235
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Neglected tropical disease (NTD) diagnostics: current development and operations to advance control

ORCID Icon, , , &

References

  • House F. Freedom house index Sub-Saharan Africa. 2014. Available from: https://freedomhouse.org/sites/default/files/Sub-Saharan%20Africa%20Fact%20Sheet.pdf.
  • Ochola EA, Karanja DMS, Elliott SJ. The impact of neglected tropical diseases (NTD) on health and wellbeing in sub-Saharan Africa (SSA): a case study of Kenya. PLoS Negl Trop Dis. 2021;15:e0009131. doi: 10.1371/journal.pntd.0009131
  • World Health Organization. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. Geneva, Switzerland: World Health Organization; 2010.
  • Geary DC. Can neglected tropical diseases compromise human wellbeing in sex-, age-, and trait-specific ways? PLoS Negl Trop Dis. 2016;10. doi: 10.1371/journal.pntd.0004489
  • Gyapong J, Boatin B editors. Neglected tropical diseases-sub-Saharan Africa. Cham, Switzerland: Springer; 2016. doi: 10.1007/978-3-319-25471-5
  • World Health Organization (WHO). Neglected Tropical Diseases; [Cited 2023 June 20]; Available from: https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1.
  • Chalghaf B, Chemkhi J, Mayala B, et al. Ecological niche modeling predicting the potential distribution of Leishmania vectors in the Mediterranean basin: impact of climate change. Parasites Vectors. 2018;11:461. doi: 10.1186/s13071-018-3019-x
  • Tamayo L, Guhl F, Vallejo G, et al. The effect of temperature increase on the development of Rhodnius prolixus and the course of Trypanosoma cruzi metacyclogenesis. PLoS Negl Trop Dis. 2018;12(8):e0006735. doi: 10.1371/journal.pntd.0006735
  • Bryson J, Bishop-Williams K, Berrang-Ford L, et al. Neglected tropical diseases in the context of climate change in East Africa: a systematic scoping review. Am J Trop Med Hyg. 2020;102(6):1443–1454. doi: 10.4269/ajtmh.19-0380
  • Akpan O. Overview of the neglected tropical diseases; Vanguard Nigeria; 2021 Aug [Cited 2021 Aug 7]; Available from: https://www.vanguardngr.com/2021/08/nigeria-battling-with-15-neglected-tropical-diseases-health-minister/amp/
  • World Health Organization (WHO). Kenya launches neglected tropical diseases (NTDs) master plan 2016-2020. 2016. Available from: https://www.afro.who.int/news/kenya-launches-neglected-tropical-diseases-ntds-master-plan-2016-2020.
  • World Health Organization (WHO). Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases. Geneva, Switzerland: World Health Organization; 2017.
  • Hotez PJ, Alvarado M, Basáñez MG, et al. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis. 2014;8. doi: 10.1371/journal.pntd.0002865
  • World Health Organization (WHO). Ending the neglected to attain the sustainable development goals: a roadmap for neglected tropical diseases. Geneva, Switzerland: World Health Organization; 2020a. 2021–2030.
  • Souza AA, Ducker C, Argaw D, et al. Diagnostics and the neglected tropical diseases roadmap: setting the agenda for 2030. Trans R Soc Trop Med Hyg. 2021;115:129–135. doi: 10.1093/trstmh/traa118
  • Oldach L. Pioneering New Diagnostics: Addressing Challenges And Implications For Point-Of-Care Testing In African Settings; 2015 [Cited 2023 June 20]; Available from: https://media.tghn.org/articles/POCT_Feb2015.pdf
  • Oyeyemi OT, Okunlola O, Adebayo AD. Assessment of schistosomiasis endemicity and preventive treatment on coronavirus disease 2019 outcomes in Africa. New Microbes New Infect. 2020;38:100821. doi: 10.1016/j.nmni.2020.100821
  • World Health Organisation (WHO). Impact Of The COVID-19 Pandemic On Seven Neglected Tropical Diseases: A Model-Based Analysis; 2021 [Cited 2023 June 20]; Available from: https://apps.who.int/iris/bitstream/handle/10665/343993/9789240027671-eng.pdf?sequence=1
  • de Souza DK, Picado A, Biéler S, et al. Diagnosis of neglected tropical diseases during and after the COVID-19 pandemic. PLoS Negl Trop Dis. 2020;14:e0008587. doi: 10.1371/journal.pntd.0008587
  • World Health Organisation (WHO). Diagnostic Technical Advisory Group For Neglected Tropical Diseases (DTAG-NTD); [Cited 2023 June 20]; Available from: https://www.who.int/groups/diagnostic-technical-advisory-group-for-neglected-tropical-diseases/about-us
  • Macfarlane CL, Dean L, Thomson R, et al. Community drug distributors for mass drug administration in neglected tropical disease programmes: systematic review and analysis of policy documents. J Global Health. 2019;9(2):020414. doi: 10.7189/jogh.09.020414
  • World Health Organization. Neglected Tropical Diseases: Preventive Chemotherapy Treatment Coverage Declines Due To COVID-19 Disruptions (Who.Int) 2020b; [Cited 2023 Feb 20].
  • Uniting to combat NTD Africa. Available from: https://unitingtocombatNTDs.org/africa/
  • World Health Organization (WHO). Control Of Neglected Tropical Diseases; Vector Control; [Cited 2023 Feb 21]; Available from: https://www.who.int/teams/control-of-neglected-tropical-diseases/vector-ecology-and-management/vector-control
  • Wilson AL, Courtenay O, Kelly-Hope LA, et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl Trop Dis. 2020;14:e0007831. doi: 10.1371/journal.pntd.0007831
  • Boatin B. The onchocerciasis control programme in West Africa (OCP). Ann Trop Med Parasitol. 2008;102:13–17. doi: 10.1179/136485908X337427
  • Hougard J-M, Boatin BA, Alley ES, et al. Eliminating onchocerciasis after 14 years of vector control: a proved strategy. J Infect Dis. 2001;184(4):497–503. doi: 10.1086/322789
  • Hougard JM, Yaméogo L, Sékétéli A, et al. Twenty-two years of blackfly control in the onchocerciasis control programme in West Africa. Parasitol Today. 1997;13(11):425–431. doi: 10.1016/S0169-4758(97)01145-9
  • Sékétéli A, Adeoye G, Eyamba A, et al. The achievements and challenges of the African programme for onchocerciasis control (APOC). Ann Trop Med Parasitol. 2002;96(sup1):S15–28. doi: 10.1179/000349802125000628
  • Colatrella B. The mectizan donation program: 20 years of successful collaboration—a retrospective. Ann Trop Med Parasitol. 2008;102(sup1):7–11. doi: 10.1179/136485908X337418
  • Joshi AB, Bhatt LR, Regmi S, et al. An assessment of the effectiveness of insecticide spray in the control of visceral leishmaniasis in Nepal. J Nepal Health Res Counc. 2003;1:1–6.
  • Kishore K, Kumar V, Kesari S, et al. Vector control in leishmaniasis. Indian J Med Res. 2006;123:467–472.
