1,634
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling methane dynamics in three wetlands in Northeastern China by using the CLM-Microbe model

, , , , , , , , , , , , & show all
Article: 2074895 | Received 31 Dec 2021, Accepted 03 May 2022, Published online: 22 May 2022

References

  • Angle, J. C., T. H. Morin, L. M. Solden, A. B. Narrowe, G. J. Smith, M. A. Borton, C. Rey-Sanchez, et al. 2017. “Methanogenesis in Oxygenated Soils Is a Substantial Fraction of Wetland Methane Emissions.” Nature Communications 8 (1): 1567. doi:10.1038/s41467-017-01753-4.
  • Bhullar, G. S., P. J. Edwards, H. Olde Venterink, and F.-H. Yu. 2014. “Influence of Different Plant Species on Methane Emissions from Soil in a Restored Swiss Wetland.” Plos One 9 (2): e89588. doi:10.1371/journal.pone.0089588.
  • Bousquet, P., P. Ciais, J. B. Miller, E. J. Dlugokencky, D. A. Hauglustaine, C. Prigent, G. R. Van der Werf, et al. 2006. “Contribution of Anthropogenic and Natural Sources to Atmospheric Methane Variability.” Nature 443 (7110): 439–14. doi:10.1038/nature05132.
  • Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. Zhuang. 2013. “Methane Emissions from Wetlands: Biogeochemical, Microbial, and Modeling Perspectives from Local to Global Scales.” Global Change Biology 19 (5): 1325–1346. doi:10.1111/gcb.12131.
  • Cao, N. 2015. Study on the carbon dioxide flux in Peatland of volcanic cluster in the longgang region at changbai mountain —Take the Jinchuan peatland as an example . Master. Northeast Normal University.
  • Chadburn, S. E., T. Aalto, M. Aurela, D. Baldocchi, C. Biasi, J. Boike, E. J. Burke, et al. 2020. “Modeled Microbial Dynamics Explain the Apparent Temperature Sensitivity of Wetland Methane Emissions.” Global Biogeochemical Cycles 34 (11): e2020GB006678. doi:10.1029/2020GB006678.
  • Cordruwisch, R., H. J. Seitz, and R. Conrad. 1988. “The Capacity of Hydrogenotrophic Anaerobic-Bacteria to Compete for Traces of Hydrogen Depends on the Redox Potential of the Terminal Electron-Acceptor.” Archives of Microbiology 149 (4): 350–357. doi:10.1007/Bf00411655.
  • Ding, W., Z. Cai, H. Tsuruta, and L. Xiaoping. 2002. “Effect of Standing Water Depth on Methane Emissions from Freshwater Marshes in Northeast China.” Atmospheric Environment 36 (33): 5149–5157. doi:10.1016/S1352-2310(02)00647-7.
  • Ding, W., Z. Cai, and D. Wang. 2004. “Preliminary Budget of Methane Emissions from Natural Wetlands in China.” Atmospheric Environment 38 (5): 751–759. doi:10.1016/j.atmosenv.2003.10.016.
  • Fazli, H. C., U. K. M. Man, and A., . I. Shah. 2013. “Characteristics of Methanogens and Methanotrophs in Rice Fields: A Review.” Asia Pac J Mol Biol Biotechnol 21 (1): 3–17.
  • Given, P. H., and C. H. Dickinson. 1975. “Biochemistry and Microbiology of Peats.” Soil Biochemistry, 3:123–212 .
  • Han, W., M. Shi, J. Chang, Y. Ren, R. Xu, C. Zhang, and Y. Ge. 2017. “Plant Species Diversity Reduces N2O but Not CH4 Emissions from Constructed Wetlands under High Nitrogen Levels.” Environmental Science and Pollution Research 24 (6): 5938–5948. doi:10.1007/s11356-016-8288-3.
