131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The effect of sadness on cognitive control: evidence from behaviour and ERPs

ORCID Icon, , &
Pages 359-377 | Received 12 May 2023, Accepted 07 Mar 2024, Published online: 20 Mar 2024

References

  • Aben, B., Calderon, C. B., Van der Cruyssen, L., Picksak, D., Van den Bussche, E., & Verguts, T. (2019). Context-dependent modulation of cognitive control involves different temporal profiles of fronto-parietal activity. NeuroImage, 189, 755–762. https://doi.org/10.1016/j.neuroimage.2019.02.004
  • Alexopoulos, T., Muller, D., Ric, F., & Marendaz, C. (2012). I, me, mine: Automatic attentional capture by self-related stimuli. European Journal of Social Psychology, 42(6), 770–779. https://doi.org/10.1002/ejsp.1882
  • Allport, G. W. (2006). The ego in contemporary psychology. Psychological Review, 50(5), 451–478. https://doi.org/10.1037/h0055375
  • Andrews-Hanna, J. R., Mackiewicz Seghete, K. L., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: Neural underpinnings and relation to self-report behaviors. PLoS One, 6(6), e21598. https://doi.org/10.1371/journal.pone.0021598
  • Ball, B. H., Peper, P., & Bugg, J. M. (2023). Dissociating proactive and reactive control in older adults. Psychology and Aging, 38(4), 323–332. https://doi.org/10.1037/pag0000748
  • Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2004). Electrophysiological correlates of attention, inhibition, sensitivity and bias in a continuous performance task. Clinical Neurophysiology, 115(9), 2001–2013. https://doi.org/10.1016/j.clinph.2004.04.008
  • Bellaera, L., & von Mühlenen, A. (2016). The effect of induced sadness and moderate depression on attention networks. Cognition and Emotion, 31(6), 1140–1152. https://doi.org/10.1080/02699931.2016.1197101
  • Braver, T., Gray, T., & Burgess, G. (2008). Explaining the many varieties of working memory variation: Dual mechanisms of cognitive control. Variation in Working Memory, 76–106. https://doi.org/10.1093/acprof:oso/9780195168648.003.0004
  • Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. https://doi.org/10.1016/j.tics.2011.12.010
  • Braver, T. S., Barch, D. M., Keys, B. A., Carter, C. S., Cohen, J. D., Kaye, J. A., Janowsky, J. S., Taylor, S. F., Yesavage, J. A., Mumenthaler, M. S., Jagust, W. J., & Reed, B. R. (2001). Context processing in older adults: Evidence for a theory relating cognitive control to neurobiology in healthy aging. Journal of Experimental Psychology: General, 130(4), 746–763. https://doi.org/10.1037/0096-3445.130.4.746
  • Braver, T. S., Paxton, J. L., Locke, H. S., & Barch, D. M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences, 106(18), 7351–7356. https://doi.org/10.1073/pnas.0808187106
  • Brunia, C. H. M., van Boxtel, G. J. M., & Böcker, K. B. E. (2013). Negative slow waves as indices of anticipation: The Bereitschaftspotential, the contingent negative variation, and the stimulus-preceding negativity. Oxford Handbooks Online. https://doi.org/10.1093/oxfordhb/9780195374148.013.0108
  • Burgess, G. C., & Braver, T. (2010). Neural mechanisms of interference control in working memory: Effects of interference expectancy and fluid intelligence. PLoS One, 5(9), e12861. https://doi.org/10.1371/journal.pone.0012861
  • Chaillou, A.-C., Giersch, A., Hoonakker, M., Capa, R. L., Doignon-Camus, N., Pham, B.-T., & Bonnefond, A. (2018). Evidence of impaired proactive control under positive affect. Neuropsychologia, 114, 110–117. https://doi.org/10.1016/j.neuropsychologia.2018.04.021
  • Clayson, P. E., & Larson, M. J. (2011). Effects of repetition priming on electrophysiological and behavioral indices of conflict adaptation and cognitive control. Psychophysiology, 48(12), 1621–1630. https://doi.org/10.1111/j.1469-8986.2011.01265.x
  • Cohen, A. O., Dellarco, D. V., Breiner, K., Helion, C., Heller, A. S., Rahdar, A., Pedersen, G., Chein, J., Dyke, J. P., Galvan, A., & Casey, B. (2016). The impact of emotional states on cognitive control circuitry and function. Journal of Cognitive Neuroscience, 28(3), 446–459. https://doi.org/10.1162/jocn_a_00906
