2,351
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping the scientific knowledge of glomalin-related soil protein with implications for carbon sequestration

, , , , , , , , & show all
Article: 2085185 | Received 17 Nov 2021, Accepted 26 May 2022, Published online: 07 Jun 2022

References

  • Adame, M. F., D. Neil, S. F. Wright, C. E. Lovelock, et al. 2010. “Sedimentation within and among Mangrove Forests along a Gradient of Geomorphological Settings.” . Estuarine, Coastal and Shelf Science 86 (1): 1–18. doi:10.1016/j.ecss.2009.10.013.
  • Adame, M. F., S. F. Wright, A. Grinham, K. Lobb, C. E. Reymond, C. E. Lovelock, et al. 2012. “Terrestrial-marine Connectivity: Patterns of Terrestrial Soil Carbon Deposition in Coastal Sediments Determined by Analysis of Glomalin Related Soil Protein.” . Limnology and Oceanography 57 (5): 1492–1502. doi:10.4319/lo.2012.57.5.1492.
  • Agnihotri, R., M. P. Sharma, A. Prakash, A. Ramesh, S. Bhattacharjya, A. K. Patra, M. C. Manna, et al. 2022. “Glycoproteins of Arbuscular Mycorrhiza for Soil Carbon Sequestration: Review of Mechanisms and Controls.” Science of the Total Environment 806:150571. doi:10.1016/j.scitotenv.2021.150571.
  • Auge, R. M. 2001. “Water Relations, Drought and vesicular-arbuscular Mycorrhizal Symbiosis.” Mycorrhiza 11 (1): 3–42. doi:10.1007/s005720100097.
  • Auge, R. M., J. L. Moore, K. H. Cho, J. C. Stutz, D. M. Sylvia, A. K. Al-Agely, A. M. Saxton, et al. 2003. “Relating Foliar Dehydration Tolerance of Mycorrhizal Phaseolus Vulgaris to Soil and Root Colonization by Hyphae.” Journal of Plant Physiology 160 (10): 1147–1156. doi:10.1078/0176-1617-01154.
  • Banegas, N., D. A. Dos Santos, F. G. Molina, et al. 2020. “Glomalin Contribution to Soil Organic Carbon under Different Pasture Managements in a Saline Soil Environment.” Archives of Agronomy and Soil Science 15. doi:10.1080/03650340.2020.1834536.
  • Bedini, S., E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, E. Argese, M. Giovannetti, et al. 2009. “Changes in Soil Aggregation and glomalin-related Soil Protein Content as Affected by the Arbuscular Mycorrhizal Fungal Species Glomus Mosseae and Glomus Intraradices.” Soil Biology and Biochemistry 41 (7): 1491–1496. doi:10.1016/j.soilbio.2009.04.005.
  • Bertagnoli, B. G. P., J. F. Oliveira, G. M. C. Barbosa, A. Colozzi Filho, et al. 2020. “Poultry Litter and Liquid Swine Slurry Applications Stimulate Glomalin, Extraradicular Mycelium Production, and Aggregation in Soils.” Soil and Tillage Research 202:8. doi:10.1016/j.still.2020.104657.
  • Bi, Y. L., K. Wang, and J. Wang. 2018. “Effect of Different Inoculation Treatments on AM Fungal Communities and the Sustainability of Soil Remediation in Daliuta Coal Mining Subsidence Area in Northwest China.” Applied Soil Ecology 132: 107–113. doi:10.1016/j.apsoil.2018.08.009.
  • Carter, M. R. 2002. “Soil Quality for Sustainable Land Management: Organic Matter and Aggregation Interactions that Maintain Soil Functions.” Agronomy Journal 94: 38–47. doi:10.2134/agronj2002.0038.
  • Chern, E. C., D. W. Tsai, and O. A. Ogunseitan. 2007. “Deposition of glomalin-related Soil Protein and Sequestered Toxic Metals into Watersheds.” Environmental Science & Technology 41 (10): 3566–3572. doi:10.1021/es0628598.
