684
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Outdoor recreation, tick borne encephalitis incidence and seasonality in Finland, Norway and Sweden during the COVID-19 pandemic (2020/2021)

ORCID Icon, , , &
Article: 2281055 | Received 23 Jun 2023, Accepted 03 Nov 2023, Published online: 18 Nov 2023

References

  • Lindquist L, Vapalahti O. Tick-borne encephalitis. Lancet. 2008;371(9627):1861–12. doi: 10.1016/S0140-6736(08)60800-4
  • Skarpaas T, Golovljova I, Vene S, et al. Tickborne encephalitis virus, Norway and Denmark. Emerg Infect Dis. 2006;12(7):1136–1138. doi: 10.3201/eid1207.051567
  • Wallgren A. Une nouvelle maladie infectiouse du système nervoux central? Acta Paediatrica. 2008;4(2):158–182. doi: 10.1111/j.1651-2227.1924.tb17242.x
  • Stefanoff P, Pfeffer M, Hellenbrand W, et al. Virus detection in questing ticks is not a sensitive indicator for risk assessment of tick-borne encephalitis in humans. Zoonoses Public Health. 2013;60(3):215–226.
  • Morozova OV, Panov VV, Bakhvalova VN. Innate and adaptive immunity in wild rodents spontaneously and experimentally infected with the tick-borne encephalitis virus. Infection, Genetics And Evolution query. 2020;80:104187. doi: 10.1016/j.meegid.2020.104187
  • Michelitsch A, Wernike K, Klaus C, et al. Exploring the reservoir hosts of tick-borne encephalitis virus. Viruses. 2019;11(7):669.
  • Mansfield KL, Johnson N, Phipps LP, et al. Solomon T: tick-borne encephalitis virus - a review of an emerging zoonosis. J Gen Virol. 2009;90(Pt 8):1781–1794. doi: 10.1099/vir.0.011437-0
  • Radda A, Hofmann H, Pretzmann G. Threshold of viraemia in apodemus flavicollis for infection of Ixodes ricinus with tick-borne encephalitis virus. Acta Virol. 1969;13(1):74–77.
  • Tonteri E, Kipar A, Voutilainen L, et al. The three subtypes of tick-borne encephalitis virus induce encephalitis in a natural host, the bank vole (myodes glareolus). PLoS One. 2013;8(12):e81214. doi: 10.1371/journal.pone.0081214
  • Mlera L, Bloom ME. The role of mammalian reservoir hosts in tick-borne flavivirus biology. Front Cell Infect Microbiol. 2018;8:8. doi: 10.3389/fcimb.2018.00298
  • Süss J. Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia-an overview. Ticks Tick Borne Dis. 2011;2(1):2–15. doi: 10.1016/j.ttbdis.2010.10.007
  • Van Heuverswyn J, Hallmaier-Wacker LK, Beauté J, et al. Spatiotemporal spread of tick-borne encephalitis in the EU/EEA, 2012 to 2020. Eurosurveillance. 2023;28(11):2200543.
  • Saegerman C, Humblet M-F, Leandri M, et al. First expert elicitation of knowledge on possible drivers of observed increasing human cases of tick-borne encephalitis in Europe. Viruses. 2023;15(3):791.
  • Ocias LF, Waldeck M, Hallén I, et al. Transnational exchange of surveillance data reveals previously unrecognized TBEV microfocus. Eur J Public Health. 2019;29(4):631–633.
  • Martin LJ, Hjertqvist M, Straten E, et al. Investigating novel approaches to tick-borne encephalitis surveillance in Sweden, 2010-2017. Ticks Tick-Borne Dis. 2020;11(5):101486. doi: 10.1016/j.ttbdis.2020.101486
  • Zeman P. Cyclic patterns in the central European tick-borne encephalitis incidence series. Epidemiol Infect. 2017;145(2):358–367. doi: 10.1017/S0950268816002223
  • Süss J, Klaus C, Diller R, et al. TBE incidence versus virus prevalence and increased prevalence of the TBE virus in Ixodes ricinus removed from humans. Int J Med Microbiol. 2006;296(Suppl 40):63–68. doi: 10.1016/j.ijmm.2005.12.005
  • Andreassen HP, Sundell J, Ecke F, et al. Population cycles and outbreaks of small rodents: ten essential questions we still need to solve. Oecologia. 2021;195(3):601–622.
