Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 15, 2024 - Issue 1: Pathogenic Fungi and Health
2,085
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The role of fungi in the diagnosis of colorectal cancer

, , , &
Pages 17-29 | Received 11 May 2023, Accepted 14 Aug 2023, Published online: 03 Sep 2023

References

  • Abu-Ghazaleh N, Chua WJ, Gopalan V. 2021. Intestinal microbiota and its association with colon cancer and red/processed meat consumption. J Gastroenterol Hepatol. 36(1):75–88. doi: 10.1111/jgh.15042.
  • Ajami NJ, Wargo JA. 2020. AI finds microbial signatures in tumours and blood across cancer types. Nature. 579(7800):502–503. doi: 10.1038/d41586-020-00637-w.
  • Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, et al. 2022. Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell. 40(2):153–167.e11. doi: 10.1016/j.ccell.2022.01.003.
  • Alonso-Roman R, Last A, Mirhakkak MH, Sprague JL, Moller L, Grossmann P, Graf K, Gratz R, Mogavero S, Vylkova S, et al. 2022. Lactobacillus rhamnosus colonisation antagonizes Candida albicans by forcing metabolic adaptations that compromise pathogenicity. Nat Commun. 13(1):3192. doi: 10.1038/s41467-022-30661-5.
  • Anderson JC, Robinson CM, Hisey WM, Edwards DK, Kneedler BL, Berger BM, Butterly LF. 2022. Colorectal neoplasia detection in individuals with positive multitarget stool DNA tests: Data from the New Hampshire colonoscopy registry. J Clin Gastroenterol. 56(5):419–425. doi: 10.1097/MCG.0000000000001554.
  • Ashktorab H, Brim H. 2022. Colorectal cancer subtyping. Nat Rev Cancer. 22(2):68–69. doi: 10.1038/s41568-021-00432-3.
  • Ballester MP, Mesonero F, Florez-Diez P, Gomez C, Fuentes-Valenzuela E, Martin N, Senosiain C, Vela M, Fernandez-Clotet A, Perez P, et al. 2022. Adherence to endoscopic surveillance for advanced lesions and colorectal cancer in inflammatory bowel disease: an AEG and GETECCU collaborative cohort study. Aliment Pharmacol Ther. 55(11):1402–1413. doi: 10.1111/apt.16832.
  • Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. 2023. Imaging biofilms using fluorescence in situ hybridization: Seeing is believing. Front Cell Infect Microbiol. 13:1–16. doi: 10.3389/fcimb.2023.1195803.
  • Bassetti M, Azoulay E, Kullberg BJ, Ruhnke M, Shoham S, Vazquez J, Giacobbe DR, Calandra T. 2021. EORTC/MSGERC definitions of invasive fungal diseases: Summary of activities of the intensive care unit working group. Clin Infect Dis. 72(Suppl 2):S121–S127. doi: 10.1093/cid/ciaa1751.
  • Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. 2022. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence. 13(1):1573–1589. doi: 10.1080/21505594.2022.2123325.
  • Bing J, Wang S, Xu H, Fan S, Du H, Nobile CJ, Huang G. 2022. A case of Candida auris candidemia in Xiamen, China, and a comparative analysis of clinical isolates in China. Mycology. 13(1):68–75. doi: 10.1080/21501203.2021.1994479.
  • Borman AM, Mohammed S, Palmer MD, Childs N, Johnson EM. 2022. The importance of appropriate processing and direct microscopic examination for the timely diagnosis and management of invasive infections caused by filamentous fungi. Med Mycol. 60(12):1–6. doi: 10.1093/mmy/myac081.
  • Branco J, Miranda IM, Rodrigues AG. 2023. Candida parapsilosis virulence and antifungal resistance mechanisms: A comprehensive review of key determinants. J Fungi (Basel). 9(1):1–15. doi: 10.3390/jof9010080.