  • Cohen, M. X. (2017). Where does EEG come from and what does it mean? Trends in Neurosciences, 40(4), 208–218. https://doi.org/10.1016/j.tins.2017.02.004
  • Cudo, A., Francuz, P., Augustynowicz, P., & Stróżak, P. (2018). The effects of arousal and approach motivated positive affect on cognitive control. An ERP study. Frontiers in Human Neuroscience, 12, 320. https://doi.org/10.3389/fnhum.2018.00320
  • Culot, C., & Gevers, W. (2021). Happy is easy: The influence of affective states on cognitive control and metacognitive reports. Cognition and Emotion, 35(6), 1195–1202. https://doi.org/10.1080/02699931.2021.1932427
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Ding, R., Wang, F., Niu, D., & Li, B. (2014). The effect of emotions associated with certainty (happiness, anger) and uncertainty (sadness) on trust. Journal of Psychological Science, 37((05|5)), 1092–1099. https://doi.org/10.16719/j.cnki.1671-6981.2014.05.013
  • Dreisbach, G. (2006). How positive affect modulates cognitive control: The costs and benefits of reduced maintenance capability. Brain and Cognition, 60(1), 11–19. https://doi.org/10.1016/j.bandc.2005.08.003
  • Ellsworth, P. C., & Smith, C. A. (1988). From appraisal to emotion: Differences among unpleasant feelings. Motivation and Emotion, 12(3), 271–302. https://doi.org/10.1007/BF00993115
  • Fan, J. (2014). An information theory account of cognitive control. Frontiers in Human Neuroscience, 8. https://www.frontiersin.org/articles/10.3389fnhum.2014.00680
  • Folstein, J. R., & Van Petten, C. (2007). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(0), 152–. https://doi.org/10.1111/j.1469-8986.2007.00602.x
  • Friedman, D., Nessler, D., Cycowicz, Y. M., & Horton, C. (2009). Development of and change in cognitive control: A comparison of children, young adults, and older adults. Cognitive, Affective, & Behavioral Neuroscience, 9(1), 91–102. https://doi.org/10.3758/CABN.9.1.91
  • Frömer, R., & Shenhav, A. (2022). Filling the gaps: Cognitive control as a critical lens for understanding mechanisms of value-based decision-making. Neuroscience & Biobehavioral Reviews, 134, 104483. https://doi.org/10.1016/j.neubiorev.2021.12.006
  • Gable, P., & Harmon-Jones, E. (2010). The motivational dimensional model of affect: Implications for breadth of attention, memory, and cognitive categorisation. Cognition and Emotion, 24(2), 322–337. https://doi.org/10.1080/02699930903378305
  • Gillies, J. C. P., & Dozois, D. J. A. (2021). How long do mood induction procedure (MIP) primes really last? Implications for cognitive vulnerability research. Journal of Affective Disorders, 292, 328–336. https://doi.org/10.1016/j.jad.2021.05.047
  • Gonthier, C., Macnamara, B. N., Chow, M., Conway, A. R. A., & Braver, T. S. (2017). Inducing proactive control shifts in the AX-CPT. Frontiers in Psychology, 7, 1822. https://doi.org/10.3389/fpsyg.2016.01822
  • Grahek, I., Musslick, S., & Shenhav, A. (2020). A computational perspective on the roles of affect in cognitive control. International Journal of Psychophysiology, 151, 25–34. https://doi.org/10.1016/j.ijpsycho.2020.02.001
  • Herba, C. M., Landau, S., Russell, T., Ecker, C., & Phillips, M. L. (2006). The development of emotion-processing in children: Effects of age, emotion, and intensity. Journal of Child Psychology and Psychiatry, 47(11), 1098–1106. https://doi.org/10.1111/j.1469-7610.2006.01652.x
  • Hsieh, S., & Lin, S. J. (2019). The dissociable effects of induced positive and negative moods on cognitive flexibility. Scientific Reports, 9(1), 1126. https://doi.org/10.1038/s41598-018-37683-4
  • Husa, R. A., Buchanan, T. W., & Kirchhoff, B. A. (2022). Subjective stress and proactive and reactive cognitive control strategies. European Journal of Neuroscience, 55(9–10), 2558–2570. https://doi.org/10.1111/ejn.15214
  • Jiang, B., & Wang, H. (1998). A study of shooters’ hand stability in two scenarios of self-involvement and non-self-involvement. Research in Sports, 04, 9–11.
