1,402
Views
0
CrossRef citations to date
0
Altmetric
Review

A narrative review of alternative transmission routes of COVID 19: what we know so far

, , , , &

References

  • Triggle CR, Bansal D, Ding H, et al. A comprehensive review of viral characteristics, transmission, pathophysiology, immune response, and management of SARS-CoV-2 and COVID-19 as a basis for controlling the pandemic. Front Immunol. 2021 Feb 26;12:631139.
  • Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Health. 2020 Mar;25(3):278–280. doi: 10.1111/tmi.13383
  • Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16:1678–1685. doi: 10.7150/ijbs.45053
  • Lam TT, Shum MH, Zhu HC, et al. Identifying SARS-CoV-2 related coronaviruses in malayan pangolins. Nature. 2020;583:282–285. doi: 10.1038/s41586-020-2169-0
  • Chams N, Chams S, Badran R, et al. COVID-19: a multidisciplinary review. Front Public Health. 2020 Jul 29;8:383. doi: 10.3389/fpubh.2020.00383
  • de Wit E, van Doremalen N, Falzarano D, et al. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016 Aug;14(8):523–534. doi: 10.1038/nrmicro.2016.81.
  • Gong SR, Bao LL. The battle against SARS and MERS coronaviruses: reservoirs and animal models. Animal Model Exp Med. 2018 Jul 28;1(2):125–133. doi: 10.1002/ame2.12017
  • Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods Mol Biol. 2015;1282:1–23. doi: 10.1007/978-1-4939-2438-7_1
  • Wilder-Smith A, Teleman MD, Heng BH, et al. Asymptomatic SARS coronavirus infection among healthcare workers, singapore. Emerg Infect Dis. 2005 Jul;11(7):1142–1145.
  • Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020 Feb 15;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7
  • Wang C, Horby PW, Hayden FG, et al. A novel coronavirus outbreak of global health concern. Lancet. 2020 Feb 15;395(10223):470–473. doi: 10.1016/S0140-6736(20)30185-9
  • Chan-Yeung M, Xu RH. SARS: epidemiology. Respirology. 2003 Nov;8(Suppl 1):S9–14. doi: 10.1046/j.1440-1843.2003.00518.x
  • Zhang AR, Shi WQ, Liu K, et al. Epidemiology and evolution of middle east respiratory syndrome coronavirus, 2012–2020. Infect Dis Poverty. 2021;10:66. doi: 10.1186/s40249-021-00853-0
  • Alimohamadi Y, Tola HH, Abbasi-Ghahramanloo A, et al. Case fatality rate of COVID-19: a systematic review and meta-analysis. J Prev Med Hyg. 2021 Jul 30;62(2):E311–E320. doi: 10.15167/2421-4248/jpmh2021.62.2.1627.
  • Vijayanand P, Wilkins E, Woodhead M. Severe acute respiratory syndrome (SARS): a review. Clin Med (Lond). 2004 Mar-Apr;4(2):152–160. doi: 10.7861/clinmedicine.4-2-152
  • World Health Organization. Middle east respiratory syndrome coronavirus (MERS-CoV). Available from: http://www.who.int/emergencies/mers-cov/en/.
  • Sharma A, Ahmad Farouk I, Lal SK. COVID-19: a review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses. 2021 Jan 29;13(2):202. doi: 10.3390/v13020202
  • Cevik M, Kuppalli K, Kindrachuk J, et al. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020 Oct 23;371:m3862. doi: 10.1136/bmj.m3862.
  • Meyerowitz EA, Richterman A, Gandhi RT, et al. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021 Jan;174(1):69–79. doi: 10.7326/M20-5008.
  • Siegel JD, Rhinehart E, Jackson M, et al. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. 2007. Centers for Disease Control and Prevention (CDC). https://www.cdc.gov/infectioncontrol/guidelines/isolation/index.html
  • Rabaan AA, Al-Ahmed SH, Al-Malkey M, et al. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: droplets and aerosols. Infez Med. 2021 Mar 1;29(1):10–19.
  • Zhou L, Ayeh SK, Chidambaram V, et al. Modes of transmission of SARS-CoV-2 and evidence for preventive behavioral interventions. BMC Infect Dis. 2021 Dec;21(1):496.
  • Cevik M, Marcus JL, Buckee C, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission dynamics should inform policy. Clin Infect Dis. 2021 Jul 30;73(Suppl 2):S170–S176. doi: 10.1093/cid/ciaa1442
  • European Centre for Disease Prevention and Control. Surveillance definitions for COVID-19. 2020. Available from: https://www.ecdc.europa.eu/en/covid-19/surveillance/surveillance-definitions.
