Microbiol Biotechnol. 2021;105(5):1795–1801. doi: 10.1007/s00253-021-11140-1
  • Cao Y, Zhou Y, Chen D, et al. Proteomic and metabolic characterization of membrane vesicles derived from Streptococcus mutans at different pH values. Appl Microbiol Biotechnol. 2020;104(22):9733–9748. doi: 10.1007/s00253-020-10563-6
  • Morales-Aparicio JC, Lara Vasquez P, Mishra S, et al. The impacts of sortase a and the 4’-phosphopantetheinyl transferase homolog sfp on Streptococcus mutans extracellular membrane vesicle biogenesis. Front Microbiol. 2020;11:570219. doi: 10.3389/fmicb.2020.570219
  • Rainey K, Michalek SM, Wen ZT, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl environ microbiol. 2019;85(5):e02247–18. doi: 10.1128/AEM.02247-18
  • Senpuku H, Nakamura T, Iwabuchi Y, et al. Effects of complex DNA and MVs with GTF extracted from Streptococcus mutans on the oral biofilm. Molecules. 2019;24(17):3131. doi: 10.3390/molecules24173131
  • Wu R, Cui G, Cao Y, et al. Streptococcus mutans membrane vesicles enhance Candida albicans pathogenicity and carbohydrate metabolism. Front Cell Infect Microbiol. 2022;12:940602. doi: 10.3389/fcimb.2022.940602
  • Serrage HJ, Jepson MA, Rostami N, et al. Understanding the matrix: the role of extracellular DNA in oral biofilms. Front Oral Health. 2021;2. doi: 10.3389/froh.2021.640129
  • Li Y, Du Y, Ye J, et al. Effect of extracellular DNA on the formation of Streptococcus mutans biofilm under sucrose environment. Zhonghua Kou Qiang Yi Xue Za Zhi. 2016;51(2):81–86. doi: 10.3760/cma.j.issn.1002-0098.2016.02.004
  • Kawarai T, Narisawa N, Suzuki Y, et al. Streptococcus mutans biofilm formation is dependent on extracellular DNA in primary low pH conditions. J Oral Biosci. 2016;58(2):55–61. doi: 10.1016/j.job.2015.12.004
  • Uchida H, Ovitt CE. Novel impacts of saliva with regard to oral health. J Prosthet Dent. 2022;127(3):383–391. doi: 10.1016/j.prosdent.2021.05.009
  • Culp DJ, Robinson B, Cash MN. Murine salivary amylase protects against Streptococcus mutans-induced caries. Front physiol. 2021;12:699104. doi: 10.3389/fphys.2021.699104
  • Takagi J, Aoki K, Turner BS, et al. Mucin O-glycans are natural inhibitors of Candida albicans pathogenicity. Nat Chem Biol. 2022;18(7):762–773. doi: 10.1038/s41589-022-01035-1
  • Werlang CA, Chen WG, Aoki K, et al. Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans. Nat Microbiol. 2021;6(5):574–583. doi: 10.1038/s41564-021-00876-1
  • Wu CM, Wheeler KM, Cárcamo-Oyarce G, et al. Mucin glycans drive oral microbial community composition and function. NPJ Biofilms Microbiomes. 2023;9(1):11. doi: 10.1038/s41522-023-00378-4
  • Pandit S, Cai J-N, Jung J-E, et al. Effect of 1-minute fluoride treatment on potential virulence and viability of a cariogenic biofilm. Caries Res. 2015;49(4):449–457. doi: 10.1159/000434731
  • Richards VP, Palmer SR, Pavinski Bitar PD, et al. Phylogenomics and the dynamic genome evolution of the genus Streptococcus. Genome Biol Evol. 2014;6(4):741–753. doi: 10.1093/gbe/evu048
  • Abranches J, Zeng L, Kajfasz JK, et al. Biology of oral Streptococci. Microbiol Spectr. 2018;6(5). doi: 10.1128/microbiolspec.GPP3-0042-2018
  • Fragkou S, Balasouli C, Tsuzukibashi O, et al. Streptococcus mutans, Streptococcus sobrinus and Candida albicans in oral samples from caries-free and caries-active children. Eur Arch Paediatr Dent. 2016;17(5):367–375. doi: 10.1007/s40368-016-0239-7
  • Zhou Q, Qin X, Qin M, et al. Genotypic diversity of Streptococcus mutans and Streptococcus sobrinus in 3–4-year-old children with severe caries or without caries. Int J Paediatr Dent. 2011;21(6):422–431. doi: 10.1111/j.1365-263X.2011.01145.x
  • Liu T, Liu J, Liu J, et al. Interspecies interactions between Streptococcus mutans and Streptococcus agalactiae in vitro. Front Cell Infect Microbiol. 2020;10. doi: 10.3389/fcimb.2020.00344
  • Lueyar TK, Karygianni L, Attin T, et al. Dynamic interactions between Candida albicans and different streptococcal species in a multispecies oral biofilm. Microbiologyopen. 2023;12(5):e1381. doi: 10.1002/mbo3.1381
  • Bernardi S, Karygianni L, Filippi A, et al. Combining culture and culture-independent methods reveals new microbial composition of halitosis patients’ tongue biofilm. Microbiologyopen. 2020;9(2):e958. doi: 10.1002/mbo3.958
  • Redanz S, Treerat P, Mu R, et al. Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. Isme J. 2020;14(5):1074–1088. doi: 10.1038/s41396-020-0592-8
  • Scoffield J, Michalek S, Harber G, et al. Dietary nitrite drives disease outcomes in oral polymicrobial infections. J Dent Res. 2019;98(9):1020–1026. doi: 10.1177/0022034519855348