  • Das, S., D. Ganguly, S. Chakraborty, et al. 2020. “The First Report of Glomalin from the Sundarban Mangrove Biosphere Reserve, India, a long-term Sediment Carbon Storage.” Regional Studies in Marine Science 39:11. doi:10.1016/j.rsma.2020.101398.
  • Dhalaria, R., D. Kumar, H. Kumar, et al. 2020. “Arbuscular Mycorrhizal Fungi as Potential Agents in Ameliorating Heavy Metal Stress in Plants.” Agronomy-Basel 10 (22). doi:10.3390/agronomy10060815.
  • Driver, J. D., W. E. Holben, and M. C. Rillig. 2005. “Characterization of Glomalin as a Hyphal Wall Component of Arbuscular Mycorrhizal Fungi.” Soil Biology and Biochemistry 37 (1): 101–106. doi:10.1016/j.soilbio.2004.06.011.
  • Folli-Pereira, M. D., L. S. Meira-Haddad, D. M. S. Bazzolli, M. C. M. Kasuya, et al. 2012. “Arbuscular Mycorrhiza and Plant Tolerance to Stress.” Revista Brasileira de Ciência do Solo 36 (6): 1663–1679. DOI:10.1590/S0100-06832012000600001.
  • Gadkar, V., and M. C. Rillig. 2006. “The Arbuscular Mycorrhizal Fungal Protein Glomalin Is a Putative Homolog of Heat Shock Protein 60.” FEMS Microbiology Letters 263 (1): 93–101. doi:10.1111/j.1574-6968.2006.00412.x.
  • Gao, W. Q., P. Wang, and Q. S. Wu. 2019. “Functions and Application of Glomalin-Related Soil Proteins: A Review.” Sains Malaysiana 48 (1): 111–119. doi:10.17576/jsm-2019-4801-13.
  • Garcia, C. L., S. Dattamudi, S. Chanda, et al. 2019. “Effect of Salinity Stress and Microbial Inoculations on Glomalin Production and Plant Growth Parameters of Snap Bean (Phaseolus Vulgaris).” Agronomy-Basel 9 (21). doi:10.3390/agronomy9090545.
  • Gillespie, A. W., R. E. Farrell, F. L. Walley, A. R. S. Ross, P. Leinweber, K.-U. Eckhardt, T. Z. Regier, et al. 2011. “Glomalin-related Soil Protein Contains non-mycorrhizal-related heat-stable Proteins, Lipids and Humic Materials.” Soil Biology and Biochemistry 43 (4): 766–777. doi:10.1016/j.soilbio.2010.12.010.
  • Gispert, M., M. Emran, G. Pardini, S. Doni, B. Ceccanti, et al. 2013. “The Impact of Land Management and Abandonment on Soil Enzymatic Activity, Glomalin Content and Aggregate Stability.” Geoderma 202-203:51–61. doi:10.1016/j.geoderma.2013.03.012.
  • Gispert, M., G. Pardini, M. Emran, S. Doni, G. Masciandaro, et al. 2018. “Seasonal Evolution of Soil Organic Matter, Glomalin and Enzymes and Potential for C Storage after Land Abandonment and Renaturalization Processes in Soils of NE Spain.” Catena 162:402–413. doi:10.1016/j.catena.2017.10.019.
  • Gispert, M., C. Phang, and L. Carrasco-Barea. 2020. “The Role of Soil as a Carbon Sink in Coastal salt-marsh and Agropastoral Systems at La Pletera, NE Spain.” Catena 185: 16. doi:10.1016/j.catena.2019.104331.
  • Gonzalez-Chavez, M. C., R. Carrillo-Gonzalez, S. F. Wright, K. A. Nichols, et al. 2004. “The Role of Glomalin, a Protein Produced by Arbuscular Mycorrhizal Fungi, in Sequestering Potentially Toxic Elements.” Environmental Pollution 130 (3): 317–323. doi:10.1016/j.envpol.2004.01.004.
