Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 14, 2023 - Issue 4
2,497
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Epigenetic manipulation for secondary metabolite activation in endophytic fungi: current progress and future directions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 275-291 | Received 11 May 2023, Accepted 21 Jul 2023, Published online: 08 Aug 2023

References

  • Abdulla A, Zhao X, Yang F. 2013. Natural polyphenols inhibit lysine-specific demethylase-1 in vitro. J Biochem Pharmacol Res. 1(1):56.
  • Aghcheh RK, Kubicek CP. 2015. Epigenetics as an emerging tool for improvement of fungal strains used in biotechnology. Appl Microbiol Biotechnol. 99(15):6167–6181. doi: 10.1007/s00253-015-6763-2.
  • Ahn HJ, Kim YS, Kim JU, Han SM, Shin JW, Yang HO. 2004. Mechanism of taxol‐induced apoptosis in human SKOV3 ovarian carcinoma cells. J Cell Biochem. 91(5):1043–1052. doi: 10.1002/jcb.20006.
  • Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, Daletos G, Proksch P. 2016. Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron. 72(41):6340–6347. doi: 10.1016/j.tet.2016.08.022.
  • Akone SH, Pham C-D, Chen H, Ola ARB, Ntie-Kang F, Proksch P. 2019. Epigenetic modification, co-culture and genomic methods for natural product discovery. Phys Sci Rev. 4(4):20180118. doi: 10.1515/psr-2018-0118.
  • Aldholmi M, Wilkinson B, Ganesan A. 2020. Epigenetic modulation of secondary metabolite profiles in Aspergillus calidoustus and Aspergillus westerdijkiae through histone deacetylase (HDAC) inhibition by vorinostat. J Antibiot (Tokyo). 73(6):410–413. doi: 10.1038/s41429-020-0286-5.
  • Aramayo R, Selker EU. 2013. Neurospora crassa, a model system for epigenetics research. Cold Spring Harb Perspect Biol. 5(10):a017921. doi: 10.1101/cshperspect.a017921.
  • Armeev GA, Gribkova AK, Pospelova I, Komarova GA, Shaytan AK. 2019. Linking chromatin composition and structural dynamics at the nucleosome level. Curr Opin Struct Biol. 56:46–55. doi:10.1016/j.sbi.2018.11.006.
  • Asai T, Otsuki S, Sakurai H, Yamashita K, Ozeki T, Oshima Y. 2013. Benzophenones from an endophytic fungus, Graphiopsis chlorocephala, from Paeonia lactiflora cultivated in the presence of an NAD±dependent HDAC inhibitor. Org Lett. 15(8):2058–2061. doi: 10.1021/ol400781b.
  • Barik S, Rai N, Mishra P, Singh SK, Gautam V. 2020. Bioinformatics: how it helps to boost modern biological research. Curr Sci. 118:698–699.
  • Baron NC, Rigobelo EC. 2022. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycol. 13(1):39–55. doi: 10.1080/21501203.2021.1945699.
  • Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315(5819):1709–1712. doi: 10.1126/science.1138140.
  • Beau J, Mahid N, Burda WN, Harrington L, Shaw LN, Mutka T, Kyle DE, Barisic B, Van Olphen A, Baker BJ. 2012. Epigenetic tailoring for the production of anti-infective cytosporones from the marine fungus Leucostoma persoonii. Mar Drugs. 10(4):762–774. doi: 10.3390/md10040762.
  • Boedi S, Reyes-Dominguez Y, Strauss J. 2012. Chromatin immunoprecipitation analysis in filamentous fungi. Fungal Secondary Metab Methods Protoc. 944:221–236. doi: 10.1007/978-1-62703-122-6_16.
  • Bok JW, Chiang YM, Szewczyk E, Reyes-Dominguez Y, Davidson AD, Sanchez JF, Lo H-C, Watanabe K, Strauss J, Oakley BR. 2009. Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol. 5(7):462–464. doi: 10.1038/nchembio.177.
  • Bono JM, Olesnicky EC, Matzkin LM. 2015. Connecting genotypes, phenotypes and fitness: harnessing the power of CRISPR/Cas9 genome editing. Mol Ecol. 24(15):3810–3822. doi: 10.1111/mec.13252.
