126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Near surface resistivity investigation of regolith of Middle Benue Trough: implications on road pavement along Lafia-Shendam Axis, North Central Nigeria

ORCID Icon &
Pages 46-60 | Received 25 Oct 2022, Accepted 13 Mar 2024, Published online: 24 Mar 2024

References

  • Abubakar MB. 2014. Petroleum potentials of the Nigerian Benue Trough and Anambra Basin: a regional synthesis. Nat Resour. 5(1):25–58. doi: 10.4236/nr.2014.51005.
  • Acworth RI. 1987. The development of crystalline basement aquifers in a tropical environment. Q J Eng Geol Hydrogeol. 20(4):265–272. doi: 10.1144/GSL.QJEG.1987.020.04.02.
  • Adebisi NO, Ariyo SO, Sotikare PB. 2016. Electrical resistivity and geotechnical assessment of subgrade soils in southwestern part of Nigeria. J Afr Earth Sci. 119:256–263. doi: 10.1016/j.jafrearsci.2016.03.019.
  • Adewumi T, Salako KA. 2018. Delineation of mineral potential zone using high resolution aeromagnetic data over part of Nasarawa State, North Central Nigeria. Egypt J Pet. 27(4):759–767. doi: 10.1016/j.ejpe.2017.11.002.
  • Agbede OA. 1992. Characteristics of tropical red soils as foundation materials. Nigerian J Sci. 26:237–242.
  • Akande SO, Horn EE, Reutel C. 1988. Mineralogy, fluid inclusion and genesis of the Arufu and Akwana Pb-Zn-F mineralization, middle Benue Trough, Nigeria. J Afr Earth Sci. 7:167–180. doi: 10.1016/0899-5362(88)90063-2.
  • Akande O, Zentelli M, Reynolds PH. 1989. Fluid inclusion and stable isotope studies of Pb-Zn-fluorite-barite mineralization in the lower and middle Benue Trough, Nigeria. Mineral Deposita. 24(3):183–191. doi: 10.1007/BF00206441.
  • Anand RR. 2016. Regolith-landform processes and geochemical exploration for base metal deposits in regolith-dominated terrains of the Mt Isa region, northwest Queensland, Australia. Ore Geol Rev. 73:451–474. doi: 10.1016/j.oregeorev.2015.08.014.
  • Anand RR, Butt CRM. 1988. The terminology and classification of the deeply weathered regolith. Perth, Western Australia: CSIRO, Division of Exploration Geoscience.
  • Anudu1 GK, Onuba LN, Onwuemesi AG, Ikpokonte AE. 2012. Analysis of aeromagnetic data over Wamba and its adjoining areas in north-central Nigeria. Earth Sci Res J. 16(1):25–33. doi: 10.3923/rjasci.2012.1.9.
  • Anudu GK, Stephenson RA, Ofoegbu CO, Obrike SE. 2019. Basement morphology of the middle Benue Trough, Nigeria, revealed from analysis of high-resolution aeromagnetic data using grid-based operator methods. J Afr Earth Sci. 162:103724. doi: 10.1016/j.jafrearsci.2019.103724.
  • Benkhelil J. 1989. The origin and evolution of the Cretaceous Benue Trough (Nigeria). J African Earth Sci. 8(2–4):251–282. doi: 10.1016/s0899-5362(89)80028-4.
  • Biggs AJW, Mahony KM. 2004. Is soil science relevant to road infrastructure? 13th International Soil Conservation Organisation Conference; July; Brisbane, Australia.
  • Bishop J, Sattel D, Macnae J, Munday T. 2001. Electrical structure of the regolith in the Lawlers District, Western Australia. Explor Geophys. 32(1):20–28. doi: 10.1071/eg01020.
  • Butt CRM, Lintern MJ, Anand RR. 1997. Evolution of regoliths and landscapes in deeply weathered terrain – implications for geochemical exploration. Ore Geol Rev. 16(3–4):167–183. doi: 10.1016/S0169-1368(99)00029-3.