  • Han, Y., M. Wang, S. Wang, Y. Dong, S. Liu, and X. Zhiwei. 2018. “Characteristics of Soil Enzyme Activity of Peat Bog in Jinchuan, Changbai Mountain.” Wetland Science 16 (5): 671–678. doi:10.13248/j.cnki.wetlandsci.2018.05.014.
  • Hanqin, T., L. Chaoqun, C. Philippe, A. M. Michalak, J. G. Canadell, S. Eri, D. N. Huntzinger, et al. 2016. “The Terrestrial Biosphere as a Net Source of Greenhouse Gases to the Atmosphere.” Nature 531 (7593): 225–+. doi:10.1038/nature16946.
  • Harmsen, M., D. P. van Vuuren, B. L. Bodirsky, J. Chateau, O. Durand-Lasserve, L. Drouet, O. Fricko, S. Fujimori, D. E. H. J. Gernaat, and T. Hanaoka. 2020. “The Role of Methane in Future Climate Strategies: Mitigation Potentials and Climate Impacts.” Climatic Change 163 (3): 1409–1425. doi:10.1007/s10584-019-02437-2.
  • He, L., Chun-Ta. L, Melanie A. M, Shohei. M, Xiaofeng. X. 2021a. “Microbial seasonality promotes soil respiratory carbon emission in natural ecosystems: A modeling study”. Global Change Biology, 27(13): 3035-3051. https://doi.org/10.1111/gcb.15627.
  • He, L., David, A. L, Jorge L. M. R, Melanie. M, Robert G. B, Bruno. G, Peter. T, Xiaofeng. X. 2021b. “Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site-Level Applications of the CLM-Microbe Model”. Journal of Advances in Modeling Earth Systems 13: (2) e2020MS002283. https://doi.org/10.1029/2020MS002283.
  • Hernández, M., R. Conrad, M. Klose, K. Ma, and L. Yahai. 2017. “Structure and Function of Methanogenic Microbial Communities in Soils from Flooded Rice and Upland Soybean Fields from Sanjiang Plain, NE China.” Soil Biology and Biochemistry 105: 81–91. doi:10.1016/j.soilbio.2016.11.010.
  • Huang, Y., R. L. Sass, and F. M. Fisher Jr. 1998. “A semi-empirical Model of Methane Emission from Flooded Rice Paddy Soils.” Global Change Biology 4 (3): 247–268. doi:10.1046/j.1365-2486.1998.00129.x.
  • Huang, Shizhu 2016 Response of CH4 and N2O emission from peatlands to changed environments in Little Xing'an Mountains, northeat China . . Doctor. Northeast Forestry University.
  • IPCC, 2017. “IPCC Fifth Assessment Report (AR5) Observed Climate Change Impacts Database, Version 2.01.” NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, NY.
  • Jackson, R. B., M. Saunois, P. Bousquet, J. G. Canadell, B. Poulter, A. R. Stavert, P. Bergamaschi, Y. Niwa, A. Segers, and A. Tsuruta. 2020. “Increasing Anthropogenic Methane Emissions Arise Equally from Agricultural and Fossil Fuel Sources.” Environmental Research Letters 15 (7): 071002. doi:10.1088/1748-9326/ab9ed2.
  • Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J. G. Canade ll, E. J. Dlugokencky, P. Bergamaschi, et al. 2013. “Three Decades of Global Methane Sources and Sinks.” Nature Geoscience 6 (10): 813–823. doi:10.1038/ngeo1955.
  • Koven, C. D., W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn, W. D. Collins, G. B. Bonan, D. M. Lawrence, and S. C. Swenson. 2013. “The Effect of Vertically Resolved Soil Biogeochemistry and Alternate Soil C and N Models on C Dynamics of CLM4.” Biogeosciences 10 (11): 7109–7131. doi:10.5194/bg-10-7109-2013.
  • Lawrence, B. A., S. C. Lishawa, N. Hurst, B. T. Castillo, and N. C. Tuchman. 2017. “Wetland Invasion by Typha× Glauca Increases Soil Methane Emissions.” Aquatic Botany 137: 80–87. doi:10.1016/j.aquabot.2016.11.012.