  • Zeng Y, Fadaak A, Alomeir N, et al. Effect of probiotic lactobacillus plantarum on Streptococcus mutans and Candida albicans clinical isolates from children with early childhood caries. Int J Mol Sci. 2023;24(3):2991. doi: 10.3390/ijms24032991
  • Talapko J, Juzbašić M, Matijević T, et al. Candida albicans-the virulence factors and clinical manifestations of infection. J Fungi. 2021;7(2):79. doi: 10.3390/jof7020079
  • Aljaffary M, Jang H, Alomeir N, et al. Effects of Nystatin oral rinse on oral Candida species and Streptococcus mutans among healthy adults. Clin Oral Investig. 2023;27(7):3557–3568. doi: 10.1007/s00784-023-04969-5
  • Liu Y, Daniel SG, Kim H-E, et al. Addition of cariogenic pathogens to complex oral microflora drives significant changes in biofilm compositions and functionalities. Microbiome. 2023;11(1):123. doi: 10.1186/s40168-023-01561-7
  • Adler CJ, Cao K-A, Hughes T, et al. How does the early life environment influence the oral microbiome and determine oral health outcomes in childhood? BioEssays. 2021;43(9):2000314. doi: 10.1002/bies.202000314
  • Quivey RG, O’Connor TG, Gill SR, et al. Prediction of early childhood caries onset and oral microbiota. Mol Oral Microbiol. 2021;36(5):255–257. doi: 10.1111/omi.12349
  • Samaddar A, Shrikrishna SB, Moza A, et al. Association of parental food choice motives, attitudes, and sugar exposure in the diet with early childhood caries: Case-control study. J Indian Soc Pedod Prev Dent. 2021;39(2):171–177. doi: 10.4103/jisppd.jisppd_104_21
  • Du Q, Fu M, Zhou Y, et al. Sucrose promotes caries progression by disrupting the microecological balance in oral biofilms: an in vitro study. Sci Rep. 2020;10(1):2961. doi: 10.1038/s41598-020-59733-6
  • Hajishengallis E, Parsaei Y, Klein MI, et al. Advances in the microbial etiology and pathogenesis of early childhood caries. Mol Oral Microbiol. 2017;32(1):24–34. doi: 10.1111/omi.12152
  • Paulino TP, Cardoso JM, Bruschi-Thedei GCM, et al. Fermentable and non-fermentable sugars: a simple experiment of anaerobic metabolism. Biochem Mol Biol Educ. 2003;31(3):180–184. doi: 10.1002/bmb.2003.494031030211
  • Huang X, Bao J, Zeng Y, et al. Anti-cariogenic properties of lactobacillus plantarum in the utilization of galacto-oligosaccharide. Nutrients. 2023;15(9):2017. doi: 10.3390/nu15092017
  • Guan C, Che F, Zhou H, et al. Effect of rubusoside, a natural sucrose substitute, on Streptococcus mutans biofilm cariogenic potential and virulence gene expression in vitro. Appl Environ Microbiol. 2020;86(16):e01012–20. doi: 10.1128/AEM.01012-20
  • Brambilla E, Ionescu AC, Cazzaniga G, et al. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation. J Basic Microbiol. 2016;56(5):480–492. doi: 10.1002/jobm.201500329
  • Bijle MN, Abdalla MM, Hung IFN, et al. The effect of synbiotic-fluoride therapy on multi-species biofilm. J Dent. 2023;133:104523. doi: 10.1016/j.jdent.2023.104523
  • Bijle MN, Ashraf U, Abdalla MM, et al. The effect of arginine-fluoride varnish on biochemical composition of multi-species biofilm. J Dent. 2021;108:103631. doi: 10.1016/j.jdent.2021.103631
  • Peng S, McGrath C. What can we do to prevent small children from suffering from tooth decay? Evid Based Dent. 2020;21(3):90–91. doi: 10.1038/s41432-020-0111-9
  • Do Amaral GCLS, Hassan MA, Saraiva L, et al. The effect of a multicomponent oral care regimen on gingival inflammation: A randomized controlled clinical trial. Journal Of Periodontology; N/A(n/A). doi: 10.1002/JPER.23-0361
  • Chen KJ, Gao SS, Duangthip D, et al. Randomized clinical trial on sodium fluoride with tricalcium phosphate. J Dent Res. 2021;100(1):66–73. doi: 10.1177/0022034520952031
  • López-López A, Mira A. Shifts in composition and activity of oral biofilms after fluoride exposure. Microb Ecol. 2020;80(3):729–738. doi: 10.1007/s00248-020-01531-8
  • Pandit S, Jung J-E, Choi H-M, et al. Effect of brief periodic fluoride treatments on the virulence and composition of a cariogenic biofilm. Biofouling. 2018;34(1):53–61. doi: 10.1080/08927014.2017.1404583
  • Hosida TY, Pessan JP, Cavazana TP, et al. Effects of sodium hexametaphosphate and fluoride on the ph and inorganic components of Streptococcus mutans and Candida albicans biofilm after sucrose exposure. Antibiotics. 2022;11(8):1044. doi: 10.3390/antibiotics11081044
  • Cavazana TP, Hosida TY, Sampaio C, et al. Calcium glycerophosphate and fluoride affect the pH and inorganic composition of dual-species biofilms of Streptococcus mutans and Candida albicans. J Dent. 2021;115:103844. doi: 10.1016/j.jdent.2021.103844