  • Caesar LK, Butun FA, Robey MT, Ayon NJ, Gupta R, Dainko D, Bok JW, Nickles G, Stankey RJ, Johnson D, et al. 2023. Correlative metabologenomics of 110 fungi reveals metabolite-gene cluster pairs. Nat Chem Biol. 19(7):846–854. doi: 10.1038/s41589-023-01276-8.
  • Cardoso R, Guo F, Heisser T, De Schutter H, Van Damme N, Nilbert MC, Tybjerg AJ, Bouvier AM, Bouvier V, Launoy G, et al. 2022. Proportion and stage distribution of screen-detected and non-screen-detected colorectal cancer in nine European countries: An international, population-based study. Lancet Gastroenterol Hepatol. 7(8):711–723. doi: 10.1016/S2468-1253(22)00084-X.
  • Carethers JM, Doubeni CA. 2020. Causes of socioeconomic disparities in colorectal cancer and intervention framework and strategies. Gastroenterology. 158(2):354–367. doi: 10.1053/j.gastro.2019.10.029.
  • Chang CW, Lee HC, Li LH, Chiang Chiau JS, Wang TE, Chuang WH, Chen MJ, Wang HY, Shih SC, Liu CY, et al. 2020. Fecal microbiota transplantation prevents intestinal injury, upregulation of toll-like receptors, and 5-fluorouracil/oxaliplatin-induced toxicity in colorectal cancer. Int J Mol Sci. 21(2):1–23. doi: 10.3390/ijms21020386.
  • Cheung MK, Chan JYK, Wong MCS, Wong PY, Lei P, Cai L, Lan L, Ho WCS, Yeung ACM, Chan PKS, et al. 2022. Determinants and interactions of oral bacterial and fungal microbiota in healthy Chinese adults. Microbiol Spectr. 10(1):1–15. doi: 10.1128/spectrum.02410-21.
  • Chung SS, Ali SI, Cash BD 2022. The present and future of colorectal cancer screening. Gastroenterol Hepatol (N Y). 18(11):646–653.
  • Clay SL, Fonseca-Pereira D, Garrett WS. 2022. Colorectal cancer: The facts in the case of the microbiota. J Clin Invest. 132(4):1–10. doi: 10.1172/JCI155101.
  • Coker OO, Liu C, Wu WKK, Wong SH, Jia W, Sung JJY, Yu J. 2022. Altered gut metabolites and microbiota interactions are implicated in colorectal carcinogenesis and can be non-invasive diagnostic biomarkers. Microbiome. 10(1):1–12. doi: 10.1186/s40168-021-01208-5.
  • Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, Chan FKL, Sung JJY, Yu J. 2019. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 68(4):654–662. doi: 10.1136/gutjnl-2018-317178.
  • Collaborators GBDCC. 2022. Global, regional, and national burden of colorectal cancer and its risk factors, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet Gastroenterol Hepatol. 7(7):627–647. doi: 10.1016/S2468-1253(22)00044-9.
  • Dambuza IM, Brown GD. 2019. Fungi accelerate pancreatic cancer. Nature. 574(7777):184–185. doi: 10.1038/d41586-019-02892-y.
  • Debeljak P, Baltar F. 2023. Fungal diversity and community composition across ecosystems. J Fungi (Basel). 9(5):1–10. doi: 10.3390/jof9050510.
  • Dickson I. 2019. Fungal dysbiosis associated with colorectal cancer. Nat Rev Gastroenterol Hepatol. 16(2):76. doi: 10.1038/s41575-019-0105-2.
  • Dohlman AB, Arguijo Mendoza D, Ding S, Gao M, Dressman H, Iliev ID, Lipkin SM, Shen X. 2021. The cancer microbiome atlas: A pan-cancer comparative analysis to distinguish tissue-resident microbiota from contaminants. Cell Host Microbe. 29(2):281–298.e5. doi: 10.1016/j.chom.2020.12.001.
  • Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, Iliev ID. 2022. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 185(20):3807–3822.e12. doi: 10.1016/j.cell.2022.09.015.