  • Camarero PL, Moreira CA. 2017. Geophysical investigation of earth dam using the electrical tomography resistivity technique. Rem Revista Escola de Minas. 70(1):47–52. doi: 10.1590/0370-44672016700099.
  • Chaanda MS, Obaje NG, Moumouni A, Goki NG, Lar UA. 2010. Environmental Impact of artisanal Mining of Barytes in Azara Area, Middle Benue Trough, Nigeria. Online J Earth Sci. 4(1):38–32. doi: 10.3923/ojesci.2010.38.42.
  • Chardon D, Grimaud J, Beauvais A, Bamba O. 2018. West African lateritic pediments: landform-regolith evolution processes and mineral exploration pitfalls. Earth Sci Rev. 179:124–146. doi: 10.1016/j.earscirev.2018.02.009.
  • Christensen NB. 1992. On the importance of determining electrical anisotropy in hydrogeological investigations. 54th EAEG meeting, Paris, France, Extended Abstracts. p. 712–713.
  • Christensen NB. 2000. Difficulties in determining electrical anisotropy in subsurface investigation. Geophys Prospect. 48(1):1–19. doi: 10.1046/j.13652478.2000.00174.x.
  • Chunwate BT, Yahaya S, Samaila IK, Ja’afaru SW. 2019. Analysis of urban land use and land cover change for sustainable development: a case of Lafia, Nasarawa State, Nigeria. J Geogr Inf Syst. 11(3):347–358. doi: 10.4236/jgis.2019.113021.
  • Daud NNN, Jalil FNA, Celik S, Albayrak ZNK. 2019. The important aspects of subgrade stabilization for road construction. IOP Conf Ser: Mater Sci Eng. 512:012005. doi: 10.1088/1757-899X/512/1/012005.
  • Eggleton RA, Taylor G, Le Gleuher M, Foster LD, Tilley DB, Morgan CM. 2008. Regolith profile, mineralogy and geochemistry of the weipa bauxite, northern Australia. Aust J Earth Sci. 55(sup1):S17–S43. doi: 10.1080/08120090802438233.
  • FERMA. 2020. Report on environmental management plan (EMP) for the periodic maintenance of Lafia roads: federal roads development project (FRDP) Nigeria in collaboration with federal roads maintenance agency.
  • Finkl CW. 1988. Soils and weathered materials, field methods and survey. In: General geology. Encyclopedia of earth science. Boston (MA): Springer. doi:10.1007/0-387-30844-X_107.
  • Flathe H. 1955. Possibilities and limitations in applying geoelectrical methods to hydrogeological problems in the coastal area of northwest Germany. Interact Stud. 3(2):95–110. doi: 10.1111/j.1365-2478.1955.tb01363.x.
  • Georgiadis GA, Tranos MD, Makedon TK, Dimopoulos GC. 2007. Contribution of geological mapping in road construction: an example from Veria-Kozani National road, Kastania Area. Bull Geol Soc Greece. 40(4):1652–1663. doi: 10.12681/bgsg.17069.
  • Gourdol L, Clément R, Juilleret J, Pfister L, Hissler C. 2021. Exploring the regolith with electrical resistivity tomography in large-scale surveys: electrode spacing-related issues and possibility. Hydrol Earth Syst Sci. 25(4):1785–1812. doi: 10.5194/hess-25-1785-2021.
  • Govindan S (2015). Near surface investigations at the in-situ regolith and fresh rock interface: an investigation into the effects of a strong Fe-oxide presence on the electrical resistivity signature at Major’s Creek, NSW, SEG Global Meeting Abstracts; 7–10 July; Near-Surface Asia Pacific Conference, Waikoloa, Hawaii. doi: 10.1190/nsapc2015-001.
  • Graham RC, Rossi AM, Hubbert KR. 2010. Rock to regolith conversion: producing hospitable substrates for terrestrial ecosystems. GSA Today. 20(2):4–9. doi: 10.1130/GSAT57A.1.