  • Le, M., and R. P. Jean. 2001. “Production, Oxidation, Emission and Consumption of Methane by Soils: A Review.” European Journal of Soil Biology 37 (1): 25–50. doi:10.1016/S1164-5563(01)01067-6.
  • Lipson, D. A., D. Zona, T. K. Raab, F. Bozzolo, M. Mauritz, and W. C. Oechel. 2012. “Water-table Height and Microtopography Control Biogeochemical Cycling in an Arctic Coastal Tundra Ecosystem.” Biogeosciences 9 (1): 577–591. doi:10.5194/bg-9-577-2012.
  • Liyuan, H., C.-T. Lai, M. A. Mayes, S. Murayama, and X. Xu. 2021a. “Microbial Seasonality Promotes Soil Respiratory Carbon Emission in Natural Ecosystems: A Modeling Study.” Global Change Biology 27 (13): 3035–3051. doi:10.1111/gcb.15627.
  • Liyuan, H., D. A. Lipson, M. Rodrigues, L. Jorge, M. Melanie, R. G. Björk, G. Bruno, T. Peter, and X. Xiaofeng. 2021b. “Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site-Level Applications of the CLM-Microbe Model.” Journal of Advances in Modeling Earth Systems 13 (2): e2020MS002283. doi:10.1029/2020MS002283.
  • Maosheng, Z., F. A. Heinsch, R. R. Nemani, and S. W. Running. 2005. “Improvements of the MODIS Terrestrial Gross and Net Primary Production Global Data Set.” Remote Sensing of Environment 95 (2): 164–176. doi:10.1016/j.rse.2004.12.011.
  • McGlynn, S. E. 2017. “Energy Metabolism during Anaerobic Methane Oxidation in ANME Archaea.” Microbes and Environments 32 (1): 5–13. doi:10.1264/jsme2.ME16166.
  • Melton, J. R., R. Wania, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, et al. 2013. “Present State of Global Wetland Extent and Wetland Methane Modelling: Conclusions from a Model inter-comparison Project (WETCHIMP).” Biogeosciences 10 (2): 753–788. doi:10.5194/bg-10-753-2013.
  • Meng, L., P. G. M. Hess, N. M. Mahowald, J. B. Yavitt, W. J. Riley, Z. M. Subin, D. M. Lawrence, S. C. Swenson, J. Jauhiainen, and D. R. Fuka. 2012. “Sensitivity of Wetland Methane Emissions to Model Assumptions: Application and Model Testing against Site Observations.” Biogeosciences 9 (7): 2793–2819. doi:10.5194/bg-9-2793-2012.
  • Morin, T. H., G. Bohrer, R. P. D. M. Frasson, L. Naor-Azreli, S. Mesi, K. C. Stefanik, and K. V. R. Schäfer. 2014. “Environmental Drivers of Methane Fluxes from an Urban Temperate Wetland Park.” Journal of Geophysical Research: Biogeosciences 119 (11): 2188–2208. doi:10.1002/2014JG002750.
  • Nzotungicimpaye, C.-M., A. H. MacDougall, J. R. Melton, C. C. Treat, E. Michael, L. F. W. Lesack, and K. Zickfeld. 2020. “WETMETH 1.0: A New Wetland Methane Model for Implementation in Earth System Models.” Geoscientific Model Development Discussions 1–40. doi:10.5194/gmd-2020-176.
  • Saunois, M., A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, et al. 2020. “The Global Methane Budget 2000-2017”.” Earth System Science Data 12 (3): 1561–1623. doi:10.5194/essd-12-1561-2020.
  • Schaefer, H. 2019. “On the Causes and Consequences of Recent Trends in Atmospheric Methane.” Current Climate Change Reports 5 (4): 259–274. doi:10.1007/s40641-019-00140-z.
  • Shi, Yao 2019 Effects of nitrogen input on carbon and nitrogen transformations in peatlands . Doctor, Northeast Normal University.