  • Hammer, E. C., M. C. Rillig, and K. Nielsen. 2011. “The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus-Salinity Increases Glomalin Content.” PLoS One 6 (12): 5. doi:10.1371/journal.pone.0028426.
  • Holatko, J., M. Brtnicky, J. Kucerik, M. Kotianová, J. Elbl, A. Kintl, J. Kynický, et al. 2021. “Glomalin - Truths, Myths, and the Future of This Elusive Soil Glycoprotein.” Soil Biology and Biochemistry 153:11. doi:10.1016/j.soilbio.2020.108116.
  • Hurisso, T. T., D. J. Moebius-Clune, S. W. Culman, B. N. Moebius‐Clune, J. E. Thies, H. M. Es, et al. 2018. “Soil Protein as a Rapid Soil Health Indicator of Potentially Available Organic Nitrogen.” . Agricultural & Environmental Letters 3 (1). doi:10.2134/ael2018.02.0006.
  • Irving, T. B., B. Alptekin, B. Kleven, J.-M. Ané, et al. 2021. “A Critical Review of 25 Years of Glomalin Research: A Better Mechanical Understanding and Robust Quantification Techniques are Required.” New Phytologist 232 (4): 1572–1581. doi:10.1111/nph.17713.
  • Janeeshma, E., and J. T. Puthur. 2020. “Direct and Indirect Influence of Arbuscular Mycorrhizae on Enhancing Metal Tolerance of Plants.” Archives of Microbiology 202 (1): 1–16. doi:10.1007/s00203-019-01730-z.
  • Janos, D. P., S. Garamszegi, and B. Beltran. 2008. “Glomalin Extraction and Measurement.” Soil Biology and Biochemistry 40 (3): 728–739. doi:10.1016/j.soilbio.2007.10.007.
  • Kaal, J., P. S. Lavery, A. M. Cortizas, O. López-Costas, T. Buchaca, C. Salinas, O. Serrano, et al. 2020. “Reconstruction of 7500 Years of Coastal Environmental Change Impacting Seagrass Ecosystem Dynamics in Oyster Harbour (SW Australia).” Palaeogeography, Palaeoclimatology, Palaeoecology 558:12. doi:10.1016/j.palaeo.2020.109953.
  • Kaushal, M. 2019. “Microbes in Cahoots with Plants: MIST to Hit the Jackpot of Agricultural Productivity during Drought.” International Journal of Molecular Sciences 20 (7): 1769. doi:10.3390/ijms20071769.
  • Khan, A. G. 2005. “Role of Soil Microbes in the Rhizospheres of Plants Growing on Trace Metal Contaminated Soils in Phytoremediation.” Journal of Trace Elements in Medicine and Biology 18 (4): 355–364. doi:10.1016/j.jtemb.2005.02.006.
  • Kumar, S., A. K. Singh, and P. Ghosh. 2018. “Distribution of Soil Organic Carbon and Glomalin Related Soil Protein in Reclaimed Coal mine-land Chronosequence under Tropical Condition.” Science of the Total Environment 625: 1341–1350. doi:10.1016/j.scitotenv.2018.01.061.
  • Lenoir, I., J. Fontaine, and A. L. H. Sahraoui. 2016. “Arbuscular Mycorrhizal Fungal Responses to Abiotic Stresses: A Review.” Phytochemistry 123: 4–15. doi:10.1016/j.phytochem.2016.01.002.
  • Liu, H. F., X. K. Wang, C. T. Liang, Z. Ai, Y. Wu, H. Xu, S. Xue, et al. 2020. “Glomalin-related Soil Protein Affects Soil Aggregation and Recovery of Soil Nutrient following Natural Revegetation on the Loess Plateau.” Geoderma 357:11. doi:10.1016/j.geoderma.2019.113921.
  • Lovelock, C. E., S. F. Wright, D. A. Clark, R. W. Ruess, et al. 2004. “Soil Stocks of Glomalin Produced by Arbuscular Mycorrhizal Fungi across a Tropical Rain Forest Landscape.” Journal of Ecology 92 (2): 278–287. doi:10.1111/j.0022-0477.2004.00855.x.