  • Rijal S, Sundar S, Mondal D, et al. Eliminating visceral leishmaniasis in South Asia: the road ahead. BMJ. 2019;364:k5224. doi: 10.1136/bmj.k5224
  • Picado A, Singh SP, Rijal S, et al. Long-lasting insecticidal nets for prevention of Leishmania donovani infection in India and Nepal: paired cluster randomised trial. BMJ. 2010;341:c6760. doi: 10.1136/bmj.c6760
  • Alexander B, Maroli M. Control of phlebotomine sandflies. Med Vet Entomol. 2003;17:1–18. doi: 10.1046/j.1365-2915.2003.00420.x
  • Courtenay O, Gavgani SM, Bazmani A, et al. Insecticide-impregnated dog collars reduce infantile clinical visceral leishmaniasis under operational conditions in NW Iran: a community-wide cluster randomised trial. PLoS Negl Trop Dis. 2019;13:e0007193. doi: 10.1371/journal.pntd.0007193
  • Gavgani AS, Hodjati MH, Mohite H, et al. Effect of insecticide-impregnated dog collars on incidence of zoonotic visceral leishmaniasis in Iranian children: a matched-cluster randomized trial. Lancet. 2002;360:374–379. doi: 10.1016/s0140-6736(02)09609-5
  • Vale GA, Torr SJ. Development of bait technology to control tsetse. In: Maudlin I, Holmes P Miles M, editors The trypanosomiases. Wallingford: CABI; 2004. p. 509–523.
  • Laveissière C, Couret D, Kiénon J. Lutte contre les glossines riveraines à l’aide de pièges biconiques imprégnés d’insecticide, en zone de savane humide: 4. Expérimentation à grande échelle. Cahiers ORSTOMSérie Entomologie Médicale et Parasitologie. 1981;19:41–48.
  • GA V, Hargrove JW, Cockbill GF, et al. Field trial of baits to control populations of Glossina morsitans Westwood and G. pallidipes Austen (Diptera: glossinidae). Bull Entomol Res. 1986;76:179–193. doi: 10.1017/S000748530001467X
  • Hargrove JW, Omolo S, Msalilwa JS, et al. Insecticide-treated cattle for tsetse control: the power and the problems. Med Vet Entomol. 2000;14(2):123–130. doi: 10.1046/j.1365-2915.2000.00226.x
  • Vreysen MJ, Saleh KM, Ali MY, et al. Glossina austeni (Diptera: glossinidae) eradicated on the Island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol. 2000;93:123–135. doi: 10.1603/0022-0493-93.1.123
  • Oyeyemi OT, Okunlola O, Adebayo AD. Assessment of schistosomiasis endemicity and preventive treatment on coronavirus disease 2019 outcomes in Africa. New Microbes New Infect. 2020;38:100821. doi: 10.1016/j.nmni.2020.100821
  • Sun L, Wang W, Hong Q-B. Approaches being used in the national schistosomiasis elimination programme in China: a review. Infect Dis Poverty. 2017;6(1):55. doi: 10.1186/s40249-017-0271-9
  • Bay AR. Total prevention: a history of schistosomiasis in Japan. Med Hist. 2022;66:95–115. doi: 10.1017/mdh.2022.11
  • Salawu OT, Odaibo AB. Preliminary study on ecology of Bulinus jousseaumei snail in Schistosoma haematobium endemic rural community of Nigeria. Afr J Ecol. 2012;51(3):441–446. doi: 10.1111/aje.12054
  • Salawu OT, Odaibo AB. The bionomics and diversity of freshwater snail species in Yewa north, Ogun State, Southwestern Nigeria. Helminthologia. 2014;51(4):337–344. doi: 10.2478/s11687-014-0250-7
  • Yeung KWY, Giesy JP, Zhou GJ, et al. Occurrence, toxicity and ecological risk of larvicidal oil in the coastal marine ecosystem of Hong Kong. Mar Pollut Bull. 156:111178. doi: 10.1016/j.marpolbul.2020.111178
  • Crosa G, Yaméogo L, Calamari D, et al. Analysis of the effects of rotational larviciding on aquatic fauna of two Guinean rivers: the case of permethrin. Chemosphere. 2001;44(3):501–510. (2001). doi: 10.1016/s0045-6535(00)00279-4.
  • Yameogo L, Tapsoba JM, Calamari D. Laboratory toxicity of potential blackfly larvicides on some African fish species in the onchocerciasis control programme area. Ecotoxicol Environ Saf. 1991;21(3):248–256. doi: 10.1016/0147-6513(91)90063-U
  • Demirak MŞ Ş, Canpolat E. Plant-based bioinsecticides for mosquito control: impact on insecticide resistance and disease transmission. Insects. 2022;13(2):162. doi: 10.3390/insects13020162
  • Omobhude ME, Morenikeji OA, Oyeyemi OT. Molluscicidal activities of curcuminnisin polylactic acid nanoparticle on biomphalaria pfeifferi. PLoS Negl Trop Dis. 2017;11(8):e0005855. doi: 10.1371/journal.pntd.0005855
  • Vaz Nery S, Pickering AJ, Abate E, et al. The role of water, sanitation and hygiene interventions in reducing soil-transmitted helminths: interpreting the evidence and identifying next steps. Parasites Vectors. 2019;12:273. doi: 10.1186/s13071-019-3532-6
  • World Health Organisation (WHO), UNICEF. Prevention and control of schistosomiasis and soil transmitted helminthiasis. Geneva: World Health Organisation; 2004.
  • Children without worms. A comprehensive strategy for STH control. [Internet]. 2012 [cited 2015 Feb 20]. Available from: http://www.childrenwithoutworms.org/how-we-target-STH
  • Boisson S, Engels D, Gordon BA, et al. Water, sanitation and hygiene for accelerating and sustaining progress on neglected tropical diseases: a new global strategy 2015–20. Int Health. 2016;8:i19–21. doi: 10.1093/inthealth/ihv073
  • World Health Organization (WHO). Weekly epidemiological record, monthly report on dracunculiasis cases no 4, 2023 Jan 27. January – November 2022.
  • Gizaw Z, Addisu A, Dagne H. Effects of water, sanitation and hygiene (WASH) education on childhood intestinal parasitic infections in rural Dembiya, northwest Ethiopia: an uncontrolled before-and-after intervention study. Environ Health Prev Med. 2019;24:16. doi: 10.1186/s12199-019-0774-z
  • Manjang B, Ochola EA, Elliott SJ. The use of non-pharmaceutical interventions for the prevention and control of schistosomiasis in sub-Saharan Africa: a systematic review. Global Publ Health. 2022;17:469–482. doi: 10.1080/17441692.2020.1869799 (2022).