  • Randolph SE, Rogers DJ. Fragile transmission cycles of tick-borne encephalitis virus may be disrupted by predicted climate change. Proc Biol Sci. 2000;267(1454):1741–1744. doi: 10.1098/rspb.2000.1204
  • Jaenson TGT, Petersson EH, Jaenson DGE, et al. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares. Parasites Vectors. 2018;11(1):477. doi: 10.1186/s13071-018-3057-4
  • Jaenson TG, Hjertqvist M, Bergström T, et al. Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites Vectors. 2012;5(1):184. doi: 10.1186/1756-3305-5-184
  • Lindgren E, Gustafson R. Tick-borne encephalitis in Sweden and climate change. Lancet. 2001;358(9275):16–18. doi: 10.1016/S0140-6736(00)05250-8
  • Zeman P, Bene C. A tick-borne encephalitis ceiling in central Europe has moved upwards during the last 30 years: possible impact of global warming? Int J Med Microbiol. 2004;293(Suppl 37):48–54. doi: 10.1016/S1433-1128(04)80008-1
  • Zeman P. Prolongation of tick-borne encephalitis cycles in warmer climatic conditions. Int J Environ Res Public Health. 2019;16(22):4532. doi: 10.3390/ijerph16224532
  • Kjær LJ, Johansson M, Lindgren P-E, et al. Potential drivers of human tick-borne encephalitis in the Örebro region of Sweden, 2010–2021. Sci Rep. 2023;13(1):7685.
  • Rácz GR, Bán E, Ferenczi E, et al. A simple spatial model to explain the distribution of human tick-borne encephalitis cases in hungary. Vector Borne Zoonotic Dis. 2006;6(4):369–378.
  • Uusitalo R, Siljander M, Dub T, et al. Modelling habitat suitability for occurrence of human tick-borne encephalitis (TBE) cases in Finland. Ticks Tick Borne Dis. 2020;11(5):101457. doi: 10.1016/j.ttbdis.2020.101457
  • Leibovici DG, Bylund H, Björkman C, et al. Associating land cover changes with patterns of incidences of climate-sensitive infections: an example on tick-borne diseases in the Nordic area. Int J Environ Res Public Health. 2021;18(20):10963.
  • Palo RT. Tick-borne encephalitis transmission risk: its dependence on host population dynamics and climate effects. Vector Borne Zoonotic Dis. 2014;14(5):346–352. doi: 10.1089/vbz.2013.1386
  • Rizzoli A, Hauffe HC, Tagliapietra V, et al. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One. 2009;4(2):e4336. doi: 10.1371/journal.pone.0004336
  • Randolph SE. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet Parasitol. 2010;167(2–4):92–94. doi: 10.1016/j.vetpar.2009.09.011
  • Sumilo D, Asokliene L, Bormane A, et al. Climate change cannot explain the upsurge of tick-borne encephalitis in the baltics. PLoS One. 2007;2(6):e500. doi: 10.1371/journal.pone.0000500
  • Randolph SE. Evidence that climate change has caused ‘emergence’ of tick-borne diseases in Europe? Int J Med Microbiol. 2004;293:5–15. doi: 10.1016/S1433-1128(04)80004-4
  • Randolph SE. On behalf of the EDEN-TBD sub-project team C: human activities predominate in determining changing incidence of tick-borne encephalitis in Europe. Euro Surveill. 2010;15(27):24–31. doi: 10.2807/ese.15.27.19606-en
  • Rubel F, Brugger K. Tick-borne encephalitis incidence forecasts for Austria, Germany, and Switzerland. Ticks Tick-Borne Dis. 2020;11(5):101437. doi: 10.1016/j.ttbdis.2020.101437
  • Bregnard C, Rais O, Herrmann C, et al. Beech tree masting explains the inter-annual variation in the fall and spring peaks of Ixodes ricinus ticks with different time lags. Parasites Vectors. 2021;14(1):570.
  • Brugger K, Walter M, Chitimia-Dobler L, et al. Forecasting next season’s Ixodes ricinus nymphal density: the example of southern Germany 2018. Exp Appl Acarol. 2018;75(3):281–288.
  • Godfrey ER, Randolph SE. Economic downturn results in tick-borne disease upsurge. Parasites Vectors. 2011;4(1):35. doi: 10.1186/1756-3305-4-35
  • Sumilo D, Asokliene L, Avsic-Zupanc T, et al. Behavioural responses to perceived risk of tick-borne encephalitis: vaccination and avoidance in the Baltics and Slovenia. Vaccine. 2008;26(21):2580–2588.