  • World Health Organization. Transmission of SARS-CoV-2: implications for infection prevention precautions. 2020. https://apps.who.int/iris/handle/10665/333114.
  • Gralton J, Tovey E, McLaws ML, et al. The role of particle size in aerosolised pathogen transmission: a review. J Infect. 2011 Jan;62(1):1–13.
  • Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence. 2013 Nov 15;4(8):847–858. doi: 10.4161/viru.27172
  • Klompas M, Baker MA, Rhee C. Airborne transmission of SARS-CoV-2: theoretical considerations and available evidence. JAMA. 2020 Aug 4;324(5):441–442. doi: 10.1001/jama.2020.12458
  • Shiu EYC, Leung NHL, Cowling BJ. Controversy around airborne versus droplet transmission of respiratory viruses: implication for infection prevention. Curr Opin Infect Dis. 2019 Aug;32(4):372–379. doi: 10.1097/QCO.0000000000000563
  • Leclerc QJ, Fuller NM, Knight LE, et al. What settings have been linked to SARS-CoV-2 transmission clusters? Wellcome Open Res. 2020 Jun 5;5:83. doi: 10.12688/wellcomeopenres.15889.2
  • Yu IT, Li Y, Wong TW, et al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med. 2004 Apr 22;350(17):1731–1739. doi: 10.1056/NEJMoa032867
  • Smither SJ, Eastaugh LS, Findlay JS, et al. Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity. Emerg Microbes Infect. 2020 Dec;9(1):1415–1417.
  • van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020 Apr 16;382(16):1564–1567. doi: 10.1056/NEJMc2004973.
  • Guo ZD, Wang ZY, Zhang SF, et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg Infect Dis. 2020 Jul;26(7):1583–1591. doi: 10.3201/eid2607.200885
  • Lednicky JA, Lauzardo M, Fan ZH, et al. Viable SARS-CoV-2 in the air of a hospital room with COVID-19 patients. medRxiv. Int J Infect Dis. 2020 Sep 16;100:476–482. Update in. doi: 10.1101/2020.08.03.20167395
  • Hamner L, Dubbel P, Capron I, et al. High SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020 May 15;69(19):606–610. doi: 10.15585/mmwr.mm6919e6
  • Lu J, Gu J, Li K, et al. COVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020. Emerg Infect Dis. 2020 Jul;26(7):1628–1631. doi: 10.3201/eid2607.200764
  • Jang S, Han SH, Rhee JY. Cluster of coronavirus disease associated with fitness dance classes, South Korea. Emerg Infect Dis. 2020 Aug;26(8):1917–1920. doi: 10.3201/eid2608.200633
  • Mehraeen E, Salehi MA, Behnezhad F, et al. Transmission modes of COVID-19: a systematic review. Infect Disord Drug Targets. 2021;21(6):e170721187995. doi: 10.2174/1871526520666201116095934
  • Mourmouris P, Tzelves L, Roidi C, et al. COVID-19 transmission: a rapid systematic review of current knowledge. Osong Public Health Res Perspect. 2021;12(2):54–63. doi: 10.24171/j.phrp.2021.12.2.02
  • Escandón K, Rasmussen AL, Bogoch II, et al. COVID-19 false dichotomies and a comprehensive review of the evidence regarding public health, COVID-19 symptomatology, SARS-CoV-2 transmission, mask wearing, and reinfection. BMC Infect Dis. 2021 Jul 27;21(1):710. doi: 10.1186/s12879-021-06357-4.
  • HO Transmission of SARS. WHO transmission of SARS-CoV-2: implications for infection prevention precautions; 2020. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions.
  • Julian TR, Leckie JO, Boehm AB. Virus transfer between fingerpads and fomites. J Appl Microbiol. 2010 Dec;109(6):1868–1874. doi: 10.1111/j.1365-2672.2010.04814.x
  • Choi H, Chatterjee P, Lichtfouse E, et al. Classical and alternative disinfection strategies to control the COVID-19 virus in healthcare facilities: a review. Environ Chem Lett. 2021;19(3):1945–1951. doi: 10.1007/s10311-021-01180-4
  • Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe. 2020 May;1(1):e10.
  • Liu H, Fei C, Chen Y, et al. Investigating SARS-CoV-2 persistent contamination in different indoor environments. Environ Res. 2021 Nov;202:111763.