  • Du H, Bing J, Nobile CJ, Huang G. 2022. Candida auris infections in China. Virulence. 13(1):589–591. doi: 10.1080/21505594.2022.2054120.
  • Elmallah MIY, Ortega-Deballon P, Hermite L, Pais-De-Barros JP, Gobbo J, Garrido C. 2022. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol Oncol. 16(14):2710–2718. doi: 10.1002/1878-0261.13223.
  • Fassarella M, Blaak EE, Penders J, Nauta A, Smidt H, Zoetendal EG. 2021. Gut microbiome stability and resilience: elucidating the response to perturbations in order to modulate gut health. Gut. 70(3):595–605. doi: 10.1136/gutjnl-2020-321747.
  • Foppiano Palacios C, Spichler Moffarah A. 2021. Diagnosis of pneumonia due to invasive molds. Diagnostics (Basel). 11(7):1–16. doi: 10.3390/diagnostics11071226.
  • Galeano Nino JL, Wu H, LaCourse KD, Kempchinsky AG, Baryiames A, Barber B, Futran N, Houlton J, Sather C, Sicinska E, et al. 2022. Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature. 611(7937):810–817. doi:10.1038/s41586-022-05435-0.
  • Galindo-Pumarino C, Collado M, Herrera M, Pena C. 2021. Tumor microenvironment in metastatic colorectal cancer: The arbitrator in patients’ outcome. Cancers Basel. 13(5):1–28. doi: 10.3390/cancers13051130.
  • Greathouse KL, Stone JK, Harris CC. 2020. Cancer-type-specific bacteria: Freeloaders or partners? Cancer Cell. 38(2):158–160. doi: 10.1016/j.ccell.2020.06.017.
  • Guo R, Luo X, Xin X, Liu L, Wang X, Lu H. 2021. Microbial metabolomics: From methods to translational applications. Adv Exp Med Biol. 1280:97–113. doi: 10.1007/978-3-030-51652-9_7.
  • Hindson J. 2019. Fungi promote pancreatic cancer. Nat Rev Gastroenterol Hepatol. 16(12):706–707. doi: 10.1038/s41575-019-0231-x.
  • Hu LP, Huang W, Wang X, Xu C, Qin WT, Li D, Tian G, Li Q, Zhou Y, Chen S, et al. 2022. Terbinafine prevents colorectal cancer growth by inducing dNTP starvation and reducing immune suppression. Mol Ther. 30(10):3284–3299. doi: 10.1016/j.ymthe.2022.06.015.
  • Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, Chen Y, Tan Y, He Y, Zhao W, et al. 2022. Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol. 13:1–11. doi: 10.3389/fimmu.2022.874922.
  • Iliev ID, Cadwell K. 2021. Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases. Gastroenterology. 160(4):1050–1066. doi: 10.1053/j.gastro.2020.06.100.
  • Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, Eng CLP, Macalinao DC, Kahraman M, Srinivasan H, et al. 2022. Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer. Nat Genet. 54(7):963–975. doi: 10.1038/s41588-022-01100-4.
  • Kamau E, Yang S. 2023. Metagenomic sequencing of positive blood culture fluid for accurate bacterial and fungal species identification: A pilot study. Microorganisms. 11(5):1–12. doi: 10.3390/microorganisms11051259.
  • Kamel F, Eltarhoni K, Nisar P, Soloviev M. 2022. Colorectal cancer diagnosis: The obstacles we face in determining a non-invasive test and current advances in biomarker detection. Cancers Basel. 14(8):1–20. doi: 10.3390/cancers14081889.
  • Kanth P, Inadomi JM. 2021. Screening and prevention of colorectal cancer. BMJ. 374(1855):n1855. doi: 10.1136/bmj.n1855.
  • Kaur K, Zubair M, Adamski JJ. 2023. Fecal occult blood test. Treasure Island (FL): StatPearls Publishing.
  • Ko KKK, Chng KR, Nagarajan N. 2022. Metagenomics-enabled microbial surveillance. Nature Microbiology. 7(4):486–496. doi: 10.1038/s41564-022-01089-w.