  • Gupta RK, Abrol IP, Finkl CW. 2008. Saprolite, regolith and soil. In: Chesworth W, editor. Encyclopedia of Soil Science. Encyclopedia of earth sciences series. Dordrecht: Springer. doi: 10.1007/978-1-4020-3995-9_502.
  • Hazell JRT, Cratchley CR, Jones CRC. 1992. The hydrogeology of crystalline aquifers in northern Nigeria and geophysical techniques in their exploration. London: Geological Society. doi:10.1144/GSL.SP.1992.066.01.08.
  • Hazell JRT, Cratchley CR, Preston AM. 1988. The location of aquifers in crystalline rocks and alluvium in northern Nigeria using combined electromagnetic and resistivity techniques. Q J Eng Geol Hydrogeol. 21(2):159–175. doi: 10.1144/GSL.QJEG.1988.021.02.05.
  • Henriet JP. 1976. Direct applications of the Dar Zarrouk Parameters in ground water surveys. Geophys Prospect. 24(2):344–353. doi: 10.1111/j.1365-2478.1976.tb00931.x.
  • Hobbs PRN, Jone LD, Kirkham MP, Gunn DA, Entwisie DC. 2019. Shrinkage limit test results and interpretation for clay soils. Q J Eng Geol Hydrogeol. 52(2):220–229. doi: 10.1144/qjegh2018-100.
  • Hunt CE. 1986. Surficial deposits of the United States. New York: Van Nostrand Reinhold.
  • Ideki O, Weli VE. 2019. Analysis of rainfall variability using remote sensing and GIS in North Central Nigeria. Atmos Clim Sci. 9(2):191–201. doi: 10.4236/acs.2019.92013.
  • Jone LD. 2017. Expansive soils. In encyclopaedia of engineering geology. Bobrowsky, P.T. and Marker, M., editors. London, UK: Meteor Springer.
  • Jones MJ. 1985. The weathered zone aquifers of the basement complex areas of Africa. Q J Eng Geol Hydrogeol. 18(1):35–46. doi: 10.1144/GSL.QJEG.1985.018.01.06.
  • Juilleret J, Dondeyne S, Hissler C. 2014. What about the Regolith, the saprolith and the bedrock: proposals for classifying the subsolum in WRB. European Geosciences Union General Assembly, 27 April – 02 May, 2014, Vienna, Austria.
  • Keller GV 1974. Engineering applications of electrical geophysical methods. In: Subsurface exploration for underground excavation and heavy construction. American Society of Civil Engineers Speciality Conference, Henniker. p. 128–143.
  • Keller GV, Frischknecht FC. 1996. Electrical methods in geophysical prospecting. London: Pergamon.
  • Kellett R, Steensma G, Bauman P. 2004. Mapping groundwater in regolith and fractured bedrock using ground and airborne geophysics: case studies from Malawi and Brazil. ASEG Ext Abstr. 2004(1):1–4. doi: 10.1071/ASEG2004ab080.
  • Key RM. 1992. An introduction to the crystalline basement of Africa. Geol Soc London, Spec Publ. 66:29–57. doi: 10.1144/GSL.SP.1992.066.01.02.
  • Loke MH, Barker RD. 1996. Rapid Least-Squares Inversion of Apparent Resistivity Pseudosections by a Quasi-Newton Method. Geophys Prospect. 44:131–152. doi: 10.1111/j.1365-2478.1996.tb00142.x.
  • Lowrie W, Fichtner A. 2019. Fundamentals of geophysics. 3rd ed. Cambridge, United Kingdom: Cambridge University Press.
  • MacDonald AM, Calow RC. 2009. Developing groundwater for secure rural water supplies in Africa. Desalination. 248(1–3):546–556. doi: 10.1016/j.desal.200-8.05.100.
  • MacDonald DMJ, Edmunds WM. 2014. Estimation of groundwater recharge in weathered basement aquifers, southern Zimbabwe; a geochemical approach. Appl Geochem. 42:86–100. doi: 10.1016/j.apgeochem.2014.01.003.