  • Hirose R, Ikegaya H, Naito Y, et al. Survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus on human skin: importance of hand hygiene in coronavirus disease 2019 (COVID-19). Clin Infect Dis. 2021 Dec 6;73(11):e4329–e4335. doi: 10.1093/cid/ciaa1517
  • Newey CR, Olausson AT, Applegate A, et al. Presence and stability of SARS-CoV-2 on environmental currency and money cards in Utah reveals a lack of live virus. PLoS One. 2022 Jan 25;17(1):e0263025. doi: 10.1371/journal.pone.0263025
  • Harbourt DE, Haddow AD, Piper AE, et al. Modeling the stability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on skin, currency, and clothing. PLoS Negl Trop Dis. 2020 Nov 9;14(11):e0008831. doi: 10.1371/journal.pntd.0008831
  • Carraturo F, Del Giudice C, Morelli M, et al. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ Pollut. 2020 Oct;265(Pt B):115010.
  • Wei L, Lin J, Duan X, et al. Asymptomatic COVID-19 patients can contaminate their surroundings: an environment sampling study. mSphere. 2020 Jun 24;5(3):e00442–20. doi: 10.1128/mSphere.00442-20
  • Colaneri M, Seminari E, Novati S, et al. COVID19 IRCCS San Matteo Pavia Task Force. Severe acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unit. Clin Microbiol Infect. 2020 Aug;26(8):e1094.1–e1094.5.
  • Marquès M, Domingo JL. Contamination of inert surfaces by SARS-CoV-2: persistence, stability and infectivity. A review. Environ Res. 2021;193:110559. doi: 10.1016/j.envres.2020.110559
  • Hirose R, Itoh Y, Ikegaya H, et al. Takaaki Nakaya Differences in environmental stability among SARS-CoV-2 variants of concern: omicron has higher stability (pre-print). bioRxiv. 2022. doi: 10.1101/2022.01.18.476607
  • Pastorino B, Touret F, Gilles M, et al. Prolonged Infectivity of SARS-CoV-2 in Fomites. Emerg Infect Dis. 2020 Sep;26(9):2256–2257.
  • Biryukov J, Boydston JA, Dunning RA, et al. Increasing temperature and relative humidity accelerates inactivation of sars-cov-2 on surfaces. mSphere. 2020;5(4):4. doi: 10.1128/mSphere.00441-20
  • Morris DH, Yinda KC, Gamble A, et al. Mechanistic theory predicts the effects of temperature and humidity on inactivation of SARS-CoV-2 and other enveloped viruses. Elife. 2021 Jul 13;10:e65902. doi: 10.7554/eLife.65902.
  • Li YH, Fan YZ, Jiang L, et al. Aerosol and environmental surface monitoring for SARS-CoV-2 RNA in a designated hospital for severe COVID-19 patients. Epidemiol Infect. 2020 [Published 2020 Jul 14];148:e154.
  • Razzini K, Castrica M, Menchetti L, et al. SARS-CoV-2 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy. Sci Total Environ. 2020 Nov 10;742:140540. doi: 10.1016/j.scitotenv.2020.140540
  • Zhou J, Otter JA, Price JR, et al. Investigating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface and air contamination in an acute healthcare setting during the peak of the coronavirus disease 2019 (COVID-19) pandemic in London. Clin Infect Dis. 2021 Oct 5;73(7):e1870–e1877. doi: 10.1093/cid/ciaa905
  • Abrahão JS, Sacchetto L, Rezende IM, et al. Detection of SARS-CoV-2 RNA on public surfaces in a densely populated urban area of Brazil: a potential tool for monitoring the circulation of infected patients. Sci Total Environ. 2021 Apr 20;766:142645. doi: 10.1016/j.scitotenv.2020.142645
  • Dargahi A, Jeddi F, Vosoughi M, et al. Investigation of SARS CoV-2 virus in environmental surface. Environ Res. 2021 Apr;195:110765.
  • Kozer E, Rinott E, Kozer G, et al. Presence of SARS-CoV-2 RNA on playground surfaces and water fountains. Epidemiol Infect. 2021;149:e67. doi: 10.1017/S0950268821000546
  • Singh M, Sadat A, Abdi R, et al. Detection of SAR-CoV-2 on surfaces in food retailers in Ontario. Curr Res Food Sci. 2021;4:598–602. doi: 10.1016/j.crfs.2021.08.009
  • Jiang FC, Jiang XL, Wang ZG, et al. Detection of severe acute respiratory syndrome coronavirus 2 RNA on surfaces in quarantine rooms. Emerg Infect Dis. 2020;26(9):2162–2164. doi: 10.3201/eid2609.201435
  • Ong SWX, Tan YK, Chia PY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020;323(16):1610–1612. doi: 10.1001/jama.2020.3227
  • Guadalupe JJ, Rojas MI, Pozo G, et al. Presence of SARS-CoV-2 RNA on surfaces of public places and a transportation system located in a densely populated urban area in South America. Viruses. 2021 Dec 23;14(1):19. doi: 10.3390/v14010019
  • Onakpoya IJ, Heneghan CJ, Spencer EA, et al. SARS-CoV-2 and the role of fomite transmission: a systematic review. F1000Res. 2021 Mar 24;10:233. doi: 10.12688/f1000research.51590.3.