  • Kong WL, Machida RJ. 2022. Development of transcriptomics-based growth rate indices in two model eukaryotes and relevance to metatranscriptomics datasets. Mol Ecol Resour. 22(7):2627–2639. doi: 10.1111/1755-0998.13652.
  • Krawczyk A, Salamon D, Kowalska-Duplaga K, Zapala B, Ksiazek T, Drazniuk-Warchol M, Gosiewski T. 2023. Changes in the gut mycobiome in pediatric patients in relation to the clinical activity of crohn’s disease. World J Gastroenterol. 29(14):2172–2187. doi: 10.3748/wjg.v29.i14.2172.
  • Kvaerner AS, Birkeland E, Bucher-Johannessen C, Vinberg E, Nordby JI, Kangas H, Bemanian V, Ellonen P, Botteri E, Natvig E, et al. 2021. The CRCbiome study: A large prospective cohort study examining the role of lifestyle and the gut microbiome in colorectal cancer screening participants. BMC Cancer. 21(1):1–14. doi: 10.1186/s12885-021-08640-8.
  • Lam S, Bai X, Shkoporov AN, Park H, Wu X, Lan P, Zuo T. 2022. Roles of the gut virome and mycobiome in faecal microbiota transplantation. Lancet Gastroenterol Hepatol. 7(5):472–484. doi: 10.1016/S2468-1253(21)00303-4.
  • Lapiere A, Richard ML. 2022. Bacterial-fungal metabolic interactions within the microbiota and their potential relevance in human health and disease: a short review. Gut Microbes. 14(1):e2105610. doi: 10.1080/19490976.2022.2105610.
  • Lass-Florl C, Samardzic E, Knoll M. 2021. Serology anno 2021-fungal infections: From invasive to chronic. Clin Microbiol Infect. 27(9):1230–1241. doi: 10.1016/j.cmi.2021.02.005.
  • Li C, Wang Y, Liu D, Wong CC, Coker OO, Zhang X, Liu C, Zhou Y, Liu Y, Kang W, et al. 2022. Squalene epoxidase drives cancer cell proliferation and promotes gut dysbiosis to accelerate colorectal carcinogenesis. Gut. 71(11):2253–2265. doi:10.1136/gutjnl-2021-325851.
  • Li N, Lu B, Luo C, Cai J, Lu M, Zhang Y, Chen H, Dai M. 2021. Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and Northern America. Cancer Lett. 522:255–268. doi: 10.1016/j.canlet.2021.09.034.
  • Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, et al. 2022. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature. 603(7902):672–678. doi: 10.1038/s41586-022-04502-w.
  • Liang JQ, Li T, Nakatsu G, Chen YX, Yau TO, Chu E, Wong S, Szeto CH, Ng SC, Chan FKL, et al. 2020. A novel faecal lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 69(7):1248–1257. doi: 10.1136/gutjnl-2019-318532.
  • Lin Y, Lau HC, Liu Y, Kang X, Wang Y, Ting NL, Kwong TN, Han J, Liu W, Liu C, et al. 2022. Altered mycobiota signatures and enriched pathogenic Aspergillus rambellii are associated with colorectal cancer based on multicohort fecal metagenomic analyses. Gastroenterology. 163(4):908–921. doi:10.1053/j.gastro.2022.06.038.
  • Lind AL, Pollard KS. 2021. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome. 9(1):58. doi: 10.1186/s40168-021-01015-y.
  • Liu C, Ng SK, Ding Y, Lin Y, Liu W, Wong SH, Sung JJ, Yu J. 2022. Meta-analysis of mucosal microbiota reveals universal microbial signatures and dysbiosis in gastric carcinogenesis. Oncogene. 41(28):3599–3610. doi: 10.1038/s41388-022-02377-9.
  • Liu NN, Jiao N, Tan JC, Wang Z, Wu D, Wang AJ, Chen J, Tao L, Zhou C, Fang W, et al. 2022. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 7(2):238–250. doi:10.1038/s41564-021-01030-7.