  • Brakebusch C. 2021. CRISPR genome editing: how to make a fantastic method even better. Cells MDPI. 10(2):408. doi: 10.3390/cells10020408.
  • Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 11(1):21–32. doi: 10.1038/nrmicro2916.
  • Brakhage AA, Schroeckh V. 2011. Fungal secondary metabolites–strategies to activate silent gene clusters. Fungal Genet Biol. 48(1):15–22. doi: 10.1016/j.fgb.2010.04.004.
  • Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL. 2009. A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol. 27(10):951–956. doi: 10.1038/nbt.1565.
  • Candido EPM, Reeves R, Davie JR. 1978. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell. 14(1):105–113. doi: 10.1016/0092-8674(78)90305-7.
  • Chen HJ, Awakawa T, Sun JY, Wakimoto T, Abe I. 2013. Epigenetic modifier-induced biosynthesis of novel fusaric acid derivatives in endophytic fungi from Datura stramonium L. Nat Prod Bioprospect. 3(1):20–23. doi: 10.1007/s13659-013-0010-2.
  • Chujo T, Scott B. 2014. Histone H 3 K 9 and H 3 K 27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte–plant symbiosis. Mol Microbiol. 92(2):413–434. doi: 10.1111/mmi.12567.
  • Cichewicz RH. 2010. Epigenome manipulation as a pathway to new natural product scaffolds and their congeners. Nat Prod Rep. 27(1):11–22. doi: 10.1039/B920860G.
  • Collemare J, Seidl MF. 2019. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev. 43(6):591–607. doi: 10.1093/femsre/fuz018.
  • Conway KR, Boddy CN. 2012. ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res. 41(D1):D402–D407. doi: 10.1093/nar/gks993.
  • Davie JR. 2003. Inhibition of histone deacetylase activity by butyrate. J Nutr. 133(7):2485S–2493S. doi: 10.1093/jn/133.7.2485S.
  • Dwibedi V, Kalia S, Saxena S. 2019. Isolation and enhancement of resveratrol production in Xylaria psidii by exploring the phenomenon of epigenetics: using DNA methyltransferases and histone deacetylase as epigenetic modifiers. Mol Biol Rep. 46(4):4123–4137. doi: 10.1007/s11033-019-04862-z.
  • Ehrenhofer‐Murray AE. 2004. Chromatin dynamics at DNA replication, transcription and repair. European J Mol Biol Biochem. 271(12):2335–2349. doi: 10.1111/j.1432-1033.2004.04162.x.
  • Feng T, Wei C, Deng X, Chen D, Wen Z, Xu J. 2022. Epigenetic manipulation induced production of immunosuppressive chromones and cytochalasins from the mangrove endophytic fungus Phomopsis asparagi DHS-48. Mar Drugs. 20(10):616. doi: 10.3390/md20100616.
  • Fisch K, Gillaspy A, Gipson M, Henrikson J, Hoover A, Jackson L, Najar F, Wägele H, Cichewicz R. 2009. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol. 36(9):1199–1213. doi: 10.1007/s10295-009-0601-4.
  • Forseth RR, Fox EM, Chung D, Howlett BJ, Keller NP, Schroeder FC. 2011. Identification of cryptic products of the gliotoxin gene cluster using NMR-based comparative metabolomics and a model for gliotoxin biosynthesis. J Am Chem Soc. 133(25):9678–9681. doi: 10.1021/ja2029987.
  • Gacek-Matthews A, Berger H, Sasaki T, Wittstein K, Gruber C, Lewis ZA, Strauss J. 2016. KdmB, a Jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genet. 12(8):e1006222. doi: 10.1371/journal.pgen.1006222.
  • Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A. 2015. KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol. 97(3):606. doi: 10.1111/mmi.12977.
  • Gasiunas G, Barrangou R, Horvath P, Siksnys V. 2012. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci. 109(39):E2579–E2586. doi: 10.1073/pnas.1208507109.