  • Maillet R. 1947. The fundamental equations of electrical prospecting. Geophysics. 12(4):529–662. doi: 10.1190/1.1437342.
  • Massarch KR. 2000. Geophysical methods for geotechnical, geo-environmental and geo-dynamic site characterization. In: 3rd international workshop on the applications of geophysics to rock and soil engineering, 18 November 2000, Melbourne, Australia.
  • Merritt AJ, Chambers JE, Wilkinson PB, West LJ, Murphy W, Gunn D, Uhlemann S. 2016. Measurement and modelling of moisture—electrical resistivity relationship of fine-grained unsaturated soils and electrical anisotropy. J Appl Geophys. 124:155–165. doi: 10.1016/j.jappgeo.2015.11.005.
  • Munday TJ, Macnae J, Bishop J, Sattel S. 2001. A geological interpretation of observed electrical structures in the regolith: lawlers, Western Australia. Explor Geophys. 32(1):36–47. doi: 10.1071/eg01036.
  • Munday T, Sumpton J, Fitzpatrick A. 2004. Exploration for kimberlites through a complex regolith cover – a case study in the application of AEM in the deeply weathered archaean yilgarn craton, Western Australia. Paper Number: SEG-2004-1225 presented at the 2004 SEG Annual Meeting, Denver, Colorado; October.
  • Nwajide CS. 1990. Cretaceous sedimentation and paleogeography of the Central Benue trough. In: Ofoegbu CO, editor. The BenueTrough, Structure and Evolution. International monograph series. Braunschweig; p. 19–38.
  • Obaje NG. 2009. The Benue Trough. In: Geology and mineral resources of Nigeria. Lecture notes in earth sciences. Vol. 120. Berlin, Heidelberg: Springer. 10.1007/978-3-540-92685-6_5
  • Obiora SC. 2006. Petrology and geotectonic setting of the basement complex rocks around Ogoja, south-eastern Nigeria. Ghana J Sci. 46(1):13–25. doi: 10.4314/gjs.v46i1.15912.
  • Offodile ME. 1976. A review of the geology of the cretaceous of the Benue Valley. In: Kogbe CA, editor Geology of Nigeria. Lagos: Elizabethan Publishing Co. pp. 319–330.
  • Offodile ME. 1980. A mineral survey of the cretaceous of the Benue Valley, Nigeria. Cretaceous Res. 1(2):101–124. doi: 10.1016/0195-6671(80)90020-8.
  • Offodile ME, Reyment R. 1976. Stratigraphy of the Keana-Awe area of the middle Benue 435 region of Nigeria. Bull Geol Institut Univ Upsala. 7:37–66.
  • Ogundipe IE. 2017. Thermal and chemical variations of the Nigerian Benue Trough lead-zinc-barite-fluorite deposits. J Afr Earth Sci. 132:72–79. doi: 10.1016/j.jafrearsci.2017.05.004.
  • Okagbue CO, Uma KO. 1988. The impact of geology on the performance of a bituminous surfaced pavement – a case study from southeastern Nigeria. J Afr Earth Sci. 7(1):257–264. doi: 10.1016/0899-5362(88)90072-3.
  • Ola SA. 1978. Geotechnical properties and behavior of some stabilized Nigerian laterite soil. Q J Eng Geol Hydrogeol. 11(2):145–160. doi: 10.1144/GSL.QJEG.1978.011.02.04.
  • Ola SA. 1980. Mineralogical properties of some Nigerian residual soils in relation with building problems. Eng Geol. 15(1–2):1–13. doi: 10.1016/0013-7952(80)90027-7.
  • Oladeinde SO, Magaji IJ, Ekpo AS. 2020. Assessment of climate variability trends in Nasarawa State, Nigeria. J Geogr Environ Earth Sci Int. 24(5):41–50. doi: 10.9734/jgeesi/2020/v24i530226.