  • Wang J, Fengqin L, Zhaoping L, et al. COVID-19 outbreaks linked to imported frozen food in China: status and challege. Chin CDC Weekly. 2022;4:483–487. doi: 10.46234/ccdcw2022.072
  • Marcenac P, Park GW, Duca LM, et al. Detection of SARS-CoV-2 on surfaces in households of persons with COVID-19. Int J Environ Res Public Health. 2021 Aug 2;18(15):8184. doi: 10.3390/ijerph18158184
  • Ahn JY, An S, Sohn Y, et al. Environmental contamination in the isolation rooms of COVID-19 patients with severe pneumonia requiring mechanical ventilation or high-flow oxygen therapy. J Hosp Infect. 2020 Nov;106(3):570–576.
  • Santarpia JL, Rivera DN, Herrera VL, et al. Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Sci Rep. 2020 Jul 29;10(1):12732. Erratum in: Sci Rep. 2020 Aug 12;10(1):13892. doi: 10.1038/s41598-020-69286-3
  • Todt D, Meister TL, Tamele B, et al. A realistic transfer method reveals low risk of SARS-CoV-2 transmission via contaminated euro coins and banknotes. iScience. 2021 Aug 20;24(8):102908. doi: 10.1016/j.isci.2021.102908
  • Butot S, Zuber S, Moser M, et al. Data on transfer of human coronavirus SARS-CoV-2 from foods and packaging materials to gloves indicate that fomite transmission is of minor importance. Appl Environ Microbiol. 2022 Mar 14;88(7):e0233821. doi: 10.1128/aem.02338-21
  • Castaño N, Cordts SC, Kurosu Jalil M, et al. Fomite transmission, physicochemical origin of virus-surface interactions, and disinfection strategies for enveloped viruses with applications to SARS-CoV-2. ACS Omega. 2021 Mar 5;6(10):6509–6527. doi: 10.1021/acsomega.0c06335
  • Yu X, Sun S, Shi Y, et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care. 2020 Apr 23;24(1):170. doi: 10.1186/s13054-020-02893-8.
  • Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect Dis. 2020;20(4):411–412. doi: 10.1016/S1473-3099(20)30113-4
  • Wang Y, Xu G, Huang YW, et al. Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS One. 2020;15(10):e0241539. doi: 10.1371/journal.pone.0241539
  • Johnson TJ, Nishida RT, Sonpar AP, et al. Viral load of SARS-CoV-2 in droplets and bioaerosols directly captured during breathing, speaking and coughing. Sci Rep. 2022 Mar 3;12(1):3484. doi: 10.1038/s41598-022-07301-5
  • Behzadinasab S, Chin AWH, Hosseini M, et al. SARS-CoV-2 virus transfers to skin through contact with contaminated solids. Sci Rep. 2021;22868. doi: 10.1038/s41598-021-00843-0.
  • Thomas Y, Boquete-Suter P, Koch D, et al. Survival of influenza virus on human fingers. Clin Microbiol Infect. 2014 Jan;20(1):O58–64.
  • Rosenke K, Meade-White K, Letko M, et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg Microbes Infect. 2020 Dec;9(1):2673–2684.
  • Cai J, Sun W, Huang J, et al. Indirect virus transmission in cluster of COVID-19 cases, Wenzhou, China, 2020. Emerg Infect Dis. 2020 Jun;26(6):1343–1345. doi: 10.3201/eid2606.200412
  • Xie C, Zhao H, Li K, et al. The evidence of indirect transmission of SARS-CoV-2 reported in Guangzhou, China. BMC Public Health. 2020 Aug 5;20(1):1202. doi: 10.1186/s12889-020-09296-y.
  • Chen W, Chen CL, Cao Q, et al. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed J. 2022 Jun;45(3):432–438. doi: 10.1016/j.bj.2022.03.002
  • Kraay ANM, Hayashi MAL, Berendes DM, et al. Risk for fomite-mediated transmission of SARS-CoV-2 in child daycares, schools, nursing homes, and offices. Emerg Infect Dis. 2021;27(4):1229–1231. DOI:10.3201/eid2704.203631
  • Bernal JL, Panagiotopoulos N, Byers C, et al. Transmission dynamics of COVID-19 in household and community settings in the United Kingdom. Eurosurveillance. 2022. doi: 10.2807/1560-7917.es.2022.27.15.2001551
  • Madewell ZJ, Yang Y, Longini IM Jr, et al. Household transmission of SARS-CoV-2: a systematic review and meta-analysis. JAMA Netw Open. 2020 Dec 1;3(12):e2031756. doi: 10.1001/jamanetworkopen.2020.31756
  • Signorelli C, Odone A, Stirparo G, et al. SARS-CoV-2 transmission in the Lombardy Region: the increase of household contagion and its implication for containment measures. Acta Biomed. 2020 Nov 20;91(4):e2020195. doi: 10.23750/abm.v91i4.10994
  • Li F, Li YY, Liu MJ, et al. Household transmission of SARS-CoV-2 and risk factors for susceptibility and infectivity in Wuhan: a retrospective observational study. Lancet Infect Dis. 2021 May;21(5):617–628.