  • Naqvi FA, Das JK, Salam RA, et al. Interventions for neglected tropical diseases among children and adolescents: a meta-analysis. Pediatrics. 2022;2022(149):e2021053852E. doi: 10.1542/peds.2021-053852E
  • Johnston EA, Teague J, Graham JP. Challenges and opportunities associated with neglected tropical disease and water, sanitation and hygiene intersectoral integration programs. BMC Public Health. 2015;15:547. doi: 10.1186/s12889-015-1838-7
  • Onasanya A, Bengtson M, Oladepo O, et al. Rethinking the Top-Down approach to schistosomiasis control and elimination in sub-Saharan Africa. Front Pub Health. 2021;9:622809. doi: 10.3389/fpubh.2021.622809
  • Röltgen K, Cruz I, Ndunģu JM, et al. Laboratory diagnosis of Buruli Ulcer: challenges and future perspectives. In: Pluschke G Röltgen K, editors Buruli ulcer: mycobacterium ulcerans disease. Cham: Springer International Publishing; 2019. p. 183–202.
  • Rogers JM, McManus DP, Gordon CA. Membrane technology for rapid point of care diagnostics for parasitic neglected tropical diseases. Clin Microbiol Rev. 2021;34(4). doi: 10.1128/CMR.00329-20
  • Bharadwaj M, Bengtson M, Golverdingen M, et al. Diagnosing point-of-care diagnostics for neglected tropical diseases. PLoS Negl Trop Dis. 2021;15:e0009405. doi: 10.1371/journal.pntd.0009405
  • Ghattas M, Dwivedi G, Lavertu M, et al. Vaccine technologies and platforms for infectious diseases: Current progress, challenges, and opportunities. Vaccines (Basel). 2021;9:1490. doi: 10.3390/vaccines9121490
  • Hotez PJ, Pecoul B, Rijal S, et al. Eliminating the neglected tropical diseases: translational science and new technologies. PLoS Negl Trop Dis. 2016;10(3):e0003895. doi: 10.1371/journal.pntd.0003895
  • Adegnika AA, de Vries SG, Zinsou FJ, et al. Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. Lancet Infect Dis. 2021;21(2):275–285. doi: 10.1016/S1473-3099(20)30288-7
  • Zhan B, Beaumier CM, Briggs N, et al. Advancing a multivalent ‘pananthelmintic’ vaccine against soil-transmitted nematode infections. Expert Rev Vaccines. 2014;13:321–331. doi: 10.1586/14760584.2014.872035
  • Riveau G, Deplanque D, Remoue F, et al. Safety and immunogenicity of rSh28gst antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl Trop Dis. 2012;6:e1704. doi: 10.1371/journal.pntd.0001704
  • Curti E, Kwityn C, Zhan B, et al. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein: a vaccine candidate for human intestinal schistosomiasis. Hum Vaccin Immunother. 2013;9(11):2342–2350. doi: 10.4161/hv.25787
  • Langenberg MCC, Hoogerwerf MA, Koopman JPR, et al. A controlled human Schistosoma mansoni infection model to advance novel drugs, vaccines and diagnostics. Nat Med. 2020;26(3):326–332. doi: 10.1038/s41591-020-0759-x
  • Kamhawi S, Aslan H, Valenzuela JG. Vector saliva in vaccines for visceral leishmaniasis: a brief encounter of high consequence? Front Public Health. 2014;2:99. doi: 10.3389/fpubh.2014.00099
  • Alvar J, Croft SL, Kaye P, et al. Case study for a vaccine against leishmaniasis. Vaccine. 2013;31(Suppl 2):B244–9. doi: 10.1016/j.vaccine.2012.11.080
  • Maroof A, Brown N, Smith B, et al. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis. 2012;205:853–863. doi: 10.1093/infdis/jir842
  • Dumonteil E, Bottazzi ME, Zhan B, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines. 2012;11(9):1043–1055. doi: 10.1586/erv.12.85
  • Gupta S, Wan X, Zago MP, et al. Antigenicity and diagnostic potential of vaccine candidates in human Chagas disease. PLoS Negl Trop Dis. 2013;7:e2018. (2013). doi: 10.1371/journal.pntd.0002018.
  • Pereira IR, Vilar-Pereira G, Marques V, et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLOS Pathog. 2015;11:e1004594. doi: 10.1371/journal.ppat.1004594
  • Lee BY, Bacon KM, Shah M, et al. The economic value of a visceral leishmaniasis vaccine in Bihar state, India. Am J Trop Med Hyg. 2012;86:417–425. doi: 10.4269/ajtmh.2012.10-0415
  • Bacon KM, Hotez PJ, Kruchten SD, et al. The potential economic value of a cutaneous leishmaniasis vaccine in seven endemic countries in the Americas. Vaccine. 2013;31(3):480–486. doi: 10.1016/j.vaccine.2012.11.032
  • Vlaminck J, Fischer PU, Weil GJ. Diagnostic tools for onchocerciasis elimination programs. Trends Parasitol. 2015;31(11):571–582. doi: 10.1016/j.pt.2015.06.007
  • Bergquist R, Johansen MV, Utzinger J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol. 2009;25(4):151–156. doi: 10.1016/j.pt.2009.01.004
  • Peeling RW, Mabey D. Diagnostics for the control and elimination of neglected tropical diseases. Parasitol. 2014;141:1789–1794. doi: 10.1017/S0031182014000973
  • Al-Awadi AR, Al-Kuhlani A, Breman JG, et al. Guinea worm (dracunculiasis) eradication: update on progress and endgame challenges. Trans Royal Soc Trop Med Hyg. 2014;108:249–251. doi: 10.1093/trstmh/tru039
  • Bezerra F, Leal J, Sousa M, et al. Evaluating a point-of-care circulating cathodic antigen test (POC-CCA) to detect Schistosoma mansoni infections in a low endemic area in north-eastern Brazil. Acta Tropica query. 2018;182:264–270. doi: 10.1016/j.actatropica.2018.03.002
  • Sanprasert V, Kerdkaew R, Srirungruang S, et al. Development of conventional multiplex PCR: a rapid technique for simultaneous detection of soil-transmitted helminths. Pathogens. 2019;8(3):152. doi: 10.3390/pathogens8030152
  • World Health Organization (WHO). Report Of The First Meeting Of The WHO Diagnostic Technical Advisory Group For Neglected Tropical Diseases; Geneva, Switzerland: 2019 [Cited 2019 October 30–31]. Available from: https://apps.who.int/iris/bitstream/handle/10665/331954/9789240003590-eng.pdf?ua=1
  • Ward P, Dahlberg P, Lagatie O, et al. Affordable artificial intelligence-based digital pathology for neglected tropical diseases: a proof-of-concept for the detection of soil-transmitted helminths and Schistosoma mansoni eggs in Kato-Katz stool thick smears. PLoS Negl Trop Dis. 2022;16(6):e0010500. doi: 10.1371/journal.pntd.0010500
  • World Health Organization (WHO). Diagnostic target product profiles for monitoring, evaluation and surveillance of schistosomiasis control programmes. Geneva. 2021a. Available: https://www.who.int/publications/i/item/9789240031104
  • World Health Organization (WHO). Diagnostic Test For Surveillance Of Lymphatic Filariasis TARGET PRODUCT PROFILE; 2021b; 1–16. Available from: https://www.who.int/publications/i/item/9789240018648
  • World Health Organization (WHO). Onchocerciasis: diagnostic target product profile to support preventive chemotherapy. Geneva. ISBN 978-92-4-002449-6 8. WHO. Diagnostic target product profile for monitoring and evaluation of soil-transmitted helminth control programmes. Geneva; 2021c. ISBN 978-92-4-003122-7. 2021;1–13.