  • Gautam VS, Singh A, Kumari P, Nishad JH, Kumar J, Yadav M, Bharti R, Prajapati P, Kharwar RN. 2022. Phenolic and flavonoid contents and antioxidant activity of an endophytic fungus Nigrospora sphaerica (EHL2), inhabiting the medicinal plant Euphorbia hirta (dudhi) L. Arch Microbiol. 204(2):140. doi: 10.1007/s00203-021-02650-7.
  • Gehm BD, McAndrews JM, Chien PY, Jameson JL. 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci. 94(25):14138–14143. doi: 10.1073/pnas.94.25.14138.
  • Gnyszka A, Jastrzębski Z, Flis S. 2013. DNA methyltransferase inhibitors and their emerging role in epigenetic therapy of cancer. Anticancer Res. 33(8):2989–2996.
  • González-Menéndez V, Crespo G, Toro C, Martín J, de Pedro N, Tormo JR, Genilloud O. 2019. Extending the metabolite diversity of the endophyte Dimorphosporicola tragani. Metabolites. 9(10):197. doi: 10.3390/metabo9100197.
  • Gubiani JR, Wijeratne EK, Shi T, Araujo AR, Arnold AE, Chapman E, Gunatilaka AL. 2017. An epigenetic modifier induces production of (10′ S)-verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorg Med Chem. 25(6):1860–1866. doi: 10.1016/j.bmc.2017.01.048.
  • Gulyamova T, Abdulmyanova L, Ruzieva D, Rasulova G, Yusupov U, Sattarova R. 2019. Effect of epigenetic modifiers on fermentation parameters of endophytic fungi from plants growing in Uzbekistan. Int J Curr Microbiol Appl Sci. 8(3):851–860. doi: 10.20546/ijcmas.2019.803.102.
  • Guo DL, Qiu L, Feng D, He X, Li XH, Cao ZX, Gu YC, Mei L, Deng F, Deng Y. 2020. Three new ɑ-pyrone derivatives induced by chemical epigenetic manipulation of Penicillium herquei, an endophytic fungus isolated from Cordyceps sinensis. Nat Prod Res. 34(7):958–964. doi: 10.1080/14786419.2018.1544974.
  • Gupta S, Chaturvedi P, Kulkarni MG, Staden JJBA V. 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv. 39:107462. doi:10.1016/j.biotechadv.2019.107462.
  • Gupta P, Verma A, Rai N, Singh AK, Singh SK, Kumar B, Kumar R, Gautam V. 2021. Mass spectrometry-based technology and workflows for studying the chemistry of fungal endophyte derived bioactive compounds. ACS Chem Biol. 16(11):2068–2086. doi: 10.1021/acschembio.1c00581.
  • Hardy TM, Tollefsbol TO. 2011. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 3(4):503–518. doi: 10.2217/epi.11.71.
  • Helaly SE, Thongbai B, Stadler M. 2018. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat Prod Rep. 35(9):992–1014. doi: 10.1039/C8NP00010G.
  • Hoffmeister D, Keller NP. 2007. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep. 24(2):393–416. doi: 10.1039/B603084J.
  • Huang PW, Yang Q, Zhu YL, Zhou J, Sun K, Mei YZ, Dai CC. 2020. The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet Biol. 136:103301. doi: 10.1016/j.fgb.2019.103301.
  • Iyer LM, Zhang D, Aravind L. 2016. Adenine methylation in eukaryotes: apprehending the complex evolutionary history and functional potential of an epigenetic modification. Bioessays. 38(1):27–40. doi: 10.1002/bies.201500104.
  • Jiang Y, Wang Y, Brudno M. 2012. PRISM: pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants. Bioinformatics. 28(20):2576–2583. doi: 10.1093/bioinformatics/bts484.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 337(6096):816–821. doi: 10.1126/science.1225829.
  • Jourquin F, Géli V. 2017. Histone purification from Saccharomyces cerevisiae. In: Guillemette B Gaudreau L, editors. Histones, methods in molecular biology. Vol. 1528. New York: Humana Press; p. 69–73.
  • Keller NP. 2019. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 17(3):167–180. doi: 10.1038/s41579-018-0121-1.
  • Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 3(12):937–947. doi: 10.1038/nrmicro1286.