  • Lutgen, E. R., D. Muir-Clairmont, J. Graham, M. C. Rillig, et al. 2003. “Seasonality of Arbuscular Mycorrhizal Hyphae and Glomalin in a Western Montana Grassland.” Plant and Soil 257 (1): 71–83. doi:10.1023/a:1026224209597.
  • Ma, Y., R. S. Oliveira, H. Freitas, C. Zhang, et al. 2016. “Biochemical and Molecular Mechanisms of Plant-Microbe-Metal Interactions: Relevance for Phytoremediation.” Frontiers in Plant Science 7:19. doi:10.3389/fpls.2016.00918.
  • Marcal, J., T. Bishop, J. Hofman, J. Shen, et al. 2021. “From Pollutant Removal to Resource Recovery: A Bibliometric Analysis of Municipal Wastewater Research in Europe.” Chemosphere 284:131267. doi:10.1016/j.chemosphere.2021.131267.
  • Matos, P. S., C. F. da Silva, J. M. Damian, C. E. P. Cerri, M. G. Pereira, E. Zonta, et al. 2022. “Beneficial Services of Glomalin and Arbuscular Mycorrhizal Fungi in Degraded Soils in Brazil.” Scientia Agricola 79 (5): 13. doi:10.1590/1678-992x-2021-0064.
  • Mothay, D., and K. V. Ramesh. 2021. “Molecular Dynamics Simulation of Homology Modeled Glomalin Related Soil Protein (Rhizophagus Irregularis) Complexed with Soil Organic Matter Model.” Biologia 76 (2): 699–709. doi:10.2478/s11756-020-00590-z.
  • Niu, L., X. Zhao, F. Wu, et al. 2021. “Hotpots and Trends of Covalent Organic Frameworks (Cofs) in the Environmental and Energy Field: Bibliometric Analysis.” Science of the Total Environment 783:146838. doi:10.1016/j.still.2020.104657.
  • Parihar, M., A. Rakshit, V. S. Meena, V. K. Gupta, K. Rana, M. Choudhary, G. Tiwari, et al. 2020. “The Potential of Arbuscular Mycorrhizal Fungi in C Cycling: A Review.” Archives of Microbiology 202 (7): 1581–1596. doi:10.1007/s00203-020-01915-x.
  • Pei, L. X., S. Y. Ye, H. M. Yuan, et al. 2020. “Glomalin-related Soil Protein Distributions in the Wetlands of the Liaohe Delta, Northeast China: Implications for Carbon Sequestration and Mineral Weathering of Coastal Wetlands.” Limnology and Oceanography 65 (5): 979–991. doi:10.1016/j.catena.2017.10.019.
  • Pohanka, M. 2021. “Heat Shock Protein 60 (HSP60) Detection by QCM Biosensor and Antibody Covered Gold Nanoparticles.” International Journal of Electrochemical Science 16. doi:10.20964/2021.05.11.
  • Riaz, M., M. Kamran, Y. Z. Fang, et al. 2021. “Arbuscular Mycorrhizal fungi-induced Mitigation of Heavy Metal Phytotoxicity in Metal Contaminated Soils: A Critical Review.” Journal of Hazardous Materials 402:15. doi:10.1016/j.jhazmat.2020.123919.
  • Rillig, M. C., S. F. Wright, M. F. Allen, C. B. Field, et al. 1999. “Rise in Carbon Dioxide Changes in Soil Structure.” Nature 400 (6745): 628. doi:10.1038/23168.
  • Rillig, M. C., and M. F. Allen. 1999. “What Is the Role of Arbuscular Mycorrhizal Fungi in plant-to-ecosystem Responses to Elevated Atmospheric CO2?” Mycorrhiza 9 (1): 1–8. doi:10.1007/s005720050257.