  • Liu X, Song Y, Li R. 2021. The use of combined PCR, fluorescence in situ hybridisation and immunohistochemical staining to diagnose mucormycosis from formalin-fixed paraffin-embedded tissues. Mycoses. 64(12):1460–1470. doi: 10.1111/myc.13382.
  • Marongiu L, Allgayer H. 2022. Viruses in colorectal cancer. Mol Oncol. 16(7):1423–1450. doi: 10.1002/1878-0261.13100.
  • Mauri G, Vitiello PP, Sogari A, Crisafulli G, Sartore-Bianchi A, Marsoni S, Siena S, Bardelli A. 2022. Liquid biopsies to monitor and direct cancer treatment in colorectal cancer. Br J Cancer. 127(3):394–407. doi: 10.1038/s41416-022-01769-8.
  • McCarty TP, White CM, Pappas PG. 2021. Candidemia and invasive candidiasis. Infect Dis Clin North Am. 35(2):389–413. doi: 10.1016/j.idc.2021.03.007.
  • Monahan KJ, Davies MM, Abulafi M, Banerjea A, Nicholson BD, Arasaradnam R, Barker N, Benton S, Booth R, Burling D, et al. 2022. Faecal immunochemical testing (FIT) in patients with signs or symptoms of suspected colorectal cancer (CRC): A joint guideline from the association of coloproctology of Great Britain and Ireland (ACPGBI) and the British society of Gastroenterology (BSG). Gut. 71(10):1939–1962. doi: 10.1136/gutjnl-2022-327985.
  • Moreira FM, Pereira PA, Miranda R, Reis C, Braga L, de Andrade JM, Do Nascimento LG, Mattoso JMV, Forsythe SJ, da Costa LV, et al. 2023. Evaluation of MALDI-TOF MS, sequencing of D2 LSU rRNA and internal transcribed spacer regions (ITS) for the identification of filamentous fungi isolated from a pharmaceutical facility. J Pharm Biomed Anal. 234:115531. doi: 10.1016/j.jpba.2023.115531.
  • Mukherjee C, Leys EJ. 2021. Strain-level profiling of oral microbiota with targeted sequencing. Methods Mol Biol. 2327:239–252. doi: 10.1007/978-1-0716-1518-8_14.
  • Narunsky-Haziza L, Sepich-Poore GD, Livyatan I, Asraf O, Martino C, Nejman D, Gavert N, Stajich JE, Amit G, Gonzalez A, et al. 2022. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 185(20):3789–3806.e17. doi: 10.1016/j.cell.2022.09.005.
  • Nassar FJ, Msheik ZS, Nasr RR, Temraz SN. 2021. Methylated circulating tumor DNA as a biomarker for colorectal cancer diagnosis, prognosis, and prediction. Clin Epigenet. 13(1):111. doi: 10.1186/s13148-021-01095-5.
  • Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, et al. 2020. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Sci. 368(6494):973–980. doi: 10.1126/science.aay9189.
  • Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. 2022. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol. 22(1):1–11. doi: 10.1186/s12866-022-02615-w.
  • Noh JH, Shin JY, Lee JH, Park YS, Lee IS, Kim GH, Na HK, Ahn JY, Jung KW, Kim DH, et al. 2023. Clinical significance of Epstein-Barr virus and Helicobacter pylori infection in gastric carcinoma. Gut Liver. 17(1):69–77. doi: 10.5009/gnl210593.
  • O’Sullivan DE, Sutherland RL, Town S, Chow K, Fan J, Forbes N, Heitman SJ, Hilsden RJ, Brenner DR. 2022. Risk factors for early-onset colorectal cancer: A systematic review and meta-analysis. Clin Gastroenterol Hepatol. 20(6):1229–1240.e5. doi: 10.1016/j.cgh.2021.01.037.
  • Patel SG, Karlitz JJ, Yen T, Lieu CH, Boland CR. 2022. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol. 7(3):262–274. doi: 10.1016/S2468-1253(21)00426-X.