  • Keshri PK, Rai N, Verma A, Kamble SC, Barik S, Mishra P, Singh SK, Salvi P, Gautam V. 2021. Biological potential of bioactive metabolites derived from fungal endophytes associated with medicinal plants. Mycol Prog. 20(5):577–594. doi: 10.1007/s11557-021-01695-8.
  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND. 2010. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 47(9):736–741. doi: 10.1016/j.fgb.2010.06.003.
  • Kim HJ, Bae SC. 2011. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res. 3(2):166.
  • Knott GJ, Doudna JA. 2018. CRISPR-Cas guides the future of genetic engineering. Science. 361(6405):866–869. doi: 10.1126/science.aat5011.
  • Krautkramer KA, Reiter L, Denu JM, Dowell JA. 2015. Quantification of SAHA-dependent changes in histone modifications using data-independent acquisition mass spectrometry. Proteome Res. 14(8):3252–3262. doi: 10.1021/acs.jproteome.5b00245.
  • Kumar S, Chinnusamy V, Mohapatra T. 2018. Epigenetics of modified DNA bases: 5-methylcytosine and beyond. Front Genet. 9:640. doi:10.3389/fgene.2018.00640.
  • Li G, Kusari S, Golz C, Laatsch H, Strohmann C, Spiteller M. 2017. Epigenetic modulation of endophytic Eupenicillium sp. LG41 by a histone deacetylase inhibitor for production of decalin-containing compounds. J Nat Prod. 80(4):983–988. doi: 10.1021/acs.jnatprod.6b00997.
  • Liu R, Chen L, Jiang Y, Zhou Z, Zou G. 2015. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 1(1):1–11. doi: 10.1038/celldisc.2015.7.
  • Lopes A, da Silva D, Lopes N, Pupo M. 2012. Epigenetic modulation changed the secondary metabolite profile in the endophyte Nigrospora sphaerica SS67. Planta Med. 78(14):L38. doi: 10.1055/s-0032-1325180.
  • Magotra A, Kumar M, Kushwaha M, Awasthi P, Raina C, Gupta AP, Shah BA, Gandhi SG, Chaubey A. 2017. Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express. 7(1):1–10. doi: 10.1186/s13568-017-0343-z.
  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P. 2020. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 18(2):67–83. doi: 10.1038/s41579-019-0299-x.
  • Mao XM, Xu W, Li D, Yin WB, Chooi YH, Li YQ, Tang Y, Hu Y. 2015. Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem. 127(26):7702–7706. doi: 10.1002/ange.201502452.
  • Marks PA, Breslow R. 2007. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol. 25(1):84–90. doi: 10.1038/nbt1272.
  • Marmann A, Aly AH, Lin W, Wang B, Proksch P. 2014. Co-cultivation—a powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar Drugs. 12(2):1043–1065. doi: 10.3390/md12021043.
  • Matsu-Ura T, Baek M, Kwon J, Hong C. 2015. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol. 2(1):1–7. doi: 10.1186/s40694-015-0015-1.
  • Meeran SM, Ahmed A, Tollefsbol TO. 2010. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 1(3):101–116. doi: 10.1007/s13148-010-0011-5.
  • Meier JL, Niessen S, Hoover HS, Foley TL, Cravatt BF, Burkart MD. 2009. An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. ACS Chem Biol. 4(11):948–957. doi: 10.1021/cb9002128.
  • Mousa WK, Raizada MN. 2013. The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol. 4:65. doi:10.3389/fmicb.2013.00065.
  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C. 2005. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 438(7071):1151–1156. doi: 10.1038/nature04332.
  • Nishad JH, Singh A, Gautam VS, Kumari P, Kumar J, Yadav M, Kharwar RN. 2021. Bioactive potential evaluation and purification of compounds from an endophytic fungus Diaporthe longicolla, a resident of Saraca asoca (Roxb.) Willd. Arch Microbiol. 203(7):4179–4188. doi: 10.1007/s00203-021-02390-8.
  • Orlando V. 2000. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci. 25(3):99–104. doi: 10.1016/S0968-0004(99)01535-2.
  • Osbourn A. 2010. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 26(10):449–457. doi: 10.1016/j.tig.2010.07.001.