  • The International Scientific Forum on Home Hygiene (IFH). White paper: what can we learn from the COVID-19 pandemic? 2021. Available from: https://www.ifh-homehygiene.org/review/developing-and-promoting-home-and-everyday-life-hygiene-meet-21st-century-needs.
  • Wilson AM, Weir MH, Bloomfield SF, et al. Modeling COVID-19 infection risks for a single hand-to-fomite scenario and potential risk reductions offered by surface disinfection. Am J Infect Control. 2021 Jun;49(6):846–848. doi: 10.1016/j.ajic.2020.11.013.
  • Derqui N, Koycheva A, Zhou J, et al. Risk factors and vectors for SARS-CoV-2 household transmission: a prospective, longitudinal cohort study. Lancet Microbe. 2023 Apr;4(6):Se397–e408.
  • Mohamadi M, Babington-Ashaye A, Lefort A, et al. Risks of infection with SARS-CoV-2 due to contaminated surfaces: a scoping review. Int J Environ Res Public Health. 2021 Oct 20;18(21):11019. doi: 10.3390/ijerph182111019
  • Rocha ALS, Pinheiro JR, Nakamura TC, et al. Fomites and the environment did not have an important role in COVID-19 transmission in a Brazilian mid-sized city. Sci Rep. 2021 Aug 5;11(1):15960. doi: 10.1038/s41598-021-95479-5.
  • Harvey AP, Fuhrmeister ER, Cantrell M, et al. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. medRxiv. Environ Sci Technol Lett. 2020 Nov 1;8(2):168–175. Updated in: 2021 Feb 9. doi: 10.1021/acs.estlett.0c00875
  • Lu LC, Quintela I, Lin CH, et al. A review of epidemic investigation on cold-chain food-mediated SARS-CoV-2 transmission and food safety consideration during COVID-19 pandemic. J Food Saf. 2021 Dec;41(6):e12932. doi: 10.1111/jfs.12932.
  • Bai L, Wang Y, Wang Y, et al. Controlling COVID-19 transmission due to contaminated imported frozen food and food packaging. Chin CDC Weekly. 2021 Jan 8;3(2):30–33. doi: 10.46234/ccdcw2021.008.
  • Liu P, Yang M, Zhao X, et al. Cold-chain transportation in the frozen food industry may have caused a recurrence of COVID-19 cases in destination: successful isolation of SARS-CoV-2 virus from the imported frozen cod package surface. Biosaf Health. 2020 Dec;2(4):199–201. doi: 10.1016/j.bsheal.2020.11.003.
  • Yuan Q, Kou Z, Jiang F, et al. A nosocomial COVID-19 outbreak initiated by an infected dockworker at Qingdao City Port - Shandong Province, China, October, 2020. Chin CDC Weekly. 2020 Oct 23;2(43):838–840. doi: 10.46234/ccdcw2020.224
  • National Health Commission of the People’s Republic of China. Introduction of cold-chain food and food safety in autumn and winter at the press conference of the joint prevention and control mechanism of the state council of the People’s Republic of China. [cited November 25, 2020]. Available from: http://www.nhc.gov.cn/xwzb/webcontroller.do?titleSeq=11351&gecstype=1. [2020-12-31]. (In Chinese)
  • Chen GS, Hu S, Zheng SL, et al. How to deal with the transmission of SARS-COV-2 on the surface of Cold-chain foods to people: a review. Eur Rev Med Pharmacol Sci. 2021 Oct;25(20):6378–6385. doi: 10.26355/eurrev_202110_27011.