  • Rillig, M. C., S. F. Wright, B. A. Kimball, P. J. Pinter, G. W. Wall, M. J. Ottman, S. W. Leavitt, et al. 2001a. “Elevated Carbon Dioxide and Irrigation Effects on Water Stable Aggregates in a Sorghum Field: A Possible Role for Arbuscular Mycorrhizal Fungi.” Global Change Biology 7 (3): 333–337. doi:10.1046/j.1365-2486.2001.00404.x.
  • Rillig, M. C., S. F. Wright, K. A. Nichols, W. F. Schmidt, M. S. Torn, et al. 2001b. “Large Contribution of Arbuscular Mycorrhizal Fungi to Soil Carbon Pools in Tropical Forest Soils.” Plant and Soil 233 (2): 167–177. doi:10.1023/a:1010364221169.
  • Rillig, M. C., and P. D. Steinberg. 2002. “Glomalin Production by an Arbuscular Mycorrhizal Fungus: A Mechanism of Habitat Modification?” Soil Biology and Biochemistry 34 (9): 1371–1374. doi:10.1016/s0038-0717(02)00060-3.
  • Rillig, M. C., S. F. Wright, and V. T. Eviner. 2002. “The Role of Arbuscular Mycorrhizal Fungi and Glomalin in Soil Aggregation: Comparing Effects of Five Plant Species.” Plant and Soil 238 (2): 325–333. doi:10.1023/a:1014483303813.
  • Rillig, M. C., P. W. Ramsey, S. Morris, E. A. Paul, et al. 2003. “Glomalin, an arbuscular-mycorrhizal Fungal Soil Protein, Responds to land-use Change.” Plant and Soil 253 (2): 293–299. doi:10.1023/a:1024807820579.
  • Rillig, M. C. 2004a. “Arbuscular Mycorrhizae and Terrestrial Ecosystem Processes.” Ecology Letters 7 (8): 740–754. doi:10.1111/j.1461-0248.2004.00620.x.
  • Rillig, M. C. 2004b. “Arbuscular Mycorrhizae, Glomalin, and Soil Aggregation.” Canadian Journal of Soil Science 84 (4): 355–363. doi:10.4141/s04-003.
  • Rillig, M. C., and D. L. Mummey. 2006. “Mycorrhizas and Soil Structure.” The New Phytologist 171 (1): 41–53. doi:10.1111/j.1469-8137.2006.01750.x.
  • Rillig, M. C., B. A. Caldwell, H. A. B. Wosten, P. Sollins, et al. 2007. “Role of Proteins in Soil Carbon and Nitrogen Storage: Controls on Persistence.” Biogeochemistry 85 (1): 25–44. doi:10.1007/s10533-007-9102-6.
  • Rosier, C. L., A. T. Hoye, and M. C. Rillig. 2006. “Glomalin-related Soil Protein: Assessment of Current Detection and Quantification Tools.” Soil Biology and Biochemistry 38 (8): 2205–2211. doi:10.1016/j.soilbio.2006.01.021.
  • Sandeep, S., and K. M. Manjaiah. 2016. “Impact of Tillage and Nutrient Management Practices on Soil Aggregate Carbon Pools of rice-wheat Cropping System in Semiarid India.” Indian Journal of Geo-Marine Sciences 45: 207–214.
  • Sandeep, S., K. M. Manjaiah, S. Pal, A. K. Singh, et al. 2016. “Soil Carbon Fractions under maize-wheat System: Effect of Tillage and Nutrient Management.” . Environmental Monitoring and Assessment 188 (1): 13. doi:10.1007/s10661-015-4995-3.
  • Schindler, F. V., E. J. Mercer, and J. A. Rice. 2007. “Chemical Characteristics of glomalin-related Soil Protein (GRSP) Extracted from Soils of Varying Organic Matter Content.” Soil Biology and Biochemistry 39 (1): 320–329. doi:10.1023/A:1014483303813.
  • Seguel, A., P. Cornejo, A. Ramos, E. Von Baer, J. Cumming, F. Borie, et al. 2017. “Phosphorus Acquisition by Three Wheat Cultivars Contrasting in Aluminium Tolerance Growing in an aluminium-rich Volcanic Soil.” Crop and Pasture Science 68 (4): 305–316. doi:10.1071/cp16224.