  • Sieber, J. R., M. J. McInerney, and R. P. Gunsalus. 2012. “Genomic Insights into Syntrophy: The Paradigm for Anaerobic Metabolic Cooperation.” Annual Review of Microbiology 66 (1): 66(429–452. doi:10.1146/annurev-micro-090110-102844.
  • Song, C., X. Xiaofeng, X. Sun, H. Tian, L. Sun, Y. Miao, X. Wang, and Y. Guo. 2012. “Large Methane Emission upon Spring Thaw from Natural Wetlands in the Northern Permafrost Region.” Environmental Research Letters 7 (3). doi:10.1088/1748-9326/7/3/034009.
  • Song, Y., C. Song, J. Ren, M. Xiuyan, W. Tan, X. Wang, J. Gao, and A. Hou. 2019. “Short-Term Response of the Soil Microbial Abundances and Enzyme Activities to Experimental Warming in a Boreal Peatland in Northeast China.” Sustainability 11 (3): 590. doi:10.3390/su11030590.
  • Sun, X., C. Song, Y. Guo, X. Wang, G. Yang, L. Yingchen, R. Mao, and L. Yongzheng. 2012. “Effect of Plants on Methane Emissions from a Temperate Marsh in Different Seasons.” Atmospheric Environment 60 (277): 277–282. doi:10.1016/j.atmosenv.2012.06.051.
  • Sun, L., S. Changchun, P. M. Lafleur, M. Yuqing, W. Xianwei, G. Chao, Q. Tianhua, Y. Xueyang, and W. Tan. 2018. “Wetland-atmosphere Methane Exchange in Northeast China: A Comparison of Permafrost Peatland and Freshwater Wetlands.” Agricultural and Forest Meteorology 249 (239): 239–249. doi:10.1016/j.agrformet.2017.11.009.
  • Thauer, R. K. 1998. “Biochemistry of Methanogenesis: A Tribute to Marjory Stephenson: 1998 Marjory Stephenson Prize Lecture.” Microbiology 144 (9): 2377–2406. doi:10.1099/00221287-144-9-2377.
  • Thauer, R. K., A. K. Kaster, H. Seedorf, W. Buckel, and R. Hedderich. 2008. “Methanogenic Archaea: Ecologically Relevant Differences in Energy Conservation.” Nature Reviews Microbiology 6 (8): 579–591. doi:10.1038/nrmicro1931.
  • Thornton P E and Rosenbloom N A. (2005). Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model. Ecological Modelling, 189(1–2), 25–48. 10.1016/j.ecolmodel.2005.04.008
  • Thornton, P. E., J.-F. Lamarque, N. A. Rosenbloom, and N. M. Mahowald. 2007. “Influence of carbon-nitrogen Cycle Coupling on Land Model Response to CO2 Fertilization and Climate Variability.” Global Biogeochemical Cycles 21 (4). doi:10.1029/2006GB002868.
  • Timmers, P. H. A., C. U. Welte, J. J. Koehorst, C. M. Plugge, M. S. M. Jetten, and A. J. M. Stams. 2017. “Reverse Methanogenesis and Respiration in Methanotrophic Archaea.” Archaea-an International Microbiological Journal 2017. doi:10.1155/2017/1654237.
  • Tingting, L., L. Yanyu, Y. Lingfei, W. Sun, Q. Zhang, W. Zhang, G. Wang, et al. 2020. “Evaluation of CH4MOD(wetland) and Terrestrial Ecosystem Model (TEM) Used to Estimate Global CH4 Emissions from Natural Wetlands.” Geoscientific Model Development 13 (8): 3769–3788. doi:10.5194/gmd-13-3769-2020.
  • Villa, J. A. 2020. “Functional Representation of Biological Components in Methane-Cycling Processes in Wetlands Improves Modeling Predictions.” Journal of Geophysical Research: Biogeosciences 125 (10): e2020JG005794. doi:10.1029/2020JG005794.