  • Oguttu D, Byamukama E, Katholi CR, et al. Serosurveillance to monitor onchocerciasis elimination: the Ugandan experience. Amer J Trop Med Hyg. 2014;90:339–345. doi: 10.4269/ajtmh.13-0546
  • Unnasch TR, Golden A, Cama V, et al. Diagnostics for onchocerciasis in the era of elimination. Int Health. 2018;10(1):i20–i26. doi: 10.1093/inthealth/ihx047
  • Weil GJ, Steel C, Liftis F, et al. A rapid-format antibody card test for diagnosis of onchocerciasis. J Infect Dis. 2000;182(6):1796–1799. doi: 10.1086/317629
  • Steel C, Golden A, Stevens E, et al. Rapid point-of-contact tool for mapping and integrated surveillance of wuchereria bancrofti and Onchocerca volvulus infection. Clin Vaccine Immunol. 2015;22(8):896–901. doi: 10.1128/cvi.00227-15
  • World Health Organization (WHO). Criteria for certification of interruption of transmission/elimination of human onchocerciasis. WHO/CDS/CPE/CEE/2001.18a. Geneva: World Health Organization; 2001.
  • Poole CB, Li Z, Alhassan A, et al. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS One. 2017;12(2):e0169011. doi: 10.1371/journal.pone.0169011
  • Gounoue-Kamkumo R, Nana-Djeunga HC, Bopda J, et al. Loss of sensitivity of immunochromatographic test (ICT) for lymphatic filariasis diagnosis in low prevalence settings: consequence in the monitoring and evaluation procedures. BMC Infect Dis. 2015;15:579. doi: 10.1186/s12879-015-1317-x
  • Lammie PJ, Weil G, Noordin R, et al. Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis – a multicenter trial. Filaria J. 2004;3:9. doi: 10.1186/1475-2883-3-9
  • Chu BK, Deming M, Biritwum N-K, et al. Transmission assessment surveys (TAS) to define endpoints for lymphatic filariasis mass drug administration: a multicenter evaluation. PLoS Negl Trop Dis. 2013;7:e2584. doi: 10.1371/journal.pntd.0002584
  • Wanji S, Amvongo-Adjia N, Koudou B, et al. Cross-reactivity of filariasis ICT cards in areas of contrasting endemicity of loa loa and mansonella perstans in Cameroon: implications for shrinking of the lymphatic filariasis map in the Central African region. PLoS Negl Trop Dis. 2015;9(11):e0004184. doi: 10.1371/journal.pntd.0004184 pntd.0004184.
  • Morenikeji O, Quazim J, Omoregie C, et al. A cross-sectional study on urogenital schistosomiasis in children; haematuria and proteinuria as diagnostic indicators in an endemic rural area of Nigeria. Afr Health Sci. 2014;14(2):390–396. doi: 10.4314/ahs.v14i2.15
  • Salawu OT, Odaibo AB. Urogenital schistosomiasis and urological assessment of hematuria in preschool-aged children in rural communities of Nigeria. J Pediatr Urol. 2014;10(1):88–93. doi: 10.1016/j.jpurol.2013.06.010
  • Oyeyemi OT, Corsini CA, Gonçalves G, et al. Evaluation of immunodiagnostic potential of schistosomula crude antigen (SCA) in Schistosoma mansoni infected human population. Sci Rep. 2021;11:10530. doi: 10.1038/s41598-021-89929-3
  • Morenikeji OA, Adeleye O, Omoruyi EC, et al. Anti-Schistosoma IgG responses in Schistosoma haematobium single and concomitant infection with malaria parasites. Pathog Glob Health. 2016;110(2):74–78. doi: 10.1080/20477724.2016.1174499
  • Sousa-Figueiredo JC, Betson M, Kabatereine NB, et al. The urine circulating cathodic antigen (CCA) dipstick: a valid substitute for microscopy for mapping and point-of-care diagnosis of intestinal schistosomiasis. PLoS Negl Trop Dis. 2013;7:e2008. doi: 10.1371/journal.pntd.0002008
  • Xu J, Feng T, Lin DD, et al. Performance of a dipstick dye immunoassay for rapid screening of Schistosoma japonicum infection in areas of low endemicity. Parasites Vectors. 2011;4(1):87. doi: 10.1186/1756-3305-4-87
  • Fung MS, Xiao N, Wang S, et al. Field evaluation of a PCR test for Schistosoma japonicum egg detection in low-prevalence regions of China. Amer J Trop Med Hyg. 2012;87:1053–1058. doi: 10.4269/ajtmh.2012.12-0177
  • Rostron P, Pennance T, Bakar F, et al. Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium. Parasites Vectors. 2019;12(1):514. doi: 10.1186/s13071-019-3755-6
  • Le B, Clarke N, Hii SF, et al. Using quantitative PCR to identify opportunities to strengthen soil-transmitted helminth control in Solomon Islands: a cross-sectional epidemiological survey. PLoS Negl Trop Dis. 2022;16:e0010350. doi: 10.1371/journal.pntd.0010350
  • James SL, Abate D, Abate KH, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet. 2018;392(10159):1789–1858. doi: 10.1016/S0140-6736(18)32279-7
  • Zendejas-Heredia PA, Colella V, Hii SF, et al. Comparison of the egg recovery rates and limit of detection for soil-transmitted helminths using the Kato-Katz thick smear, faecal flotation and quantitative real-time PCR in human stool. PLoS Negl Trop Dis. 2021;15(5):e0009395. doi: 10.1371/journal.pntd.0009395
  • Knopp S, Salim N, Schindler T, et al. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania. Am J Trop Med Hyg. 2014;90:535–545. doi: 10.4269/ajtmh.13-0268
  • Knopp S, Rinaldi L, Khamis IS, et al. A single FLOTAC is more sensitive than triplicate Kato-Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans R Soc Trop Med Hyg. 2009;103(4):347–354. doi: 10.1016/j.trstmh.2008.11.013
  • Levecke B, Behnke JM, Ajjampur SS, et al. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl Trop Dis. 2011;5(6):e1201. doi: 10.1371/journal.pntd.0001201