  • Kamijo, K., & Masaki, H. (2016). Fitness and ERP indices of cognitive control mode during task preparation in preadolescent children. Frontiers in Human Neuroscience, 10. https://doi.org/10.3389/fnhum.2016.00441
  • Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17. https://doi.org/10.3352/jeehp.2021.18.17
  • Karayanidis, F., Whitson, L. R., Heathcote, A., & Michie, P. T. (2011). Variability in proactive and reactive cognitive control processes across the adult lifespan. Frontiers in Psychology, 2, 318. https://doi.org/10.3389/fpsyg.2011.00318
  • Kiefer, M., Marzinzik, F., Weisbrod, M., Scherg, M., & Spitzer, M. (1998). The time course of brain activations during response inhibition: Evidence from event-related potentials in a go/no go task. Neuroreport, 9(4), 765–770. https://doi.org/10.1097/00001756-199803090-00037
  • Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. Biological Psychology, 84(3), 394–421. https://doi.org/10.1016/j.biopsycho.2010.03.010
  • Krompinger, J. W., & Simons, R. F. (2010). Cognitive inefficiency in depressive undergraduates: Stroop processing and ERPs. Biological Psychology, 86(3), 239–246. https://doi.org/10.1016/j.biopsycho.2010.12.004
  • Lamm, C., Pine, D. S., & Fox, N. A. (2013). Impact of negative affectively charged stimuli and response style on cognitive-control-related neural activation: An ERP study. Brain and Cognition, 83(2), 234–243. https://doi.org/10.1016/j.bandc.2013.07.012
  • Li, Y., Zhang, Q., Liu, F., & Cui, L. (2017). The effect of the high-approach versus low-approach motivational positive affect on the processing stage of cognitive control. NeuroReport, 29(1), 41–47. https://doi.org/10.1097/WNR.0000000000000925
  • Ličen, M., Hartmann, F., Repovš, G., & Slapničar, S. (2016). The impact of social pressure and monetary incentive on cognitive control. Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00093
  • Liu, T., Luo, Y., Ma, H., & Huang, Y. (2006). Establishment and assessment of native Chinese affective music system. Journal of Psychological Science, 02, 406–408. https://doi.org/10.16719/j.cnki.1671-6981.2006.02.040
  • Ludyga, S., Herrmann, C., Mücke, M., Andrä, C., Brand, S., Pühse, U., & Gerber, M. (2018). Contingent negative variation and working memory maintenance in adolescents with low and high motor competencies. Neural Plasticity, 2018, 1–9. https://doi.org/10.1155/2018/9628787
  • Luo, J., & Yu, R. (2015). Follow the heart or the head? The interactive influence model of emotion and cognition. Frontiers in Psychology, 6, 573. https://doi.org/10.3389/fpsyg.2015.00573
  • Lydon-Staley, D. M., Kuehner, C., Zamoscik, V., Huffziger, S., Kirsch, P., & Bassett, D. S. (2018, July 11). Functional connectivity among default mode, fronto-parietal, and salience networks moderates the lagged association between sadness and rumination in daily life (0 citation(s)). https://doi.org/10.31234/osf.io/5wz7c
  • Maglio, S. J., Gollwitzer, P. M., & Oettingen, G. (2014). Emotion and control in the planning of goals. Motivation and Emotion, 38(5), 620–634. https://doi.org/10.1007/s11031-014-9407-4
  • Mansfield, K. L., van der Molen, M. W., & van Boxtel, G. J. M. (2012). Proactive and reactive control in S-R compatibility: A brain potential analysis. Psychophysiology, 49(6), 756–769. https://doi.org/10.1111/j.1469-8986.2012.01368.x
  • Masuyama, A., & Mochizuki, S. (2020). Induced sad mood affects context processing in cognitive control in mildly depressive undergraduates. Current Psychology, 39(4), 1476–1484. https://doi.org/10.1007/s12144-018-9854-2