  • Wallenius, A. J., D. Martins, S. Paula, P. Caroline, and M. S. M. Jetten. 2021. “Anthropogenic and Environmental Constraints on the Microbial Methane Cycle in Coastal Sediments.” Frontiers in Microbiology 12 (293). doi:10.3389/fmicb.2021.631621.
  • Wang, J. M., J. G. Murphy, J. A. Geddes, C. L. Winsborough, N. Basiliko, and S. C. Thomas. 2013. “Methane Fluxes Measured by Eddy Covariance and Static Chamber Techniques at a Temperate Forest in Central Ontario, Canada.” Biogeosciences 10 (6): 4371–4382. doi:10.5194/bg-10-4371-2013.
  • Wang, J., C. Song, A. Hou, and X. Fengming. 2017. “Methane Emission Potential from Freshwater Marsh Soils of Northeast China: Response to Simulated Freezing-Thawing Cycles.” Wetlands 37 (3): 437–445. doi:10.1007/s13157-017-0879-3.
  • Wang, Y., F. Yuan, K. A. Arndt, J. Liu, L. He, Y. Zuo, D. Zona, et al. 2022. “Upscaling Methane Flux from plot-level to Eddy Covariance Tower Domains by Combining the CLM-Microbe Model with Three Footprint Models.” Atmospheric Environment Under review
  • Wania, R., I. Ross, and I. C. Prentice. 2010. “Implementation and Evaluation of a New Methane Model within a Dynamic Global Vegetation Model: LPJ-WHyMe v1.3.1.” Geoscientific Model Development 3 (2): 565–584. doi:10.5194/gmd-3-565-2010.
  • Wania, R., J. R. Melton, E. L. Hodson, B. Poulter, B. Ringeval, R. Spahni, T. Bohn, et al. 2013. “Present State of Global Wetland Extent and Wetland Methane Modelling Methodology of a Model inter-comparison Project (WETCHIMP).” Geosci. Model Dev 6 (3): 617–641. doi:10.5194/gmd-6-617-2013.
  • Whiting, G. J., and J. P. Chanton. 1993. “Primary Production Control of Methane Emission from Wetlands.” Nature 364 (6440): 794–795. doi:10.1038/364794a0.
  • Xiaofeng, X., and H. Tian. 2012. “Methane Exchange between Marshland and the Atmosphere over China during 1949-2008.” Global Biogeochemical Cycles 26 (2). doi:10.1029/2010gb003946.
  • Xiaofeng, X., J. P. Schimel, P. E. Thornton, S. Xia, Y. Fengming, and S. Goswami. 2014. “Substrate and Environmental Controls on Microbial Assimilation of Soil Organic Carbon: A Framework for Earth System Models.” Ecology Letters 17 (5): 547–555. doi:10.1111/ele.12254.
  • Xiaofeng, X., D. A. Elias, D. E. Graham, T. J. Phelps, S. L. Carroll, S. D. Wullschleger, and P. E. Thornton. 2015. “A Microbial Functional group-based Module for Simulating Methane Production and Consumption: Application to an Incubated Permafrost Soil.” Journal of Geophysical Research Biogeosciences 120 (7): 1315–1333. doi:10.1002/2015JG002935.
  • Xiaofeng, X., Y. Fengming, J. H. Paul, D. W. Stan, E. T. Peter, J. R. William, S. Xia, E. G. David, S. Changchun, and T. Hanqin. 2016. “Reviews and Syntheses: Four Decades of Modeling Methane Cycling in Terrestrial Ecosystems.” Biogeosciences, 1–56. doi:10.5194/bg-2016-37.
  • Xueyang, Y., C. Song, L. Sun, X. Wang, and W. Tan. 2020. “Towards an Improved Utilization of Eddy Covariance Data: Growing Season CO2 Exchange from a Permafrost Peatland in the Great Hing’an Mountains, Northeast China.” Ecological Indicators 115: 106427. doi:10.1016/j.ecolind.2020.106427.