  • Sumilo D, Bormane A, Asokliene L, et al. Socio-economic factors in the differential upsurge of tick-borne encephalitis in central and Eastern Europe. Rev Med Virol. 2008;18(2):81–95.
  • Jore S, Vanwambeke SO, Slunge D, et al. Spatial tick bite exposure and associated risk factors in Scandinavia. Infect Ecol Epidemiol. 2020;10(1):1764693.
  • Heylen D, Lasters R, Adriaensen F, et al. Ticks and tick-borne diseases in the city: role of landscape connectivity and green space characteristics in a metropolitan area. Sci Total Environ. 2019;670:941–949. doi: 10.1016/j.scitotenv.2019.03.235
  • Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of land use changes and habitat fragmentation on the Eco-epidemiology of tick-borne diseases. J Med Entomol. 2020;58(4):1546–1564. doi: 10.1093/jme/tjaa209
  • National Infectious Disease Register in Finland [https://sampo.thl.fi/pivot/prod/sv/ttr/shp/fact_shp?&row=area-12260&column=time-12059&filter=reportgroup-12194].
  • Smura T, Tonteri E, Jääskeläinen A, et al. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg Microbes Infect. 2019;8(1):675–683.
  • Sormunen JJ, Kulha N, Klemola T, et al. Enhanced threat of tick-borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses Public Health. 2020;67(7):823–839. doi: 10.1111/zph.12767
  • Tonteri E, Kurkela S, Timonen S, et al. Surveillance of endemic foci of tick-borne encephalitis in Finland 1995-2013: evidence of emergence of new foci. Euro Surveill. 2015;20(37). doi: 10.2807/1560-7917.ES.2015.20.37.30020
  • Map over human TBE cases in Finland. [https://www.thl.fi/ttr/gen/atlas/html/atlas.html?show=tbe_riskienarviointi].
  • Norwegian surveillance system for Communicable diseases. [http://msis.no/].
  • Tick-borne encephalitis (TBE virus infections). [https://www.fhi.no/en/in/smittevernveilederen/sykdommer-a-a/tick-borne-encephalitis--tbe-virus-infections/#number-of-registered-cases].
  • Tick borne encephalitis (TBE). [https://www.fhi.no/en/in/smittevernveilederen/sykdommer-a-a/tick-borne-encephalitis–tbe-virus-infections/].
  • Tick borne encephalitis (TBE)- cases per 100.000. [https://www.folkhalsomyndigheten.se/folkhalsorapportering-statistik/statistik-a-o/sjukdomsstatistik/tick-borne-encephalitis-tbe/?t=county].
  • Geng M-J, Zhang H-Y, Yu L-J, et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic. Nat Commun. 2021;12(1):6923.
  • Lai CC, Chen SY, Yen MY, et al. The impact of the coronavirus disease 2019 epidemic on notifiable infectious diseases in Taiwan: a database analysis. Travel Med Infect Dis. 2021;40:101997. doi: 10.1016/j.tmaid.2021.101997
  • Sulik M, Toczyłowski K, Grygorczuk S. Epidemiology of tick-borne encephalitis in Poland (2010-2019) and the impact of the COVID-19 pandemic on the notified incidence of the disease. Przegl Epidemiol. 2021;75(1):76–85. doi: 10.32394/pe.75.08
  • Zając Z, Bartosik K, Kulisz J, et al. Incidence of tick-borne encephalitis during the COVID-19 pandemic in selected European countries. J Clin Med. 2022;11(3):803.
  • Zając Z, Bartosik K, Kulisz J, et al. Incidence of tick-borne encephalitis during the COVID-19 pandemic in selected European countries. J Clin Med. 2022;11(3):803.
  • Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to streptococcus pneumoniae, haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the invasive respiratory infection surveillance initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360–e370.