  • Ma H, Wang Z, Zhao X, et al. Long distance transmission of SARS-CoV-2 from contaminated cold chain products to humans - Qingdao City, Shandong Province, China, September 2020. Chin CDC Weekly. 2021 Jul 23;3(30):637–644. doi: 10.46234/ccdcw2021.164
  • Ma H, Zhang J, Wang J, et al. COVID-19 outbreak caused by contaminated packaging of imported cold-chain products - Liaoning Province, China, July 2020. Chin CDC Weekly. 2021 May 21;3(21):441–447. doi: 10.46234/ccdcw2021.114
  • Chi Y, Zheng S, Liu C, et al. Transmission of SARS-CoV-2 on cold-chain food overpacks: a new challenge. J Glob Health. 2021;11:03071. doi: 10.7189/jogh.11.03071
  • Liu J, Zheng T, Xia W, et al. Cold chain and severe acute respiratory syndrome coronavirus 2 transmission: a review for challenges and coping strategies. Med Rev (Berl). 2022 Mar 1;2(1):50–65. doi: 10.1515/mr-2021-0019
  • Han S, Liu X. Can imported cold food cause COVID-19 recurrent outbreaks? A review. Environ Chem Lett. 2021 Sep;7:1–11. doi: 10.1007/s10311-021-01312-w
  • Pang XH, Ren LL, Wu SS, et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. Natl Sci Rev. 2020;7(12):1861–1864. doi: 10.1093/nsr/nwaa264
  • Zhao X, Mao LL, Zhang JQ, et al. Notes from the field: reemergent cases of COVID-19 — Dalian City, Liaoning Province, China, July 22, 2020. Chin CDC Weekly. 2020;2(34):658–660. doi: 10.46234/ccdcw2020.182
  • Tianjin Municipal Health Commission. 2020. [cited 2020 Nov 11]. Available from: http://wsjk.tj.gov.cn/ZTZL1/ZTZL750/YQFKZL9424/FKDT1207/202011/t20201111_4067631.html.
  • Health Commission. Health commission of Liaoning Province. [cited Dec 17] Available from: http://wsjk.ln.gov.cn/wst_zdzt/xxgzbd/yqtb/202012/t20201218_4051961.html.
  • USDA. Updated Technical Guidelines for Cold Chain Foods CH2022-0022
  • Nakat Z, Bou-Mitri C. COVID-19 and the food industry: readiness assessment. Food Control. 2021 Mar;121:107661. doi: 10.1016/j.foodcont.2020.107661.
  • Han J, Zhang X, He S, et al. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environ Chem Lett. 2021;19(1):5–16. doi: 10.1007/s10311-020-01101-x
  • Yekta R, Vahid-Dastjerdi L, Norouzbeigi S, et al. Food products as potential carriers of SARS-CoV-2. Food Control. 2021 May;123:107754. doi: 10.1016/j.foodcont.2020.107754.
  • Zhan J. Frozen South American white shrimp products from Pingxiang, Jiangxi, tested positive for nucleic acid in their outer packaging; 2020, July 15. Available from: http://www.xinhuanet.com/politics/2020-07/15/c_1126239771.htm
  • Economou V, Sakkas H, Bezirtzoglou E, et al. SARS–CoV–2 and food—how confident are we about them? Hygiene. 2021; 1(3):80–98. doi: 10.3390/hygiene1030008
  • Jia M, Taylor TM, Senger SM, et al. SARS-CoV-2 remains infectious on refrigerated deli food, meats, and fresh produce for up to 21 days. Foods. 2022; 11(3):286. doi: 10.3390/foods11030286
  • Feng XL, Li B, Lin HF, et al. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation. Virol Sin. 2021 Oct;36(5):1069–1072. doi: 10.1007/s12250-021-00367-x
  • Dai M, Li H, Yan N, et al. Long-term survival of SARS-CoV-2 on salmon as a source for international transmission. J Infect Dis. 2021 Feb 13;223(3):537–539. doi: 10.1093/infdis/jiaa712
  • Norouzbeigi S, Yekta R, Vahid-Dastjerdi L, et al. Stability of severe acute respiratory syndrome coronavirus 2 in dairy products. J Food Saf. 2021 Oct;41(5):e12917. doi: 10.1111/jfs.12917.
  • Abraham JP, Plourde BD, Cheng L. Using heat to kill SARS-CoV-2. Rev Med Virol. 2020 Sep;30(5):e2115. doi: 10.1002/rmv.2115
  • Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020 Mar;104(3):246–251. Epub 2020 Feb 6. Erratum in: J Hosp Infect. 2020 Jun 17. doi: 10.1016/j.jhin.2020.01.022
  • Miranda RC, Schaffner DW. Virus risk in the food supply chain. Curr Opin Food Sci. 2019;30:43–48. doi: 10.1016/j.cofs.2018.12.002
  • Mullis L, Saif LJ, Zhang Y, et al. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions. Food Microb. 2012;30(1):180–186. doi: 10.1016/j.fm.2011.12.009
  • Blondin-Brosseau M, Harlow J, Doctor T, et al. Examining the persistence of human Coronavirus 229E on fresh produce. Food Microbiol. 2021 Sep;98:103780. doi: 10.1016/j.fm.2021.103780
  • Anelich LECM, Lues R, Farber JM, et al. SARS-CoV-2 and risk to food safety. Front Nutr. 2020 Nov 2;7:580551. doi: 10.3389/fnut.2020.580551
  • Haddow AD, Watt TR, Bloomfield HA, et al. Stability of SARS-CoV-2 on produce following a low-dose aerosol exposure. Am J Trop Med Hyg. 2020 Nov;103(5):2024–2025.