  • Omorinbola EO. 1983. Deep weathering of interfluves in the basement complex of South-Western Nigeria: its geomorphological and geohydrological implications. Trans Inst Br Geogr. 8(3):342–360. doi: 10.2307/622049.
  • Orellana E, Mooney HM. 1966. Master Tables and Curves for Vertical Electrical Sounding over Layered Structures. Interciencia. p. 34.
  • Palacky GV. 1987. Resistivity characteristics of geologic targets. Electromagn Methods Appl Geophys. 1, Theory:1351.
  • Pawlik Ł, Kasprzak M. 2018. Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT). Geomorphology. 300:1–12. doi: 10.1016/j.geomorph.2017.10.002.
  • Pedron FA, Oliveira RB, Dalmolin RSD, Azevedo AC, Kilca RV. 2015. Boundary between soil and saprolite in Alisols in the south of Brazil. Rev Bras Ciênc Solo. 39(3):643–653. doi: 10.1590/01000683rbcs20140229.
  • Petry TM, Little DN. 2002. Review of Stabilization of Clays and expansive soils in pavements and lightly loaded structures–history, practice, and future. J Mater Civ Eng. 14(6):447–460. doi: 10.1061/(ASCE)0899-1561(2002)14:6(447).
  • Rasul JM, Burrow MPN, Ghataora GS. 2016. Consideration of the deterioration of stabilised subgrade soils in analytical road pavement design. Transp Geotech. 9:96–109. doi: 10.1016/j.trgeo.2016.08.002.
  • Reynolds JM. 1998. An introduction to applied and environmental geophysics. 2nd ed. Hoboken: Wiley.
  • Romero-Ruiz A, Linde N, Keller T, Or D. 2019. A review of geophysical methods for soil structure characterization. Rev Geophys. 56(4):672–697. doi: 10.1029/2018RG000611.
  • Smaida A, Mekerta B, Gueddouda MK. 2021. Physico-mechanical stabilization of a high swelling clay. Constr Build Mater. 289:123197. doi: 10.1016/j.conbuildmat.2021.123197.
  • Smith RB. 1988. Capacité portante d’une argile tertiaire et conséquences sur la conception de la chaussée. Bull Int Assoc Eng Geol. 37(1):137–141. doi: 10.1007/BF02590380.
  • Taylor GM, Eggleton RA. 2001. Regolith geology and geomorphology. Chichester, UK; New York, NY: J. Wiley.
  • Tukur A, Samaila NK, Grimes ST, Kariya II, Chaanda MS. 2015. Two member subdivision of the Bima Sandstone, upper Benue Trough, Nigeria: based on sedimentological data. J Afr Earth Sci. 104:140–158. doi: 10.1016/j.jafrearsci.2014.10.015.
  • Vaiana R, Oliviero Rossi C, Perri G. 2021. An eco-sustainable stabilization of clayey road subgrades by lignin treatment: an overview and a Comparative Experimental Investigation. Appl Sci. 11(24):11720. doi: 10.3390/app112411720.
  • Vander-Velpen BPA. 1988. Resistivity Depth Sounding Interpretation Software WinResist Version 1.0. M.Sc. Research Project, ITC, Delft, Netherland.
  • Wright EP. 1992. The hydrogeology of crystalline basement aquifers in Africa. Geol Soc London, Spec Publ. 66(1):1–27. doi: 10.1144/GSL.SP.1992.066.01.01.
  • Wright JB. 1981. Review of the origin and evolution of the Benue Trough in Nigeria. Earth Evolution Sci. 2:98–103.
  • Wright JB, Hastings DA, Jones WB, Williams HR. 1985. Geology and mineral resources of West Africa. London: George Allen and Unwin; p. 187.
  • Zohdy AA, Eaton CP, Mabey DR. 1974. Application of surface geophysics to ground-water investigations. Techniques of water-resources investigations 02-D1 USGS numbered series. doi: 10.3133/twri02D1.