  • Knopp S, Mgeni AF, Khamis IS, et al. Diagnosis of soil-transmitted helminths in the era of preventive chemotherapy: effect of multiple stool sampling and use of different diagnostic techniques. PLoS Negl Trop Dis. 2008;2:e331. doi: 10.1371/journal.pntd.0000331
  • Barda BD, Rinaldi L, Ianniello D, et al. Mini-FLOTAC, an innovative direct diagnostic technique for intestinal parasitic infections: experience from the field. PLoS Negl Trop Dis. 2013;7(8):e2344. doi: 10.1371/journal.pntd.0002344
  • Bungiro RD, Cappello M. Detection of excretory/secretory coproantigens in experimental hookworm infection. Am J Trop Med Hyg. 2005;73(5):915–920. doi: 10.4269/ajtmh.2005.73.915
  • Sykes AM, McCarthy JS. A coproantigen diagnostic test for Strongyloides infection. PLoS Negl Trop Dis. 2011;5:e955. doi: 10.1371/journal.pntd.0000955
  • Hii SF, Senevirathna D, Llewellyn S, et al. Development and evaluation of a multiplex quantitative real-time polymerase chain reaction for hookworm species in human stool. Am J Trop Med Hyg. 2018;99:1186–1193. doi: 10.4269/ajtmh.18-0276
  • Bartlett AW, Traub R, Amaral S, et al. Comparison between quantitative polymerase chain reaction and sodium nitrate flotation microscopy in diagnosing soil-transmitted helminth infections. Am J Trop Med Hyg. 2021;105(5):1210–1213. doi: 10.4269/ajtmh.21-0227
  • Campbell SJ, Nery SV, Wardell R, et al. Water, sanitation and hygiene (WASH) and environmental risk factors for soil-transmitted helminth intensity of infection in Timor-Leste, using real time PCR. PLoS Negl Trop Dis. 2017;11(3):e0005393. doi: 10.1371/journal.pntd.0005393
  • Hasegawa M, Pilotte N, Kikuchi M, et al. What does soil-transmitted helminth elimination look like? Results from a targeted molecular detection survey in Japan. Parasites Vectors. 2020;13(1):6. doi: 10.1186/s13071-019-3875-z
  • Nery SV, Traub RJ, McCarthy JS, et al. WASH for WORMS: a cluster-randomized controlled trial of the impact of a community integrated water, sanitation, and hygiene and deworming intervention on soil-transmitted helminth infections. Am J Trop Med Hyg. 2019;100:750–761. doi: 10.4269/ajtmh.18-0705
  • Papaiakovou M, Gasser RB, Littlewood DTJ. Quantitative PCR-based diagnosis of soil-transmitted helminth infections: faecal or fickle? Trends Parasitol. 2019;35:491–500. doi: 10.1016/j.pt.2019.04.006 pt.2019.04.006.
  • Deng MH, Zhong LY, Kamolnetr O, et al. Detection of helminths by loop-mediated isothermal amplification assay: a review of updated technology and future outlook. Infect Dis Poverty. 2019;8:20. doi: 10.1186/s40249-019-0530-z
  • Agbana TE, Diehl JC, Van Pul F, et al. Imaging & identification of malaria parasites using cellphone microscope with a ball lens. PLoS One. 2018;13:e0205020. doi: 10.1371/journal.pone.0205020
  • World Health Organization (WHO). Guidance on control materials for antigen detecting malaria RDTs tools for preparation and validation. Geneva, Switzerland: World Health Organization; 2019.
  • Inojosa WO, Augusto I, Bisoffi Z, et al. Diagnosing human African trypanosomiasis in Angola using a card agglutination test: observational study of active and passive case finding strategies. British Med J. 2006;332(7556):1479. doi: 10.1136/bmj.38859.531354.7C
  • Chappuis F, Loutan L, Simarro P, et al. Options for field diagnosis of human African trypanosomiasis. Clin Microbiol Rev. 2005;18(1):133–146. doi: 10.1128/CMR.18.1.133-146.2005
  • Camara M, M’mah Soumah A, Ilboudo H, et al. Extravascular dermal trypanosomes in suspected and confirmed cases of gambiense human African trypanosomiasis. Clin Infect Dis. 2021;73:12–20. doi: 10.1093/cid/ciaa897
  • Aliee M, Keeling MJ, Rock KS, et al. Modelling to explore the potential impact of asymptomatic human infections on transmission and dynamics of African sleeping sickness. PLoS Comput Biol. 2021;17(9):e1009367. doi: 10.1371/journal.pcbi.1009367
  • Sima N, Dujeancourt-Henry A, Perlaza BL, et al. SHERLOCK4HAT: a CRISPR-based tool kit for diagnosis of human African trypanosomiasis. EBioMedicine. 2022;85:104308. doi: 10.1016/j.ebiom.2022.104308
  • Bonnet J, Boudot C, Courtioux B. Overview of the diagnostic methods used in the field for human African trypanosomiasis: what could change in the Next Years? Biomed Res Int. 2015;2015:583262. doi: 10.1155/2015/583262
  • Lumbala C, Bessell PR, Lutumba P, et al. Performance of the SD BIOLINE® HAT rapid test in various diagnostic algorithms for gambiense human African trypanosomiasis in the Democratic Republic of the Congo. PLoS One. 2017;12(7):e0180555. doi: 10.1371/journal.pone.0180555
  • Büscher P, Gilleman Q, Lejon V. Rapid diagnostic test for sleeping sickness. N Engl J Med. 2013;368(11):1069–1070. doi: 10.1056/NEJMc1210373
  • Büscher P, Deborggraeve S. How can molecular diagnostics contribute to the elimination of human African trypanosomiasis? Expert Rev Mol Diagn. 2015;15(5):607–615. doi: 10.1586/14737159.2015.1027195
  • Sundar S, Rai M. Laboratory diagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol. 2002;9(5):951–958. doi: 10.1128/cdli.9.5.951-958.2002
  • Elmahallawy EK, Martínez AS, Rodriguez-Granger J, et al. Diagnosis of leishmaniasis. J Inf Dev Ctries. 2014;8:961–972. doi: 10.3855/jidc.4310
  • Kumari D, Perveen S, Sharma R, et al. Advancement in leishmaniasis diagnosis and therapeutics: an update. Eur J Pharmacol. 2021;910:174436. doi: 10.1016/j.ejphar.2021.174436
  • Sakkas H, Gartzonika C, Levidiotou S. Laboratory diagnosis of human visceral leishmaniasis. J Vector Borne Dis. 2016;53:8.