  • Yihui, W., Fengming. Y., F. Yuan., Baohua. G., Melanie S. H., MS. Torn., Daniel M. R., Jitendra. K., Liyuan. H., Donatella. Z., David A. L., Robert. W. Walter C. O., Stan D. W., Peter E. T., Xiaofeng. X. 2019. “Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Mode.” Journal of Advances in Modeling Earth Systems 11 (12): 4288–4304 https://doi.org/10.1029/2019MS001771.
  • Yihui, W., F. Yuan, F. Yuan, B. Gu, M. S. Hahn, M. S. Torn, D. M. Ricciuto, et al. 2019. “Mechanistic Modeling of Microtopographic Impacts on CO2 and CH4 Fluxes in an Alaskan Tundra Ecosystem Using the CLM-Microbe Model.” Journal of Advances in Modeling Earth Systems 11 (12): 4288–4304. doi:10.1029/2019MS001771.
  • Youmi, O., Z. Qianlai, L. Licheng, L. R. Welp, M. C. Y. Lau, T. C. Onstott, M. David, et al. 2020. “Reduced Net Methane Emissions Due to Microbial Methane Oxidation in a Warmer Arctic.” Nature Climate Change 10 (4): 317–321. doi:10.1038/s41558-020-0734-z.
  • Yuan, F., J. Liu, Y. Zuo, Z. Guo, N. Wang, C. Song, Z. Wang, et al. 2020. “Rising Vegetation Activity Dominates Growing Water Use Efficiency in the Asian Permafrost Region from 1900 to 2100.” Science of the Total Environment 736 (139587): 139587. doi:10.1016/j.scitotenv.2020.139587.
  • Yuan, F., Y. Wang, D. Ricciuto, X. Shi, F. Yuan, T. Brehme, S. Bridgham, et al. 2021a. “Hydrological Feedbacks on Peatland CH4 Emission under Warming and Elevated CO2: A Modeling Study.” Journal of Hydrology 603: 127137. doi:10.1016/j.jhydrol.2021.127137.
  • Yuan, F., Y. Wang, D. Ricciuto, X. Shi, F. Yuan, P. Hanson, S. Bridgham, J. Keller, P. Thornton, and X. Xiaofeng. 2021b. “An Integrative Model for Soil Biogeochemistry and Methane Processes: II. Warming and Elevated CO2 Effects on Peatland CH4 Emissions.” Journal of Geophysical Research: Biogeosciences 126. doi:10.1029/2020JG005963.
  • Zhang, B., H. Tian, L. Chaoqun, G. Chen, S. Pan, C. Anderson, and B. Poulter. 2017. “Methane Emissions from Global Wetlands: An Assessment of the Uncertainty Associated with Various Wetland Extent Data Sets.” Atmospheric Environment 165: 310–321. doi:10.1016/j.atmosenv.2017.07.001.
  • Zhang, Y., M. Anzhou, G. Zhuang, and X. Zhuang. 2019. “The Acetotrophic Pathway Dominates Methane Production in Zoige Alpine Wetland Coexisting with Hydrogenotrophic Pathway.” Scientific Reports 9 (1): 9141. doi:10.1038/s41598-019-45590-5.
  • Zhang, H., D. Goll, Y. Wang, P. Ciais, W. Wieder, R. Abramoff, Y. Huang, et al. 2020a. “Microbial Dynamics and Soil Physicochemical Properties Explain Large Scale Variations in Soil Organic Carbon.” Global Change Biology 26 (4): 2668–2685. doi:10.1111/gcb.14994.
  • Zona, D., W. C. Oechel, J. Kochendorfer, U. Paw, K. T. Salyuk, P. C. A. N., Olivas, S. F. Oberbauer, and D. A. Lipson. 2009. “Methane Fluxes during the Initiation of a large-scale Water Table Manipulation Experiment in the Alaskan Arctic Tundra.” Global Biogeochemical Cycles 23 (2). doi:10.1029/2009GB003487.