  • Sekaran, U., K. L. Sagar, and S. Kumar. 2021. “Soil Aggregates, aggregate-associated Carbon and Nitrogen, and Water Retention as Influenced by Short and long-term no-till Systems.” Soil and Tillage Research 208: 12. doi:10.1016/j.still.2020.104885.
  • Sharma, S., H. S. Thind, S. Yadvinder, H. S. Sidhu, M. L. Jat, C. M. Parihar, et al. 2019. “Effects of Crop Residue Retention on Soil Carbon Pools after 6 years of rice-wheat Cropping System.” Environmental Earth Sciences 78 (10): 14. doi:10.1007/s12665-019-8305-1.
  • Singh, P. K., M. Singh, and B. N. Tripathi. 2013. “Glomalin: An Arbuscular Mycorrhizal Fungal Soil Protein.” Protoplasma 250 (3): 663–669. doi:10.1007/s00709-012-0453-z.
  • Singh, A. K., A. Rai, and N. Singh. 2016. “Effect of Long Term Land Use Systems on Fractions of Glomalin and Soil Organic Carbon in the Indo-Gangetic Plain.” Geoderma 277: 41–50. doi:10.1016/j.geoderma.2016.05.004.
  • Singh, A. K., A. Rai, V. Pandey, N. Singh, et al. 2017. “Contribution of Glomalin to Dissolve Organic Carbon under Different Land Uses and Seasonality in Dry Tropics.” . Journal of Environmental Management 192:142–149. doi:10.1016/j.jenvman.2017.01.041.
  • Singh, A. K., X. A. Zhu, C. F. Chen, et al. 2020. “The Role of Glomalin in Mitigation of Multiple Soil Degradation Problems.” Critical Reviews in Environmental Science and Technology 35. doi:10.1080/10643389.2020.1862561.
  • Solis-Ramos, L. Y., C. Coto-Lopez, and A. Andrade-Torres. 2021. “Role of Arbuscular Mycorrhizal Symbiosis in Remediation of Anthropogenic Soil Pollution.” Symbiosis 16. doi:10.1007/s13199-021-00774-4.
  • Sousa, C. D., R. S. C. Menezes, E. Sampaio, F. S. Lima, et al. 2012. “Glomalin: Characteristics, Production, Limitations and Contribution to Soils.” Semina: Ciências Agrárias 33: 3033–3044. doi:10.5433/1679-0359.2012v33Supl1p3033.
  • Su, X. L., X. Su, G. Y. Zhou, Z. Du, S. Yang, M. Ni, H. Qin, et al. 2020. “Drought Accelerated Recalcitrant Carbon Loss by Changing Soil Aggregation and Microbial Communities in a Subtropical Forest.” Soil Biology and Biochemistry 148:107898. doi:10.1016/j.soilbio.2020.107898.
  • Subramanian, K. S., P. N. Vivek, N. Balakrishnan, N. B. Nandakumar, S. K. Rajkishore, et al. 2019. “Effects of Arbuscular Mycorrhizal Fungus Rhizoglomus Intraradices on Active and Passive Pools of Carbon in long-term Soil Fertility Gradients of Maize Based Cropping System.” Archives of Agronomy and Soil Science 65 (4): 549–565. doi:10.1080/03650340.2018.1512100.
  • Treseder, K. K., L. M. Egerton-Warburton, M. F. Allen, Y. Cheng, W. C. Oechel, et al. 2003. “Alteration of Soil Carbon Pools and Communities of Mycorrhizal Fungi in Chaparral Exposed to Elevated Carbon Dioxide.” Ecosystems 6 (8): 786–796. doi:10.1007/s10021-003-0182-4.
  • Vlcek, V., and M. Pohanka. 2020. “Glomalin - an Interesting Protein Part of the Soil Organic Matter.” Soil and Water Research 15 (No. 2): 67–74. doi:10.17221/29/2019-swr.