  • Singh OP, Sundar S. Developments in diagnosis of visceral leishmaniasis in the elimination era. J Parasitol Res. 2015;2015:239469. doi: 10.1155/2015/239469
  • Chappuis F, Sundar S, Hailu A, et al. Visceral leishmaniasis: what are the needs for diagnosis, treatment and control? Nat Rev Microbiol. 2010;5:873–882. doi: 10.1038/nrmicro1748
  • Cunningham J, Hasker E, Das P, et al. A global comparative evaluation of commercial immunochromatographic rapid diagnostic tests for visceral leishmaniasis. Clin Inf Dis. 2012;55(10):1312–1319. doi: 10.1093/cid/cis716
  • Moreira OC, Yadon ZE, Cupolillo E. The applicability of real-time PCR in the diagnostic of cutaneous leishmaniasis and parasite quantification for clinical management: current status and perspectives. Acta Trop. 2018;184:29–37. doi: 10.1016/j.actatropica.2017.09.020
  • Saad AA, Ahmed NG, Osman OS, et al. Diagnostic accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for diagnosis of leishmaniasis in Sudan. PLoS Negl Trop Dis. 2010;4:e776. doi: 10.1371/journal.pntd.0000776
  • Beng AA, Esum ME, Deribe K, et al. Mapping lymphatic filariasis in loa loa endemic health districts naïve for ivermectin mass administration and situated in the forested zone of Cameroon. BMC Infect Dis. 2020;20(1):284. doi: 10.1186/s12879-020-05009-3
  • Chin CD, Lakasanasopin L, Cheung YK, et al. Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med. 2011;17(8):1015–1019. doi: 10.1038/nm.2408
  • Verma S, Avishek K, Sharma V, et al. Application of loop-mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral leishmaniasis and post-kala-azar dermal leishmaniasis. Diagnost Microbiol Infect Dis. 2013;75(4):390–395. doi: 10.1016/j.diagmicrobio.2013.01.011
  • Regiart M, Pereira SV, Bertolino FA, et al. An electrochemical immunosensor for anti-T. cruzi IgM antibodies, a biomarker for congenital Chagas disease, using a screen-printed electrode modified with gold nanoparticles and functionalized with shed acute phase antigen. Microchim Acta. 2016;183(3):1203–1210. doi: 10.1007/s00604-016-1752-4
  • Perinoto AC, Maki RM, Colhone MC, et al. Biosensors for efficient diagnosis of leishmaniasis: innovations in bioanalytics for a neglected disease. Anal Chem. 2010;82(23):9763–9768. doi: 10.1021/ac101920t
  • Giri S, Sykes EA, Jennings TL, et al. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano. 2011;5(3):1580–1587. doi: 10.1021/nn102873w
  • Inaba M, Higashimoto Y, Toyama Y, et al. Diagnostic accuracy of LAMP versus PCR over the course of SARS-CoV-2 infection. Int J Infect Dis. 2021;107:195–200. doi: 10.1016/j.ijid.2021.04.018
  • Gao Y, Lam AWY, Chan WCW. Automating quantum dot barcode assays using microfluidics and magnetism for the development of a point-of-care device. ACS Appl Mat Interfaces. 2013;5(8):2853–2860. doi: 10.1021/am302633h
  • García-Bernalt Diego J, Fernández-Soto P, Márquez-Sánchez S, et al. SMART-LAMP: a smartphone-operated handheld device for real-time colorimetric point-of-care diagnosis of infectious diseases via loop-mediated isothermal amplification. Biosensors (Basel). 2022;12:424. doi: 10.3390/bios12060424
  • MacGregor SR, McManus DP, Sivakumaran H, et al. Development of CRISPR/Cas13a-based assays for the diagnosis of schistosomiasis. EBioMedicine. 2023;94:104730. doi: 10.1016/j.ebiom.2023.104730
  • Cai P, Weerakoon KG, Mu Y, et al. Comparison of Kato Katz, antibody-based ELISA and droplet digital PCR diagnosis of schistosomiasis japonica: lessons learnt from a setting of low infection intensity. PLoS Negl Trop Dis. 2019;13(3):e0007228. doi: 10.1371/journal.pntd.0007228
  • He P, Gordon CA, Williams GM, et al. Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infect Dis Poverty. 2018;7:8. doi: 10.1186/s40249-018-0390-y
  • Novák P, Neumann P, Pech J, et al. RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013;29(6):792–793. doi: 10.1093/bioinformatics/btt054
  • Mejia R, Vicuña Y, Broncano N, et al. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am J Trop Med Hyg. 2013;88(6):1041–1047. doi: 10.4269/ajtmh.12-0726
  • Pilotte N, Papaiakovou M, Grant JR, et al. Improved PCR-Based detection of soil transmitted helminth infections using a next-generation sequencing approach to assay design. PLoS Negl Trop Dis. 2016;10(3):e0004578. doi: 10.1371/journal.pntd.0004578
  • Scheltema RA, Jankevics A, Jansen RC, et al. PeakML/mzMatch: a file format, Java library, R library, and tool-chain for mass spectrometry data analysis. Anal Chem. 2011;83(7):2786–2793. doi: 10.1021/ac2000994
  • Lamour SD, Gomez-Romero M, Vorkas PA, et al. Discovery of infection associated metabolic markers in human African trypanosomiasis. PLoS Negl Trop Dis. 2015;9:e0004200. doi: 10.1371/journal.pntd.0004200
  • Vincent IM, Daly R, Courtioux B, et al. Metabolomics identifies multiple candidate biomarkers to diagnose and stage human African trypanosomiasis. PLoS Negl Trop Dis. 2016;10(12):e0005140. doi: 10.1371/journal.pntd.0005140
  • Midzi H, Vengesai A, Muleya V, et al. Metabolomics for biomarker discovery in schistosomiasis: a systematic scoping review. Front Trop Dis. 2023;4:1108317. doi: 10.3389/fitd.2023.1108317
  • Bennuru S, Lustigman S, Abraham D, et al. Metabolite profiling of infection-associated metabolic markers of onchocerciasis. Mol Biochem Parasitol. 2017;215:58–69. doi: 10.1016/j.molbiopara.2017.01.008
  • Colley DG, Ramzy RMR, Maganga J, et al. The POC-CCA assay for detection of Schistosoma mansoni infection needs standardization in production and proper quality control to be reliable. Acta Tropica query. 2023;238:106795. doi: 10.1016/j.actatropica.2022.106795
  • Casacuberta-Partal M, Beenakker M, de Dood CJ, et al. Specificity of the point-of-care urine strip test for Schistosoma circulating cathodic antigen (POC-CCA) tested in non-endemic pregnant women and young children. Am J Trop Med Hyg. 2021;104:1412–1417. doi: 10.4269/ajtmh.20-1168
  • Graeff-Teixeira C, Favero V, Pascoal VF, et al. Low specificity of point-of-care circulating cathodic antigen (POCCCA) diagnostic test in a non-endemic area for schistosomiasis mansoni in Brazil. Acta Trop. 2021;217:105863. doi: 10.1016/j.actatropica.2021.105863
  • Pedrosa MLC, de Oliveira AK, Pereira C, et al. Dot blot platform as a novel diagnostic kit: rapid, accurate, and on-site detection of Schistosoma mansoni in urine samples of hard to detect individuals. Parasitol Res. 2021;120:3795–3803. doi: 10.1007/s00436-021-07312-7
  • Sakyi SA, Aboagye SY, Darko Otchere I, et al. Clinical and laboratory diagnosis of buruli ulcer disease: a systematic review. Can J Infect Dis Med Microbiol. 2016;2016:5310718. doi: 10.1155/2016/5310718
  • Shah V, Ferrufino L, Gilman RH, et al. Field evaluation of the InBios Chagas detect plus rapid test in serum and whole-blood specimens in Bolivia. Clinical vaccine immunol. Vol. 21. 2014. p. 1645–1649.
  • John AS. The evidence to support point-of-care testing. Clin Biochem Rev. 2010;31:111–119.