  • Perez JC. 2021. The interplay between gut bacteria and the yeast Candida albicans. Gut Microbes. 13(1):e1979877. doi: 10.1080/19490976.2021.1979877.
  • Petriglieri F, Singleton CM, Kondrotaite Z, Dueholm MKD, McDaniel EA, McMahon KD, Nielsen PH, McGrath J. 2022. Reevaluation of the phylogenetic diversity and global distribution of the genus “Candidatus accumulibacter”. mSystems. 7(3):1–15. doi: 10.1128/msystems.00016-22.
  • Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, et al. 2020. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 579(7800):567–574. doi: 10.1038/s41586-020-2095-1.
  • Pratt M, Forbes JD, Knox NC, Van Domselaar G, Bernstein CN. 2022. Colorectal cancer screening in inflammatory bowel diseases—Can characterization of GI microbiome signatures enhance Neoplasia detection? Gastroenterology. 162(5):1409–1423.e1. doi: 10.1053/j.gastro.2021.12.287.
  • Qin Y, Havulinna AS, Liu Y, Jousilahti P, Ritchie SC, Tokolyi A, Sanders JG, Valsta L, Brozynska M, Zhu Q, et al. 2022. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat Genet. 54(2):134–142. doi: 10.1038/s41588-021-00991-z.
  • Qu R, Ma Y, Zhang Z, Fu W. 2022. Increasing burden of colorectal cancer in China. Lancet Gastroenterol Hepatol. 7(8):700. doi: 10.1016/S2468-1253(22)00156-X.
  • Randel KR, Schult AL, Botteri E, Hoff G, Bretthauer M, Ursin G, Natvig E, Berstad P, Jorgensen A, Sandvei PK, et al. 2021. Colorectal cancer screening with repeated fecal immunochemical test versus sigmoidoscopy: Baseline results from a randomized trial. Gastroenterology. 160(4):1085–1096.e5. doi: 10.1053/j.gastro.2020.11.037.
  • Rao C, Coyte KZ, Bainter W, Geha RS, Martin CR, Rakoff-Nahoum S. 2021. Multi-kingdom ecological drivers of microbiota assembly in preterm infants. Nature. 591(7851):633–638. doi: 10.1038/s41586-021-03241-8.
  • Rayens E, Norris KA, Cordero JF. 2022. Mortality trends in risk conditions and invasive mycotic disease in the United States, 1999-2018. Clin Infect Dis. 74(2):309–318. doi: 10.1093/cid/ciab336.
  • Rebersek M. 2021. Gut microbiome and its role in colorectal cancer. BMC Cancer. 21(1):1325. doi: 10.1186/s12885-021-09054-2.
  • Sampaio KB, Dos Santos Nascimento D, Garcia EF, de Souza EL. 2022. An outlook on fluorescent in situ hybridization coupled to flow cytometry as a versatile technique to evaluate the effects of foods and dietary interventions on gut microbiota. Arch Microbiol. 204(8):469. doi: 10.1007/s00203-022-03090-7.
  • Sarantis P, Trifylli EM, Koustas E, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. 2022. Immune microenvironment and immunotherapeutic management in virus-associated digestive system tumors. Int J Mol Sci. 23(21):1–20. doi: 10.3390/ijms232113612.
  • Schmitt M, Greten FR. 2021. The inflammatory pathogenesis of colorectal cancer. Nat Rev Immunol. 21(10):653–667. doi: 10.1038/s41577-021-00534-x.
  • Shah SC, Itzkowitz SH. 2022. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology. 162(3):715–730.e3. doi: 10.1053/j.gastro.2021.10.035.
  • Shen S, Huo D, Ma C, Jiang S, Zhang J, Xu ZZ. 2021. Expanding the colorectal cancer biomarkers based on the human gut phageome. Microbiol Spectr. 9(3):e0009021. doi: 10.1128/Spectrum.00090-21.