  • Papoutsis AJ, Lamore SD, Wondrak GT, Selmin OI, Romagnolo DF. 2010. Resveratrol prevents epigenetic silencing of BRCA-1 by the aromatic hydrocarbon receptor in human breast cancer cells. J Nutr. 140(9):1607–1614. doi: 10.3945/jn.110.123422.
  • Park PJ. 2009. ChIP–seq: advantages and challenges of a maturing technology. Nat Rev Genet. 10(10):669–680. doi: 10.1038/nrg2641.
  • Pfannenstiel BT, Greco C, Sukowaty AT, Keller NP. 2018. The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genet. 120:9–18. doi: 10.1016/j.fgb.2018.08.004.
  • Poças-Fonseca MJ, Cabral CG, Manfrão-Netto JHC. 2020. Epigenetic manipulation of filamentous fungi for biotechnological applications: a systematic review. Biotechnol Lett. 42(6):885–904. doi: 10.1007/s10529-020-02871-8.
  • Pohl C, Kiel JA, Driessen AJ, Bovenberg RA, Nygard Y. 2016. CRISPR/Cas9 based genome editing of Penicillium chrysogenum. ACS Synth Biol. 5(7):754–764. doi: 10.1021/acssynbio.6b00082.
  • Qu X, Lei C, Liu W. 2011. Transcriptome mining of active biosynthetic pathways and their associated products in Streptomyces flaveolus. Angew Chem Int Ed. 50(41):9651–9654. doi: 10.1002/anie.201103085.
  • Rai N, Gupta P, Keshri PK, Verma A, Mishra P, Kumar D, Kumar A, Singh SK, Gautam V. 2022. Fungal endophytes: an accessible source of bioactive compounds with potential anticancer activity. Appl Biochem Biotechnol. 194(7):3296–3319. doi: 10.1007/s12010-022-03872-1.
  • Rai N, Keshri PK, Verma A, Kamble SC, Mishra P, Barik S, Kumar Singh S, Gautam V. 2021. Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology. 12(3):139–159. doi: 10.1080/21501203.2020.1870579.
  • Raimi A, Adeleke R. 2021. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol. 203(5):1917–1942. doi: 10.1007/s00203-021-02256-z.
  • Reddy BVB, Milshteyn A, Charlop-Powers Z, Brady SF. 2014. eSnapd: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem Biol. 21(8):1023–1033. doi: 10.1016/j.chembiol.2014.06.007.
  • Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. 2020. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep. 37(7):868–878. doi: 10.1039/C9NP00045C.
  • Rutledge PJ, Challis GL. 2015. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol. 13(8):509–523. doi: 10.1038/nrmicro3496.
  • Sagita R, Quax WJ, Haslinger K. 2021. Current state and future directions of genetics and genomics of endophytic fungi for bioprospecting efforts. Front Bioeng Biotechnol. 9:649906. doi:10.3389/fbioe.2021.649906.
  • Salvi P, Mahawar H, Agarrwal R, Gautam V, Deshmukh R. 2022. Advancement in the molecular perspective of plant-endophytic interaction to mitigate drought stress in plants. Front Microbiol. 13:981355. doi:10.3389/fmicb.2022.981355.
  • Santi DV, Norment A, Garrett CE. 1984. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc Natl Acad Sci. 81(22):6993–6997. doi: 10.1073/pnas.81.22.6993.
  • Sarma H, Islam N, Prasad R, Prasad M, Ma LQ, Rinklebe J. 2021. Enhancing phytoremediation of hazardous metal (loid) s using genome engineering CRISPR–Cas9 technology. J Hazard Mater. 414:125493. doi:10.1016/j.jhazmat.2021.125493.
  • Schley C, Altmeyer MO, Swart R, Müller R, Huber CG. 2006. Proteome analysis of Myxococcus x anthus by off-line two-dimensional chromatographic separation using monolithic poly-(styrene-divinylbenzene) columns combined with ion-trap tandem mass spectrometry. J Proteome Res. 5(10):2760–2768. doi: 10.1021/pr0602489.