  • Högberg LD, Vlahović-Palčevski V, Pereira C, et al. Decrease in community antibiotic consumption during the COVID-19 pandemic, EU/EEA, 2020. Euro Surveill. 2021;26(46). doi: 10.2807/1560-7917.ES.2021.26.46.2101020
  • Stefanoff P, Løvlie AL, Elstrøm P, et al. Reporting of notifiable infectious diseases during the COVID-19 response. Tidsskr Nor Laegeforen. 2020;140(9). doi: 10.4045/tidsskr.20.0334
  • Borde JP, Kaier K, Hehn P, et al. Tick-borne encephalitis virus infections in Germany. Seasonality and in-year patterns. A retrospective analysis from 2001-2018. PLoS One. 2019;14(10):e0224044. doi: 10.1371/journal.pone.0224044
  • Wu Y, Mooring TA, Linz M. Policy and weather influences on mobility during the early US COVID-19 pandemic. Proc Natl Acad Sci U S A. 2021;118(22). doi: 10.1073/pnas.2018185118
  • Jenkins VA, Silbernagl G, Baer LR, et al. The epidemiology of infectious diseases in Europe in 2020 versus 2017–2019 and the rise of tick-borne encephalitis(1995–2020). Ticks Tick-Borne Dis. 2022;13(5):101972. doi: 10.1016/j.ttbdis.2022.101972
  • Rubel F. Climate change and tick-borne encephalitis in the greater alpine region. Climate, ticks and disease. CABI; 2021. p. 354–359.
  • Living, working and COVID-19 [https://www.eurofound.europa.eu/en/publications/2020/living-working-and-covid-19].
  • What’s next for remote work: an analysis of 2,000 tasks, 800 jobs, and nine countries.
  • Barbour N, Menon N, Mannering F. A statistical assessment of work-from-home participation during different stages of the COVID-19 pandemic. Transp Res Interdiscip Perspect. 2021;11:100441. doi: 10.1016/j.trip.2021.100441
  • Ma W, Hoen FS, Tørset T. No way back? A survey on changes in travel demand post-pandemic in Norway. Case Stud Transp Policy. 2023;11:100942. doi: 10.1016/j.cstp.2022.100942
  • Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Series B Stat Methodol. 2009;71(2):319–392. doi: 10.1111/j.1467-9868.2008.00700.x
  • Goren A, Viljugrein H, Rivrud IM, et al. The emergence and shift in seasonality of Lyme borreliosis in Northern Europe. Proc Biol Sci. 2023a;290(1993):20222420. doi: 10.1098/rspb.2022.2420
  • R: a language and environment for statistical computing. [https://www.R-project.org/].
  • McMichael AJ, May RM, McLean AR, et al. Environmental and social Influences on Emerging infectious diseases: past, present and future. Phil Trans R Soc Lond B. 2004;359(1447):1049–1058. doi: 10.1098/rstb.2004.1480
  • Tucker MA, Schipper AM, Adams TSF, et al. Behavioral responses of terrestrial mammals to COVID-19 lockdowns. Science. 2023;380(6649):1059–1064.
  • Berdejo-Espinola V, Zahnow R, Suárez-Castro AF, et al. Changes in green space use during a COVID-19 lockdown are associated with both individual and green space characteristics. Front Ecol Evol. 2022;10:10. doi: 10.3389/fevo.2022.804443
  • Day BH. The value of greenspace under pandemic lockdown. Environ Resour Econ (Dordr). 2020;76(4):1161–1185. doi: 10.1007/s10640-020-00489-y
  • Ferguson MD, McIntosh K, English DBK, et al. The outdoor renaissance: assessing the impact of the COVID-19 pandemic upon outdoor recreation visitation, behaviors, and decision-making in New England’s national forests. Society & Natural Resources. 2022;35(10):1063–1082.
  • Mateer TJ, Rice WL, Taff BD, et al. Psychosocial factors influencing outdoor recreation during the COVID-19 pandemic. Front Sustain Cities. 2021;3:3. doi: 10.3389/frsc.2021.621029
  • Geng MJ, Zhang HY, Yu LJ, et al. Changes in notifiable infectious disease incidence in China during the COVID-19 pandemic. Nat Commun. 2021;12(1):6923.
  • Ullrich A, Schranz M, Rexroth U, et al. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: an analysis of national surveillance data during week 1–2016 – week 32–2020. Lancet Reg Health Eur. 2021;6:100103. doi: 10.1016/j.lanepe.2021.100103
  • Zeman P, Benes C. Spatial distribution of a population at risk: an important factor for understanding the recent rise in tick-borne diseases (Lyme borreliosis and tick-borne encephalitis in the Czech Republic). Ticks Tick Borne Dis. 2013;4(6):522–530. doi: 10.1016/j.ttbdis.2013.07.003
  • Jaenson TG, Jaenson DG, Eisen L, et al. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites Vectors. 2012;5(1):8.
  • Jore S, Viljugrein H, Hofshagen M, et al. Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasites Vectors. 2011;4(1):84.