  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
  • Morales, J., Yudes, C., Gómez-Ariza, C. J., & Bajo, M. T. (2015). Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs. Neuropsychologia, 66, 157–169. https://doi.org/10.1016/j.neuropsychologia.2014.11.014
  • Muscarella, C., Mairesse, O., Hughes, G., & Van den Bussche, E. (2020). Behavioral and neural dynamics of cognitive control in the context of rumination. Neuropsychologia, 146, 107503. https://doi.org/10.1016/j.neuropsychologia.2020.107503
  • Nesse, R. M. (1990). Evolutionary explanations of emotions. Human Nature, 1(3), 261–289. https://doi.org/10.1007/BF02733986
  • Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 17–26. https://doi.org/10.3758/CABN.3.1.17
  • Nixon, E., Liddle, P. F., Nixon, N. L., & Liotti, M. (2013). On the interaction between sad mood and cognitive control: The effect of induced sadness on electrophysiological modulations underlying Stroop conflict processing. International Journal of Psychophysiology, 87(3), 313–326. https://doi.org/10.1016/j.ijpsycho.2012.11.014
  • O’Reilly, R. C., Noelle, D. C., Braver, T. S., & Cohen, J. D. (2002). Prefrontal cortex and dynamic categorization tasks: Representational organization and neuromodulatory control. Cerebral Cortex, 12(3), 246–257. https://doi.org/10.1093/cercor/12.3.246
  • Parkinson, J., Garfinkel, S., Critchley, H., Dienes, Z., & Seth, A. K. (2017). Don’t make me angry, you wouldn’t like me when I’m angry: Volitional choices to act or inhibit are modulated by subliminal perception of emotional faces. Cognitive, Affective, & Behavioral Neuroscience, 17(2), 252–268. https://doi.org/10.3758/s13415-016-0477-5
  • Parris, B. A., Hasshim, N., & Dienes, Z. (2021). Look into my eyes: Pupillometry reveals that a post-hypnotic suggestion for word blindness reduces Stroop interference by marshalling greater effortful control. European Journal of Neuroscience, 53(8), 2819–2834. https://doi.org/10.1111/ejn.15105
  • Qiu, L., Zheng, X., & Wang, Y. (2008). Revision of the positive affect and negative affect scale. Chinese Journal of Applied Psychology, 14((03|3)), 249–254+268.
  • Rahm, C., Liberg, B., Wiberg-Kristoffersen, M., Aspelin, P., & Msghina, M. (2013). Rostro-caudal and dorso-ventral gradients in medial and lateral prefrontal cortex during cognitive control of affective and cognitive interference. Scandinavian Journal of Psychology, 54(2), 66–71. https://doi.org/10.1111/sjop.12023
  • Rainey, V. R., Stockdale, L., Flores-Lamb, V., Kahrilas, I. J., Mullins, T. L., Gjorgieva, E., Morrison, R. G., & Silton, R. L. (2021). Neural differences in the temporal cascade of reactive and proactive control for bilinguals and monolinguals. Psychophysiology, 58(6), e13813. https://doi.org/10.1111/psyp.13813
  • Redick, T. S. (2014). Cognitive control in context: Working memory capacity and proactive control. Acta Psychologica, 145, 1–9. https://doi.org/10.1016/j.actpsy.2013.10.010
  • Richmond, L. L., Redick, T. S., & Braver, T. S. (2015). Remembering to prepare: The benefits (and costs) of high working memory capacity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1764–1777. https://doi.org/10.1037/xlm0000122
  • Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161–1178. https://doi.org/10.1037/h0077714
  • Schel, M., & Crone, E. (2013). Development of response inhibition in the context of relevant versus irrelevant emotions. Frontiers in Psychology, 4. https://doi.org/10.3389/fpsyg.2013.00383