  • Shi L, Xu Y, Feng M. 2023. Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer. Dig Dis Sci. 68(2):370–379. doi: 10.1007/s10620-022-07689-0.
  • Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. 2020. Gastric cancer. Lancet. 396(10251):635–648. doi: 10.1016/S0140-6736(20)31288-5.
  • Stasiewicz M, Karpinski TM. 2022. The oral microbiota and its role in carcinogenesis. Semin Cancer Biol. 86(Pt 3):633–642. doi: 10.1016/j.semcancer.2021.11.002.
  • Stewart OA, Wu F, Chen Y. 2020. The role of gastric microbiota in gastric cancer. Gut Microbes. 11(5):1220–1230. doi: 10.1080/19490976.2020.1762520.
  • Strickland AB, Shi M. 2021. Mechanisms of fungal dissemination. Cell Mol Life Sci. 78(7):3219–3238. doi: 10.1007/s00018-020-03736-z.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. A Cancer J Clin. 71(3):209–249. doi: 10.3322/caac.21660.
  • Sung SY, Choi HH, Kim S, Park BR, Kim YK, Kim HK, Cho YS, Kim SW, Kim SS, Chae HS. 2022. Colonoscopy decreases mortality in colorectal cancer patients compared with fecal immunochemical test. J Gastroenterol Hepatol. 37(10):1991–1997. doi: 10.1111/jgh.15924.
  • Tang C, Sun H, Kadoki M, Han W, Ye X, Makusheva Y, Deng J, Feng B, Qiu D, Tan Y, et al. 2023. Blocking Dectin-1 prevents colorectal tumorigenesis by suppressing prostaglandin E2 production in myeloid-derived suppressor cells and enhancing IL-22 binding protein expression. Nat Commun. 14(1):1493. doi:10.1038/s41467-023-37229-x.
  • Vehreschild JJ, Koehler P, Lamoth F, Prattes J, Rieger C, Rijnders BJA, Teschner D. 2021. Future challenges and chances in the diagnosis and management of invasive mould infections in cancer patients. Med Mycol. 59(1):93–101. doi: 10.1093/mmy/myaa079.
  • Wang H, Wu H, Li KD, Wang YY, Huang RG, Du YJ, Jin X, Zhang QR, Li XB, Li BZ. 2023. Intestinal fungi and systemic autoimmune diseases. Autoimmun Rev. 22(2):103234. doi: 10.1016/j.autrev.2022.103234.
  • Wang N, Fang JY. 2023. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 31(2):159–172. doi: 10.1016/j.tim.2022.08.010.
  • Wang S, Zhang YR, Yu YB. 2021. The important role of fungi in inflammatory bowel diseases. Scand J Gastroenterol. 56(11):1312–1322. doi: 10.1080/00365521.2021.1963838.
  • Xiao Q, Lu W, Kong X, Shao YW, Hu Y, Wang A, Bao H, Cao R, Liu K, Wang X, et al. 2021. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: A proof-of-concept study. Cancer Lett. 499:201–208. doi: 10.1016/j.canlet.2020.11.030.
  • Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, Wang F, Yan H, Zeng L, Zhang L, et al. 2022. Microbiota in tumors: From understanding to application. Adv Sci. 9(21):e2200470. doi:10.1002/advs.202200470.
  • Xu H, Chen H, Hu J, Xiong Z, Li D, Wang S, Yu J. 2022. Feasibility of quantification based on novel evaluation with stool DNA and fecal immunochemical test for colorectal cancer detection. BMC Gastroenterol. 22(1):384. doi: 10.1186/s12876-022-02470-z.
  • Xu J. 2021. Is natural population of Candida tropicalis sexual, parasexual, and/or asexual? Front Cell Infect Microbiol. 11:751676. doi: 10.3389/fcimb.2021.751676.
  • Xu J, Ren X, Liu Y, Zhang Y, Zhang Y, Chen G, Huang Q, Liu Q, Zhou J, Liu Y. 2022. Alterations of fungal microbiota in patients with cholecystectomy. Front Microbiol. 13:831947. doi: 10.3389/fmicb.2022.831947.