  • Medlock JM, Hansford KM, Bormane A, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors. 2013;6(1):1.
  • Gilbert L. Altitudinal patterns of tick and host abundance: a potential role for climate change in regulating tick-borne diseases? Oecologia. 2010;162(1):217–225. doi: 10.1007/s00442-009-1430-x
  • Kiffner C, Vor T, Hagedorn P, et al. Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res. 2011;108(2):323–335.
  • Ulset V, Venter Z, Kozák M, et al. Increased nationwide recreational mobility in green spaces in Norway during the COVID-19 pandemic. In: Research Square; 2023.
  • Pandemic years: changes in daily usage of green areas in the neighborhood. [https://www.ssb.no/kultur-og-fritid/idrett-og-friluftsliv/statistikk/idrett-og-friluftsliv-levekarsundersokelsen/artikler/flere-har-brukt-naeromradet-til-friluftslivsaktiviteter-i-pandemien].
  • Venter ZS, Barton DN, Gundersen V, et al. Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ Res Lett. 2020;15(10):104075.
  • Ulset V, Venter Z, Kozák M, et al. Increased nationwide use of green spaces in Norway during the COVID-19 pandemic. In: Research Square; 2023.
  • Korpilo S, Kajosaari A, Rinne T, et al. Coping with crisis: green space use in Helsinki before and during the COVID-19 pandemic. Front Sustain Cities. 2021;3:3. doi: 10.3389/frsc.2021.713977
  • Fagerholm N, Eilola S, Arki V. Outdoor recreation and nature’s contribution to well-being in a pandemic situation - case Turku, Finland. Urban Forestry & Urban Greening. 2021;64:127257. doi: 10.1016/j.ufug.2021.127257
  • Hansen AS, Beery T, Fredman P, et al. Outdoor recreation in Sweden during and after the COVID-19 pandemic – management and policy implications. J Environ Plann Manage. 2022;66(7):1–22. doi: 10.1080/09640568.2022.2029736
  • Lõhmus M, Stenfors CUD, Lind T, et al. Mental Health, greenness, and nature related behaviors in the adult population of Stockholm County during COVID-19-Related restrictions. Int J Environ Res Public Health. 2021;18(6):3303.
  • Geng DC, Innes J, Wu W, et al. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J For Res (Harbin). 2021;32(2):553–567. doi: 10.1007/s11676-020-01249-w
  • Burnett H, Olsen JR, Nicholls N, et al. Change in time spent visiting and experiences of green space following restrictions on movement during the COVID-19 pandemic: a nationally representative cross-sectional study of UK adults. BMJ Open. 2021;11(3):e044067.
  • Ludvigsson JF. How Sweden approached the COVID-19 pandemic: summary and commentary on the national commission inquiry. Acta Paediatrica. 2023;112(1):19–33. doi: 10.1111/apa.16535
  • Randolph SE. Tick-borne encephalitis virus, ticks and humans: short-term and long-term dynamics. Curr Opin Infect Dis. 2008;21(5):462–467. doi: 10.1097/QCO.0b013e32830ce74b
  • Dobler G, Hufert F, Pfeffer M, et al. Tick-borne encephalitis: from microfocus to human disease. In: Mehlhorn H Berlin H, editors. Progress in parasitology. edn ed. Berlin Heidelberg: Springer; 2011. pp. 323–331.
  • Hansen AS, Beery T, Fredman P, et al. Outdoor recreation in Sweden during and after the COVID-19 pandemic – management and policy implications. J Environ Plann Manage. 2023;66(7):1472–1493.
  • Hedenborg S, Fredman P, Hansen AS, et al. Outdoorification of sports and recreation: a leisure transformation under the COVID-19 pandemic in Sweden. Annals Of Leisure Res. 2022;2022:1–19. doi:10.1080/11745398.2022.2101497
  • Pröbstl-Haider U, Gugerell K, Maruthaveeran S. Covid-19 and outdoor recreation - lessons learned? Introduction to the special issue on “outdoor recreation and Covid-19: its effects on people, parks and landscapes”. J Outdoor Recreat Tour. 2023;41:100583. doi: 10.1016/j.jort.2022.100583
  • Venter ZS, Barton DN, Gundersen V, et al. Back to nature: Norwegians sustain increased recreational use of urban green space months after the COVID-19 outbreak. Landscape Urban Plann. 2021;214:104175. doi: 10.1016/j.landurbplan.2021.104175