  • Schliephake, A., Bahnmueller, J., Willmes, K., & Moeller, K. (2021). Cognitive control in number processing: New evidence from task switching. Psychological Research, 85(7), 2578–2587. https://doi.org/10.1007/s00426-020-01418-w
  • Schneider, D. W. (2019). Alertness and cognitive control: Is there a spatial attention constraint? Attention, Perception, & Psychophysics, 81(1), 119–136. https://doi.org/10.3758/s13414-018-1613-9
  • Siedlecka, E., & Denson, T. F. (2019). Experimental methods for inducing basic emotions: A qualitative review. Emotion Review, 11(1), 87–97. https://doi.org/10.1177/1754073917749016
  • Smith, J. L., Johnstone, S. J., & Barry, R. J. (2008). Movement-related potentials in the Go/NoGo task: The P3 reflects both cognitive and motor inhibition. Clinical Neurophysiology, 119(3), 704–714. https://doi.org/10.1016/j.clinph.2007.11.042
  • Teng, C., Fulvio, J. M., Jiang, J., & Postle, B. R. (2022). Flexible top-down control in the interaction between working memory and perception. Journal of Vision, 22(11), 3. https://doi.org/10.1167/jov.22.11.3
  • Tiedens, L. Z., & Linton, S. (2001). Judgment under emotional certainty and uncertainty: The effects of specific emotions on information processing. Journal of Personality and Social Psychology, 81(6), 973–988. https://doi.org/10.1037/0022-3514.81.6.973
  • Trémolière, B., Gagnon, M-È, & Blanchette, I. (2016). Cognitive load mediates the effect of emotion on analytical thinking. Experimental Psychology, 63(6), 343–350. https://doi.org/10.1027/1618-3169/a000333
  • Truong, L., Kandasamy, K., & Yang, L. (2022). Cognitive control in young and older adults: Does mood matter? Brain Sciences, 12(1), 50. https://doi.org/10.3390/brainsci12010050
  • van Veen, V., & Carter, C. S. (2003). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77(4–5), 477–482. https://doi.org/10.1016/s0031-9384(02)00930-7
  • van Wouwe, N., Band, G., & Ridderinkhof, K. (2009). Positive affect modulates flexibility and evaluative control. Journal of Cognitive Neuroscience, 23(3), 524–539. https://doi.org/10.1162/jocn.2009.21380
  • Wang, H., Chen, Y., & Zhang, Q. (2018). The effects of low and high levels of sadness on scope of attention: An ERP study. Frontiers in Psychology, 9. https://doi.org/10.3389/fpsyg.2018.02397
  • Watson, D., Wiese, D., Vaidya, J., & Tellegen, A. (1999). The two general activation systems of affect: Structural findings, evolutionary considerations, and psychobiological evidence. Journal of Personality and Social Psychology, 76(5), 820–838. https://doi.org/10.1037/0022-3514.76.5.820
  • Xu, M., Li, Z., Qi, S., Fan, L., Zhou, X., & Yang, D. (2020). Social exclusion modulates dual mechanisms of cognitive control: Evidence from ERPs. Human Brain Mapping, 41(10), 2669–2685. https://doi.org/10.1002/hbm.24970
  • Xu, P., Huang, Y., & Luo, Y. (2010). Establishment and assessment of native Chinese affective video system. Chinese Mental Health Journal, 24((07|7)), 551–554,561.
  • Yang, Q., Paul, K., & Pourtois, G. (2019). Defensive motivation increases conflict adaptation through local changes in cognitive control: Evidence from ERPs and mid-frontal theta. Biological Psychology, 148, 107738. https://doi.org/10.1016/j.biopsycho.2019.107738
  • Yuan, L., Peng, M., Liu, D., & Zhou, R. (2011). Cognitive appraisal influences negative emotion experience and physiological activity. Acta Psychologica Sinica, 43((08|8)), 898–906.
  • Zaichkowsky, J. L. (2013). The personal involvement inventory: Reduction, revision, and application to advertising. Journal of Advertising, 23(4), 59–70. https://doi.org/10.1080/00913367.1943.10673459

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.