  • Medema G, Heijnen L, Elsinga G, et al. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands. Environ Sci Technol Lett. 2020;7(7):511–516. doi: 10.1021/acs.estlett.0c00357
  • Wurtzer S, Marechal V, Mouchel JM, et al. Evaluation of lockdown effect on SARS-CoV-2 dynamics through viral genome quantification in waste water, Greater Paris, France, 5 March to 23 April 2020. Euro Surveill. 2020 Dec;25(50):2000776.
  • Nemudryi A, Nemudraia A, Wiegand T, et al. Temporal detection and phylogenetic assessment of SARS-CoV-2 in municipal wastewater. Cell Rep Med. 2020 Sep 22;1(6):100098. doi: 10.1016/j.xcrm.2020.100098
  • Ahmed W, Angel N, Edson J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020 Aug 1;728:138764. doi: 10.1016/j.scitotenv.2020.138764
  • La Rosa G, Iaconelli M, Mancini P, et al. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci Total Environ. 2020;20(736):139652. doi: 10.1016/j.scitotenv.2020.139652
  • Girón-Navarro R, Linares-Hernández I, Castillo-Suárez LA. The impact of coronavirus SARS-CoV-2 (COVID-19) in water: potential risks. Environ Sci Pollut Res Int. 2021 Oct;28(38):52651–52674. doi: 10.1007/s11356-021-16024-5
  • Buonerba A, Corpuz MVA, Ballesteros F, et al. Coronavirus in water media: analysis, fate, disinfection and epidemiological applications. J Hazard Mater. 2021 Aug 5;415:125580. doi: 10.1016/j.jhazmat.2021.125580
  • García-Ávila F, Valdiviezo-Gonzales L, Cadme-Galabay M, et al. Considerations on water quality and the use of chlorine in times of SARS-CoV-2 (COVID-19) pandemic in the community. Case Stud Chem Environ Eng. 2020;2:100049. doi: 10.1016/j.cscee.2020.100049
  • Hatanaka N, Xu B, Yasugi M, et al. Chlorine dioxide is a more potent antiviral agent against SARS-CoV-2 than sodium hypochlorite. J Hosp Infect. 2021 Dec;118:20–26.
  • He HJ, Zhang W, Liang J, et al. Etiology and genetic evolution of canine coronavirus circulating in five provinces of China, during 2018-2019. Microb Pathog. 2020;145:104209. doi: 10.1016/j.micpath.2020.104209
  • Nemoto M, Schofield W, Cullinane A. The first detection of equine coronavirus in adult horses and foals in Ireland. Viruses. 2019 Oct 14;11(10):946. doi: 10.3390/v11100946
  • Cimolai N. Features of enteric disease from human coronaviruses: implications for COVID-19. J Med Virol. 2020 Oct;92(10):1834–1844. doi: 10.1002/jmv.26066
  • Guo M, Tao W, Flavell RA, et al. Potential intestinal infection and faecal-oral transmission of SARS-CoV-2. Nat Rev Gastroenterol Hepatol. 2021 Apr;18(4):269–283. doi: 10.1038/s41575-021-00416-6
  • Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001 Jan 20;279(2):371–374. doi: 10.1006/viro.2000.0757
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020 Apr 16;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052
  • Bein A, Kim S, Goyal G, et al. Enteric coronavirus infection and treatment modeled with an immunocompetent human intestine-on-A-Chip. Front Pharmacol. 2021 Oct 25;12:718484. doi: 10.3389/fphar.2021.718484
  • Matsuyama S, Nao N, Shirato K, et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001–7003. doi: 10.1073/pnas.2002589117
  • Zang R, Gomez Castro MF, McCune BT, et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol. 2020 May 13;5(47):eabc3582. doi: 10.1126/sciimmunol.abc3582
  • Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020 Jul 3;369(6499):50–54. doi: 10.1126/science.abc1669
  • Lee JJ, Kopetz S, Vilar E, et al. Relative abundance of SARS-CoV-2 entry genes in the enterocytes of the lower gastrointestinal tract. Genes (Basel). 2020;11(6):645. doi: 10.3390/genes11060645
  • Chan PK, To KF, Lo AW, et al. Persistent infection of SARS coronavirus in colonic cells in vitro. J Med Virol. 2004 Sep;74(1):1–7. doi: 10.1002/jmv.20138
  • Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol. 2020 Jun;92(6):680–682. doi: 10.1002/jmv.25742
  • Yeo C, Kaushal S, Yeo D. Enteric involvement of coronaviruses: is faecal-oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol Hepatol. 2020 Apr;5(4):335–337. doi: 10.1016/S2468-1253(20)30048-0
  • Lan FY, Filler R, Mathew S, et al. COVID-19 symptoms predictive of healthcare workers’ SARS-CoV-2 PCR results. PLoS One. 2020;15:e0235460. doi: 10.1371/journal.pone.0235460
  • Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020 Dec;226:57–69. doi: 10.1016/j.trsl.2020.08.004
  • Yantiss RK, Qin L, He B, et al. Intestinal abnormalities in patients with SARS-CoV-2 infection: histopathologic changes reflect mechanisms of disease. Am J Surg Pathol. 2022 Jan 1;46(1):89–96. doi: 10.1097/PAS.0000000000001755
  • Sencio V, Machelart A, Robil C, et al. Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes. 2022;14(1):2018900. doi: 10.1080/19490976.2021.2018900
  • Xiao F, Sun J, Xu Y, et al. Infectious SARS-CoV-2 in feces of patient with severe COVID-19. Emerg Infect Dis. 2020 Aug;26(8):1920–1922.