  • Schüller A, Wolansky L, Berger H, Studt L, Gacek-Matthews A, Sulyok M, Strauss J. 2020. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Appl Microbiol Biotechnol. 104(22):9801–9822. doi: 10.1007/s00253-020-10900-9.
  • Seto E, Yoshida M. 2014. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6(4):a018713. doi: 10.1101/cshperspect.a018713.
  • Seyedsayamdost MR. 2014. High-throughput platform for the discovery of elicitors of silent bacterial gene clusters. Proc Natl Acad Sci. 111(20):7266–7271. doi: 10.1073/pnas.1400019111.
  • Sharma VK, Kumar J, Singh DK, Mishra A, Verma SK, Gond SK, Kumar A, Singh N, Kharwar RN. 2017. Induction of cryptic and bioactive metabolites through natural dietary components in an endophytic fungus Colletotrichum gloeosporioides (Penz.) Sacc. Front Microbiol. 8:1126. doi:10.3389/fmicb.2017.01126.
  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. 2007. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 6(9):1656–1664. doi: 10.1128/ec.00186-07.
  • Singh A, Singh DK, Kharwar RN, White JF, Gond SK. 2021. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms. 9(1):197. doi: 10.3390/microorganisms9010197.
  • Soukup A, Keller NP. 2013. Western analysis of histone modifications (Aspergillus nidulans). Bio-protocol. 3(7):e424–e424. doi: 10.21769/BioProtoc.424.
  • Srinivasa C, Mellappa G, Patil SM, Ramu R, Shreevatsa B, Dharmashekar C, Kollur SP, Syed A, Shivamallu C. 2022. Plants and endophytes - a partnership for the coumarin production through the microbial systems. Mycology. 13(4):243–256. doi: 10.1080/21501203.2022.2027537.
  • Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 64(2):435–459. doi: 10.1128/mmbr.64.2.435-459.2000.
  • Stierle A, Strobel G, Stierle D. 1993. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 260(5105):214–216. doi: 10.1126/science.8097061.
  • Strahl BD, Allis CD. 2000. The language of covalent histone modifications. Nature. 403(6765):41–45. doi: 10.1038/47412.
  • Strobel GA. 2002. Rainforest endophytes and bioactive products. Crit Rev Biotechnol. 22(4):315–333. doi: 10.1080/07388550290789531.
  • Sun J, Awakawa T, Noguchi H, Abe I. 2012. Induced production of mycotoxins in an endophytic fungus from the medicinal plant Datura stramonium L. Bioorganic Med Chem Lett. 22(20):6397–6400. doi: 10.1016/j.bmcl.2012.08.063.
  • Suryanarayanan T, Thirunavukkarasu N, Govindarajulu M, Sasse F, Jansen R, Murali T. 2009. Fungal endophytes and bioprospecting. Fungal Biol Rev. 23(1–2):9–19. doi: 10.1016/j.fbr.2009.07.001.
  • Swartjes T, Staals RH, van der Oost J. 2020. Editor’s cut: DNA cleavage by CRISPR RNA-guided nucleases Cas9 and Cas12a. Biochem Soc Trans. 48(1):207–219. doi: 10.1042/BST20190563.
  • Taiwo O, Wilson GA, Morris T, Seisenberger S, Reik W, Pearce D, Beck S, Butcher LM. 2012. Methylome analysis using MeDIP-seq with low DNA concentrations. Nat Protoc. 7(4):617–636. doi: 10.1038/nprot.2012.012.
  • Tiwari P, Bae H. 2022. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 10(2):360. doi: 10.3390/microorganisms10020360.
  • Toghueo K, Dinkar S, Boyom F. 2016. Stimulation of the production of new volatile and non-volatile metabolites by endophytic Aspergillus niger using small organic chemicals. Curr Res Environ Appl Mycol. 6(4):256–267. doi: 10.5943/cream/6/4/3.
  • Toghueo RMK, Sahal D, Boyom FF. 2020. Recent advances in inducing endophytic fungal specialized metabolites using small molecule elicitors including epigenetic modifiers. Phytochemistry. 174:112338. doi: 10.1016/j.phytochem.2020.112338.
  • Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, Capson TL, Clark BR. 2011. Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microbiol. 77(11):3617–3625. doi: 10.1128/AEM.00038-11.