  • Hays JP, Mitsakakis K, Luz S, et al. The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex ‘mix-and-match’ implementation package. Eur J Clin Microbiol Infect Dis. 2019;38(6):1015–1022. doi: 10.1007/s10096-019-03543-1
  • Freedman DB. Clinical governance: implications for point-of-care testing. Ann Clin Biochem. 2002;39(5):421–423. doi: 10.1258/000456302760413820
  • Cai P, Mu Y, Weerakoon KG, et al. Performance of the point-of-care circulating cathodic antigen test in the diagnosis of schistosomiasis japonica in a human cohort from Northern Samar, the Philippines. Infect Dis Poverty. 2021;10:121. doi: 10.1186/s40249-021-00905-5
  • Cavalcanti MG, Cunha AFA, Peralta JM. The advances in molecular and new point-of-care (POC) diagnosis of schistosomiasis pre- and post-praziquantel use: in the pursuit of more reliable approaches for low endemic and non-endemic areas. Front Immunol. 2019;10:858. doi: 10.3389/fimmu.2019.00858
  • Armstrong M, Harris AR, D’Ambrosio MV, et al. Point-of-care sample preparation and automated quantitative detection of Schistosoma haematobium using mobile phone microscopy. Am J Trop Med Hyg. 2022;106:1442–1449. doi: 10.4269/ajtmh.21-1071
  • Bogoch I, Koydemir HC, Tseng D, et al. Evaluation of a mobile phone-based microscope for screening of Schistosoma haematobium infection in rural Ghana. Am J Trop Med Hyg. 2017;96(6):1468–1471. doi: 10.4269/ajtmh.16-0912
  • Vengesai A, Muleya V, Midzi H, et al. Diagnostic performances of Schistosoma haematobium and Schistosoma mansoni recombinant proteins, peptides and chimeric proteins antibody based tests. Syst Scoping Rev PLoS ONE. 2023;18:e0282233. doi: 10.1371/journal.pone.0282233
  • Sousa MS, van Dam GJ, Pinheiro MCC, et al. Performance of an ultra-sensitive assay targeting the circulating anodic antigen (CAA) for detection of Schistosoma mansoni infection in a low endemic area in Brazil. Front Immunol. 2019;10:682. doi: 10.3389/fimmu.2019.00682
  • Knopp S, Corstjens PLAM, Koukounari A, et al. Sensitivity and Specificity of a Urine circulating anodic antigen test for the diagnosis of Schistosoma haematobium in low endemic settings. PLoS Negl Trop Dis. 2015;9:e0003752. doi: 10.1371/journal.pntd.0003752
  • Archer J, Barksby R, Pennance T, et al. Analytical and clinical assessment of a portable, isothermal recombinase polymerase amplification (RPA) assay for the molecular diagnosis of urogenital schistosomiasis. Molecules. 2020;25:4175. doi: 10.3390/molecules25184175
  • Archer J, Patwary FK, Sturt AS, et al. Validation of the isothermal Schistosoma haematobium recombinase polymerase amplification (RPA) assay, coupled with simplified sample preparation, for diagnosing female genital schistosomiasis using cervicovaginal lavage and vaginal self-swab samples. PLoS Negl Trop Dis. 2022;16(3):e0010276. doi: 10.1371/journal.pntd.0010276
  • Gandasegui J, Fernández-Soto P, DaCal E, et al. Field and laboratory comparative evaluation of a LAMP assay for the diagnosis of urogenital schistosomiasis in Cubal, Central Angola. Trop Med Int Health. 2018;23(9):992–1001. doi: 10.1111/tmi.13117
  • Lodh N, Mikita K, Bosompem KM, et al. Point of care diagnosis of multiple schistosome parasites: species-specific DNA detection in urine by loop-mediated isothermal amplification (LAMP). Acta Trop. 2017;173:125–129. doi: 10.1016/j.actatropica.2017.06.015
  • Price M, Cyrs A, Sikasunge CS, et al. Testing the infection prevalence of Schistosoma mansoni after mass drug administration by comparing sensitivity and specificity of species-specific repeat fragment amplification by PCR and loop-mediated isothermal amplification. Am J Trop Med Hyg. 2019;101(1):78–83. doi: 10.4269/ajtmh.19-0121
  • Mwangi IN, Agola EL, Mugambi RM, et al. Development and evaluation of a loop-mediated isothermal amplification assay for diagnosis of Schistosoma mansoni infection in faecal samples. J Parasitol Res. 2018;2018:1–7. doi: 10.1155/2018/1267826
  • Shiraho EA, Eric AL, Mwangi IN, et al. Development of a loop mediated isothermal amplification for diagnosis of Ascaris lumbricoides in fecal samples. J Parasitol Res. 2016;2016:7376207. doi: 10.1155/2016/7376207
  • Patel C, Keller L, Welsche S, et al. Assessment of fecal calprotectin and fecal occult blood as point-of-care markers for soil-transmitted helminth attributable intestinal morbidity in a case-control substudy conducted in Côte d’Ivoire, Lao PDR and Pemba Island, Tanzania. EClinicalMedicine. 2021;32:100724. doi: 10.1016/j.eclinm.2021.100724
  • Dacal E, Bermejo-Peláez D, Lin L, et al. Mobile microscopy and telemedicine platform assisted by deep learning for the quantification of Trichuris trichiura infection. PLoS Negl Trop Dis. 2021;15:e0009677. doi: 10.1371/journal.pntd.0009677
  • Yang A, Bakhtari N, Langdon-Embry L, et al. Kankanet: an artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases. PLoS Negl Trop Dis pntd.0007577. 2019;13:e0007577. doi: 10.1371/journal.pntd.0007577
  • Sadaow L, Sanpool O, Rodpai R, et al. Development of immunochromatographic device as a point-of-care tool for serodiagnosis of human strongyloidiasis cases. Eur J Clin Microbiol Infect Dis. 2020;39:465–470. doi: 10.1007/s10096-019-03745-2
  • Tamarozzi F, Longoni SS, Mazzi C, et al. The accuracy of a recombinant antigen immunochromatographic test for the detection of Strongyloides stercoralis infection in migrants from sub-Saharan Africa. Parasites Vectors. 2022;15(1):142. doi: 10.1186/s13071-022-05249-z
  • Ekanya R, Beng AA, Anim MA, et al. Concordance between Ov16 rapid diagnostic test(RDT) and Ov16 enzyme-linked immunosorbent assay (ELISA) for the diagnosis of onchocerciasis in areas of contrasting endemicity in Cameroon. Parasite Epidemiol Control. 2023;21:e00290. doi: 10.1016/j.parepi.2023.e00290
  • Hotterbeekx A, Perneel J, Mandro M, et al. Comparison of diagnostic tests for Onchocerca volvulus in the Democratic Republic of Congo. Pathogens. 2020;9:435. doi: 10.3390/pathogens9060435
  • Ta-Tang TH, Berzosa P, Rubio JM, et al. Evaluation of LAMP for the diagnosis of loa loa infection in dried blood spots compared to PCR-based assays and microscopy. Mem Inst Oswaldo Cruz. 2022;116:e210210. doi: 10.1590/0074-02760210210
  • D’Ambrosio MV, Bakalar M, Bennuru S, et al. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med. 2015;7(286):re2864–re2864. doi: 10.1126/scitranslmed.aaa3480
  • Chesnais CB, Vlaminck J, Kunyu-Shako B, et al. Measurement of circulating filarial antigen levels in human blood with a point-of-care test strip and a portable spectrodensitometer. Am J Trop Med Hyg. 2016;94:1324–1329. doi: 10.4269/ajtmh.15-0916
  • Kinyatta N, Wambua L, Mutahi W, et al. Optimization of a loop-mediated isothermal amplification assay as a point-of-care tool for the detection of wuchereria bancrofti in human blood in Tana River Delta, Kenya. J Parasitol Res. 2021;Article ID:6650870, 9. doi: 10.1155/2021/6650870
  • Phuakrod A, Kusuwan N, Sripumkhai W, et al. Semi-automated microfluidic device combined with a miniPCR-duplex lateral flow dipstick for screening and visual species identification of lymphatic filariae. Micromach. 2022;13(2):336. doi: 10.3390/mi13020336
  • de Avelar DMD, Carvalho DM, Rabello A. Development and clinical evaluation of loop-mediated isothermal amplification (LAMP) assay for the diagnosis of human visceral leishmaniasis in Brazil. Bio Med Res Int. 2019;2019:1–7. Article ID. doi: 10.1155/2019/8240784.