  • Yelorda KL, Fu SJ, Owens DK. 2021. Analysis of survival among adults with early-onset colorectal cancer. JAMA Netw Open. 4(6):e2112878. doi: 10.1001/jamanetworkopen.2021.12878.
  • Yu H, Li XX, Han X, Chen BX, Zhang XH, Gao S, Xu DQ, Wang Y, Gao ZK, Yu L, et al. 2023. Fecal microbiota transplantation inhibits colorectal cancer progression: Reversing intestinal microbial dysbiosis to enhance anti-cancer immune responses. Front Microbiol. 14:1126808. doi: 10.3389/fmicb.2023.1126808.
  • Yu M, Ding H, Gong S, Luo Y, Lin H, Mu Y, Li H, Li X, Zhong M. 2023. Fungal dysbiosis facilitates inflammatory bowel disease by enhancing CD4+ T cell glutaminolysis. Front Cell Infect Microbiol. 13:1140757. doi: 10.3389/fcimb.2023.1140757.
  • Yuan B, Ma B, Yu J, Meng Q, Du T, Li H, Zhu Y, Sun Z, Ma S, Song C. 2021. Fecal bacteria as non-invasive biomarkers for colorectal adenocarcinoma. Front Oncol. 11:664321. doi: 10.3389/fonc.2021.664321.
  • Zajta E, Csonka K, Toth A, Tiszlavicz L, Nemeth T, Orosz A, Novak A, Csikos M, Vagvolgyi C, Mocsai A, et al. 2021. Signaling through Syk or CARD9 mediates species-specific anti-Candida protection in bone marrow chimeric mice. mBio. 12(4):e0160821. doi: 10.1128/mBio.01608-21.
  • Zhao G, Liu X, Liu Y, Li H, Ma Y, Li S, Zhu Y, Miao J, Xiong S, Fei S, et al. 2020. Aberrant DNA methylation of SEPT9 and SDC2 in stool specimens as an integrated biomarker for colorectal cancer early detection. Front Genet. 11:643. doi: 10.3389/fgene.2020.00643.
  • Zheng R, Zhang K, Tan S, Gao F, Zhang Y, Xu W, Wang H, Gu D, Zhu L, Li S, et al. 2022. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3-eIf3h interaction. Mol Cancer. 21(1):49. doi: 10.1186/s12943-021-01471-y.
  • Zheng X, Wang R, Zhang X, Sun Y, Zhang H, Zhao Z, Zheng Y, Luo J, Zhang J, Wu H, et al. 2022. A deep learning model and human-machine fusion for prediction of EBV-associated gastric cancer from histopathology. Nat Commun. 13(1):2790. doi: 10.1038/s41467-022-30459-5.
  • Zhong M, Xiong Y, Zhao J, Gao Z, Ma J, Wu Z, Song Y, Hong X. 2021. Candida albicans disorder is associated with gastric carcinogenesis. Theranostics. 11(10):4945–4956. doi: 10.7150/thno.55209.
  • Zhou H, Zhu L, Song J, Wang G, Li P, Li W, Luo P, Sun X, Wu J, Liu Y, et al. 2022. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol Cancer. 21(1):86. doi: 10.1186/s12943-022-01556-2.
  • Zhu Y, Shi T, Lu X, Xu Z, Qu J, Zhang Z, Shi G, Shen S, Hou Y, Chen Y, et al. 2021. Fungal-induced glycolysis in macrophages promotes colon cancer by enhancing innate lymphoid cell secretion of IL-22. EMBO J. 40(11):e105320. doi: 10.15252/embj.2020105320.
  • Zozaya-Valdes E, Wong SQ, Raleigh J, Hatzimihalis A, Ftouni S, Papenfuss AT, Sandhu S, Dawson MA, Dawson SJ. 2021. Detection of cell-free microbial DNA using a contaminant-controlled analysis framework. Genome Biol. 22(1):187. doi: 10.1186/s13059-021-02401-3.