  • Ul-Hassan SR, Strobel GA, Booth E, Knighton WB, Floerchinger C, Sears J. 2012. Modulation of volatile organic compound formation in the Mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology. 158(2):465–473. doi: 10.1099/mic.0.054643-0.
  • Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, Singh BP, Mudili V, Gupta VK, Siddaiah CN. 2018. Endophytic fungi—alternative sources of cytotoxic compounds: A review. Front Pharmacol. 9:309. doi:10.3389/fphar.2018.00309.
  • VanderMolen KM, Darveaux BA, Chen W-L, Swanson SM, Pearce CJ, Oberlies NH. 2014. Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Adv. 4(35):18329–18335. doi: 10.1039/C4RA00274A.
  • Vel Szic KS, Ndlovu MN, Haegeman G, Berghe WV. 2010. Nature or nurture: let food be your epigenetic medicine in chronic inflammatory disorders. Biochem Pharmacol. 80(12):1816–1832. doi: 10.1016/j.bcp.2010.07.029.
  • Wang D, Jin S, Lu Q, Chen Y. 2023. Advances and challenges in CRISPR/Cas-based fungal genome engineering for secondary metabolite production: A review. J Fungi. 9(3):362. doi: 10.3390/jof9030362.
  • Wang Q, Cobine PA, Coleman JJ. 2018. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet Biol. 117:21–29. doi:10.1016/j.fgb.2018.05.003.
  • Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43(W1):W237–W243. doi: 10.1093/nar/gkv437.
  • Wenderoth M, Pinecker C, Voß B, Fischer R. 2017. Establishment of CRISPR/Cas9 in Alternaria alternata. Fungal Genet Biol. 101:55–60. doi:10.1016/j.fgb.2017.03.001.
  • Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH. 2008. Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem. 6(11):1895–1897. doi: 10.1039/B804701D.
  • Wu G, Zhou H, Zhang P, Wang X, Li W, Zhang W, Liu X, Liu HW, Keller NP, An Z. 2016. Polyketide production of pestaloficiols and macrodiolide ficiolides revealed by manipulations of epigenetic regulators in an endophytic fungus. Org Lett. 18(8):1832–1835. doi: 10.1021/acs.orglett.6b00562.
  • Xi Y, Li W. 2009. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinform. 10(1):1–9. doi: 10.1186/1471-2105-10-232.
  • Xu X, Huang R, Yin W-B. 2021. An optimized and efficient CRISPR/Cas9 system for the endophytic fungus Pestalotiopsis fici. J Fungi. 7(10):809. doi: 10.3390/jof7100809.
  • Xu Z, Xiong B, Xu J. 2021. Chemical investigation of secondary metabolites produced by mangrove endophytic fungus Phyllosticta capitalensis. Nat Prod Res. 35(9):1561–1565. doi: 10.1080/14786419.2019.1656624.
  • Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. 2023. Recent advances in search of bioactive secondary metabolites from fungi triggered by chemical epigenetic modifiers. J Fungi. 9(2):172. doi: 10.3390/jof9020172.
  • Yang XL, Awakawa T, Wakimoto T, Abe I. 2013. Induced biosyntheses of a novel butyrophenone and two aromatic polyketides in the plant pathogen Stagonospora nodorum. Nat Prod Bioprospect. 3(4):141–144. doi: 10.1007/s13659-013-0055-2.
  • Yang XL, Huang L, Ruan XL. 2014. Epigenetic modifiers alter the secondary metabolite composition of a plant endophytic fungus, Pestalotiopsis crassiuscula obtained from the leaves of Fragaria chiloensis. J Asian Nat Prod Res. 16(4):412–417. doi: 10.1080/10286020.2014.881356.
  • Yoshida M, Kijima M, Akita M, Beppu T. 1990. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin a. J Biol Chem. 265(28):17174–17179. doi: 10.1016/S0021-9258(17)44885-X.
  • Zhang HW, Song YC, Tan RX. 2006. Biology and chemistry of endophytes. Nat Prod Rep. 23(5):753–771. doi: 10.1039/B609472B.
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W. 2008. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9(9):1–9. doi: 10.1186/gb-2008-9-9-r137.