  • Adams ER, Schoone G, Versteeg I, et al. Development and evaluation of a novel loop mediated isothermal amplification assay for the diagnosis of cutaneous and visceral leishmaniasis. J Clin Microbiol. 2018;56:e00386–18. doi: 10.1128/JCM.00386-18
  • Pattabhi S, Whittle J, Mohamath R, et al. Design, development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of visceral leishmaniasis. PLoS Negl Trop Dis. 2010;4:e822. doi: 10.1371/journal.pntd.0000822
  • Schallig HDFH, Hu RVP, Kent AD, et al. Evaluation of point of care tests for the diagnosis of cutaneous leishmaniasis in Suriname. BMC Infect Dis. 2019 Jan 7;19(1):25. doi: 10.1186/s12879-018-3634-3
  • Vink MMT, Nahzat SM, Rahimi H, et al. Evaluation of point-of-care tests for cutaneous leishmaniasis diagnosis in Kabul, Afghanistan. EBioMedicine. 2018;37:453–460. doi: 10.1016/j.ebiom.2018.10.063
  • Sullivan L, Fleming J, Sastry L, et al. Identification of sVSG117 as an immunodiagnostic antigen and evaluation of a DualAntigen lateral flow test for the diagnosis of human African trypanosomiasis. PLoS Negl Trop Dis. 2014;8:e2976. (2014). doi: 10.1371/journal.pntd.0002976.
  • Hayashida K, Nambala P, Reet NV, et al. Development of a bio-inkjet printed LAMP test kit for detecting human African trypanosomiasis. PLoS Negl Trop Dis. 2020;14:e0008753. doi: 10.1371/journal.pntd.0008753
  • Bottazzi ME. The human hookworm vaccine: recent updates and prospects for success. J Helminthol. 2015;89(5):540–544. doi: 10.1017/S0022149X15000206
  • Hotez PJ, Dumonteil E, Heffernan MJ, et al. Innovation for the “bottom 100 million”: eliminating neglected tropical diseases in the Americas. Adv Exp Med Biol. 2013;764:1–12. doi: 10.1007/978-1-4614-4726-9_1
  • Juliano RL. Pharmaceutical innovation and public policy: the case for a new strategy for drug discovery and development. 2013. [[cited 2015 Aug 11]]. Internet Sci Public Policy. 40(3):393–405. doi: 10.1093/scipol/scs125.
  • Muñoz V, Visentin F, Foray D, et al. Can medical products be developed on a non-profit basis? Exploring product development partnerships for neglected diseases. Sci Publ Policy. 2015;42(3):315–338. doi: 10.1093/scipol/scu049
  • Policy Cures Research. G-FINDER 2019 Report. Neglected Tropical Disease Research And Development: Uneven Progress. 2020 [cited 2023 Mar 27]; Available from: https://s3-ap-southeast-2.amazonaws.com/policy-cures-website-assets/app/uploads/2020/02/11150341/G-Finder2019.pdf
  • Korea International Cooperation Agency. Global Disease Eradication Fund. 2020. Available from: http://www.koica.go.kr/koica_en/3458/subview.do
  • Kessel M, Ndunģu J Diagnostics for NTD: developing treatments for neglected tropical diseases is only half the battle. The Scientist. 2014. Available from: https://www.thescientist.com/opinion/opinion-diagnostics-for-NTD-36965
  • Das AK, Harries AD, Hinderaker SG, et al. Active and passive case detection strategies for the control of leishmaniasis in Bangladesh. Publ Health Action. 2014;4(1):15–21. doi: 10.5588/pha.13.0084
  • Wamboga C, Matovu E, Bessell PR, et al. Enhanced passive screening and diagnosis for gambiense human African trypanosomiasis in north-western Uganda—moving towards elimination. PLoS One. 2017;12:e0186429. doi: 10.1371/journal.pone.0186429
  • Celine A, Temmy S, Fabrizio T, et al. Are public-private partnerships the solution to tackle neglected tropical diseases? A systematic review of the literature. Health Policy. 2017;121(7):745–754. doi: 10.1016/j.healthpol.2017.05.005
  • Ochola EA, Karanja DMS, Elliott SJ. Local tips, global impact: community-driven measures as avenues of promoting inclusion in the control of neglected tropical diseases: a case study in Kenya. Infect Dis Poverty. 2022;11:88. doi: 10.1186/s40249-022-01011-w
  • Madon S, Malecela MN, Mashoto K, et al. The role of community participation for sustainable integrated neglected tropical diseases and water, sanitation and hygiene intervention programs: a pilot project in Tanzania. Soc Sci Med. 2018;202:28–37. doi: 10.1016/j.socscimed.2018.02.016
  • Marchal B, Van Dormael M, Pirard M, et al. Neglected tropical disease (NTD) control in health systems: the interface between programmes and general health services. Acta Trop. 2011;120:S177–85. doi: 10.1016/j.actatropica.2011.02.017
  • Krentel A, Gyapong M, McFarland DA, et al. Keeping communities at the centre of efforts to eliminate lymphatic filariasis: learning from the past to reach a future free of lymphatic filariasis. International Health. 2021;13(Supplement_1):S55–S59. doi: 10.1093/inthealth/ihaa086
  • Otoo DD, Appiah-Agyekum NN, Adzei FA. Perceived determinants of implementation success of the neglected tropical diseases programme in Ghana: a qualitative study among programme officers. BMC Publ Health. 2021;21:2074. doi:10.1186/s12889-021-12096-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.