  • Vodnik, D., H. Grcman, I. Macek, J. T. van Elteren, M. Kovačevič, et al. 2008. “The Contribution of glomalin-related Soil Protein to Pb and Zn Sequestration in Polluted Soil.” . Science of the Total Environment 392 (1): 130–136. doi:10.1016/j.scitotenv.2007.11.016.
  • Wang, Q., W. J. Wang, X. Y. He, et al. 2015. “Role and Variation of the Amount and Composition of Glomalin in Soil Properties in Farmland and Adjacent Plantations with Reference to a Primary Forest in North-Eastern China.” PLoS One 10:19. doi:10.1371/journal.pone.0139623.
  • Wang, Z. G., Y. L. Bi, B. Jiang, R. Santos, C. Becker-Pauly, A. Ludwig, G. B. Fields, et al. 2016. “Arbuscular Mycorrhizal Fungi Enhance Soil Carbon Sequestration in the Coalfields, Northwest China.” Scientific Reports 6 (1): 11. doi:10.1038/srep34336.
  • Wang, F. Y. 2017. “Occurrence of Arbuscular Mycorrhizal Fungi in mining-impacted Sites and Their Contribution to Ecological Restoration: Mechanisms and Applications.” Critical Reviews in Environmental Science and Technology 47 (20): 1901–1957. doi:10.1080/10643389.2017.1400853.
  • Wang, Q., J. W. Li, J. Y. Chen, H. Hong, H. Lu, J. Liu, Y. Dong, et al. 2018a. “Glomalin-related Soil Protein Deposition and Carbon Sequestration in the Old Yellow River Delta.” Science of the Total Environment 625:619–626. doi:10.1016/j.scitotenv.2017.12.303.
  • Wang, Q., H. L. Lu, J. Y. Chen, H. Hong, J. Liu, J. Li, C. Yan, et al. 2018b. “Spatial Distribution of glomalin-related Soil Protein and Its Relationship with Sediment Carbon Sequestration across a Mangrove Forest.” Science of the Total Environment 613-614:548–556. doi:10.1016/j.scitotenv.2017.09.140.
  • Wang, B., P. E. Brewer, H. H. Shugart, M. T. Lerdau, S. D. Allison, et al. 2019a. “Soil Aggregates as Biogeochemical Reactors and Implications for soil-atmosphere Exchange of Greenhouse gases-A Concept.” . Global Change Biology 25 (2): 373–385. doi:10.1111/gcb.14515.
  • Wang, Q., D. G. Mei, J. Y. Chen, Y. Lin, J. Liu, H. Lu, C. Yan, et al. 2019b. “Sequestration of Heavy Metal by glomalin-related Soil Protein: Implication for Water Quality Improvement in Mangrove Wetlands.” Water Research 148:142–152. doi:10.1016/j.watres.2018.10.043.
  • Wang, Q., H. L. Lu, J. Y. Chen, Y. Jiang, M. A. Williams, S. Wu, J. Li, et al. 2020. “Interactions of Soil Metals with glomalin-related Soil Protein as Soil Pollution Bioindicators in Mangrove Wetland Ecosystems.” Science of the Total Environment 709:9. doi:10.1016/j.scitotenv.2019.136051.
  • Wang, Q., H. L. Hong, R. Liao, B. Yuan, H. Li, H. Lu, J. Liu, et al. 2021. “Glomalin-related Soil Protein: The Particle Aggregation Mechanism and Its Insight into Coastal Environment Improvement.” Ecotoxicology and Environmental Safety 227:112940. doi:10.1016/j.ecoenv.2021.112940.
  • Wei, L. L., M. Vosatka, B. P. Cai, J. Ding, C. Lu, J. Xu, W. Yan, et al. 2019. “The Role of Arbuscular Mycorrhiza Fungi in the Decomposition of Fresh Residue and Soil Organic Carbon: A Mini-Review.” Soil Science Society of America Journal 83 (3): 511–517. doi:10.2136/sssaj2018.05.0205.