  • Mao R, Qiu Y, He JS, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2020 Jul;5(7):667–678. Epub 2020 May 12. Erratum in: Lancet Gastroenterol Hepatol. 2020 Jul;5(7):e6. doi: 10.1016/S2468-1253(20)30126-6
  • Lei HY, Ding YH, Nie K, et al. Potential effects of SARS-CoV-2 on the gastrointestinal tract and liver. Biomed Pharmacother. 2021 Jan;133:111064.
  • Cheung KS, Hung IFN, Chan PPY, et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: systematic review and meta-analysis. Gastroenterology. 2020 Jul;159(1):81–95. doi: 10.1053/j.gastro.2020.03.065
  • Wang W, Xu Y, Gao R, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323:1843–1844. doi: 10.1001/jama.2020.3786
  • Zhang Y, Chen C, Zhu S, et al. Isolation of 2019-nCov from a stool specimen of a laboratory-confirmed case of the Coronavirus Disease 2019 (COVID-19). Chin CDC Weekly. 2020 Feb 21;2(8):123–124. doi: 10.46234/ccdcw2020.033
  • Zhou J, Li C, Liu X, et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med. 2020;26:1077–1083. doi: 10.1038/s41591-020-0912-6
  • Dergham J, Delerce J, Bedotto M, et al. Isolation of viable SARS-CoV-2 virus from feces of an immunocompromised patient suggesting a possible fecal mode of transmission. J Clin Med. 2021;10(12):2696. doi: 10.3390/jcm10122696
  • Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020 May;581(7809):465–469. Epub 2020 Apr 1. Erratum in: Nature. 2020 Dec;588(7839):E35. doi: 10.1038/s41586-020-2196-x.
  • Rothschild N. Does fecal-oral transmission of SARS-CoV-2 due to low sanitation conditions contribute to low mortality rates from COVID-19. Cureus. 2021 Oct 7;13(10):e18557. doi: 10.7759/cureus.18557
  • Goh GK, Dunker AK, Foster JA, et al. Shell disorder analysis predicts greater resilience of the SARS-CoV-2 (COVID-19) outside the body and in body fluids. Microb Pathog. 2020 Jul;144:104177. doi: 10.1016/j.micpath.2020.104177
  • Gwenzi W. Leaving no stone unturned in light of the COVID-19 faecal-oral hypothesis? A water, sanitation and hygiene (WASH) perspective targeting low-income countries. Sci Total Environ. 2021 Jan 20;753:141751.
  • Street R, Malema S, Mahlangeni N, et al. Wastewater surveillance for covid-19: an African perspective. Sci Total Environ. 2020 Nov 15;743:140719. doi: 10.1016/j.scitotenv.2020.140719
  • da Silva MG, Carniel ADS. Study of the correlation between Covid-19 cases and deaths and basic sanitation in Brazil: is this a possible secondary route of virus transmission? J Hazard Mater Adv. 2022 Nov;8:100149. doi: 10.1016/j.hazadv.2022.100149.
  • Arslan M, Xu B, Gamal El-Din M. Transmission of SARS-CoV-2 via fecal-oral and aerosols-borne routes: environmental dynamics and implications for wastewater management in underprivileged societies. Sci Total Environ. 2020 Nov 15;743:140709.
  • Guerrero-Latorre L, Ballesteros I, Villacrés-Granda I, et al. SARS-CoV-2 in river water: implications in low sanitation countries. Sci Total Environ. 2020;743. doi: 10.1016/j.scitotenv.2020.140832