  • Wilson, G. W. T., C. W. Rice, M. C. Rillig, A. Springer, D. C. Hartnett, et al. 2009. “Soil Aggregation and Carbon Sequestration are Tightly Correlated with the Abundance of Arbuscular Mycorrhizal Fungi: Results from long-term Field Experiments.” . Ecology Letters 12 (5): 452–461. doi:10.1111/j.1461-0248.2009.01303.x.
  • Wright, S. F., and A. Upadhyaya. 1996. “Extraction of an Abundant and Unusual Protein from Soil and Comparison with Hyphal Protein of Arbuscular Mycorrhizal Fungi.” 161: 575–586.
  • Wright, S. F., M. FrankeSnyder, J. B. Morton, A. Upadhyaya, et al. 1996. “Time-course Study and Partial Characterization of a Protein on Hyphae of Arbuscular Mycorrhizal Fungi during Active Colonization of Roots.” Plant and Soil 181 (2): 193–203. doi:10.1007/bf00012053.
  • Wright, S. F., and A. Upadhyaya. 1998. “A Survey of Soils for Aggregate Stability and Glomalin, A Glycoprotein Produced by Hyphae of Arbuscular Mycorrhizal Fungi.” Plant and Soil 198 (1): 97–107. doi:10.1023/a:1004347701584.
  • Wright, S. F., M. C. Rillig, and K. A. Nichols. 2000. “Glomalin: A Soil Protein Important in Carbon Sequestration.” Abstracts of Papers of the American Chemical Society 220: U396–U396.
  • Wright, S. F., V. S. Green, and M. A. Cavigelli. 2007. “Glomalin in Aggregate Size Classes from Three Different Farming Systems.” Soil and Tillage Research 94 (2): 546–549. doi:10.1016/j.still.2006.08.003.
  • Wu, Q. S., R. X. Xia, and Y. N. Zou. 2008. “Improved Soil Structure and Citrus Growth after Inoculation with Three Arbuscular Mycorrhizal Fungi under Drought Stress.” European Journal of Soil Biology 44 (1): 122–128. doi:10.1016/j.ejsobi.2007.10.001.
  • Xu, M., X. L. Li, X. B. Cai, C.-T. Tsai, Y.-F. Huang, G.-R. Lin, et al. 2017. “Land Use Alters Arbuscular Mycorrhizal Fungal Communities and Their Potential Role in Carbon Sequestration on the Tibetan Plateau.” Scientific Reports 7 (1): 11. doi:10.1038/s41598-017-03248-0.
  • Yang, J., C. Cheng, S. Shen, et al. Comparison of Complex Network Analysis Software: Citespace, SCI2 and Gephi. (2017). Beijing, China.
  • Yu, J., Z. K. Xue, X. L. He, C. Liu, Y. Steinberger, et al. 2017. “Shifts in Composition and Diversity of Arbuscular Mycorrhizal Fungi and Glomalin Contents during Revegetation of Desertified Semiarid Grassland.” Applied Soil Ecology 115:60–67. doi:10.1016/j.apsoil.2017.03.015.
  • Zhang, J., X. L. Tang, X. H. He, J. Liu, et al. 2015. “Glomalin-related Soil Protein Responses to Elevated CO2 and Nitrogen Addition in a Subtropical Forest: Potential Consequences for Soil Carbon Accumulation.” Soil Biology and Biochemistry 83:142–149. doi:10.1016/j.soilbio.2015.01.023.
  • Zhang, Y., S. Pu, X. Lv, Y. Gao, L. Ge, et al. 2020. “Global Trends and Prospects in Microplastics Research: A Bibliometric Analysis.” Journal of Hazardous Materials 400:123110. doi:10.1016/j.jhazmat.2020.123110.
  • Zhou, J. G., J. F. Zhang, H. Lambers, et al. 2022. “Intensified Rainfall in the Wet Season Alters the Microbial Contribution to Soil Carbon Storage.” Plant and Soil 15. doi:10.1007/s11104-022-05389-2.