1,556
Views
0
CrossRef citations to date
0
Altmetric
Review

ACKnowledging the role of the Activated-Cdc42 associated kinase (ACK) in regulating protein stability in cancer

, , , &
Pages 14-25 | Received 13 Dec 2022, Accepted 04 May 2023, Published online: 16 May 2023

References

  • Workman P. New drug targets for genomic cancer therapy successes, limitations, opportunities and future challenges. Curr Cancer Drug Targets. 2001;1(1):33–47.
  • Morgan P, Brown DG, Lennard S, et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17(3):167–181. DOI:10.1038/nrd.2017.244
  • Bhullar KS, Lagarón NO, McGowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(48). DOI:10.1186/s12943-018-0804-2
  • Melnikova I, Golden J. Targeting protein kinases. Nat Rev Drug Discov. 2004;3(12):993–994.
  • Goueli SA. Kinases and drug discovery: protein kinases as a validated drug target. Drug Discovery World. 2016;53–60.
  • Iqbal N, Iqbal N. Imatinib: a breakthrough of targeted therapy in cancer. Chemother Res Pract. 2014;2014:1–9.
  • Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11(1). DOI:10.1186/s13045-018-0624-2
  • Fox M, Crafter C, Owen D. The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attAcking cancer. Biochem Soc Trans. 2019;47(6):1715–1731.
  • Manser E, Leung T, Salihuddin H, et al. A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42. Nature. 1993;363(6427):364–367.
  • Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes Europe PMC funders group. Nature. 2007;446(7132):153–158. DOI:10.1038/nature05610
  • Mahajan NP, Whang YE, Mohler JL, et al. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005;65(22):10514–10523.
  • Van Der Horst EH, Degenhardt YY, Strelow A, et al. Metastatic properties and genomic amplification of the tyrosine kinase gene ACK1. Proc Natl Acad Sci U S A. 2005;102(44):15901–15906. DOI:10.1073/pnas.0508014102
  • Shinmura K, Kiyose S, Nagura K, et al. TNK2 gene amplification is a novel predictor of a poor prognosis in patients with gastric cancer. J Surg Oncol. 2014;109(3):189–197. DOI:10.1002/jso.23482
  • Kiyose S-I, Nagura K, Tao H, et al. Detection of kinase amplifications in gastric cancer archives using fluorescence in situ hybridization. Pathol Int. 2012 Jul;62(7):477–484.
  • Mahajan K, Challa S, Coppola D, et al. Effect of Ack1 tyrosine kinase inhibitor on ligand-independent androgen receptor activity. Prostate. 2010;70(12):1274–1285. DOI:10.1002/pros.21163
  • Pandey A. TNK2 tyrosine kinase as a novel therapeutic target in triple-negative breast cancer. Oncotarget. 2016;8(2):2971–2983.
  • Mahajan K, Coppola D, Challa S, et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation. PLoS ONE. 2010;5(3):e9646.
  • Mahajan K, Mahajan NP. ACK1/TNK2 tyrosine kinase: molecular signaling and evolving role in cancers. Oncogene. 2015;34(32):4162–4167.
  • Mahajan NP, Liu Y, Majumder S, et al. Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A. 2007;104(20):8438–8443. DOI:10.1073/pnas.0700420104
  • Mahajan K, Malla P, Lawrence HR, et al. ACK1/TNK2 regulates histone H4 Tyr88-phosphorylation and AR gene expression in castration-resistant prostate cancer. Cancer Cell. 2017;31(6):790–803.
  • Mahajan K, Lawrence HR, Lawrence NJ, et al. ACK1 tyrosine kinase interacts with histone demethylase KDM3A to regulate the mammary tumor oncogene HOXA1. J Biol Chem. 2014;289(41):28179–28191.
  • Prieto-Echagüe V, Gucwa A, Brown DA, et al. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. BMC Biochem. 2010;11(1). DOI:10.1186/1471-2091-11-42
  • Yokoyama N, Miller WT. Biochemical properties of the Cdc42-associated tyrosine kinase ACK1. Substrate specificity, autophosphorylation, and interaction with Hck. J Biol Chem. 2003;278(48):47713–47723.
  • Mott HR, Owen D, Nietlispach D, et al. Structure of the small G protein Cdc42 bound to the GTpasebinding domain of ACK. Nature. 1999;399(6734):384–388. DOI:10.1038/20732
  • Lougheed JC, Chen RH, Mak P, et al. Crystal structures of the phosphorylated and unphosphorylated kinase domains of the Cdc42-associated tyrosine kinase ACK1. J Biol Chem. 2004 Oct 15;279(42):44039–44045.
  • Gajiwala KS, Maegley K, Ferre R, et al. Ack1: activation and regulation by allostery. PLoS ONE. 2013;8(1). DOI:10.1371/journal.pone.0053994
  • Linseman DA, Heidenreich KA, Fisher SK. Stimulation of M3 muscarinic receptors induces phosphorylation of the Cdc42 effector activated Cdc42Hs-associated Kinase-1 via a fyn tyrosine kinase signaling pathway. J Biol Chem. 2001;276(8):5622–5628.
  • Yang W, Lin Q, Guan JL, et al. Activation of the Cdc42-associated tyrosine kinase-2 (ACK-2) by cell adhesion via integrin β1. J Biol Chem. 1999;274(13):8524–8530.
  • Eisenmann KM, McCarthy JB, Simpson MA, et al. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol. 1999;1(8):507–513. DOI:10.1038/70302
  • Modzelewska K, Newman LP, Desai R, et al. Ack1 mediates Cdc42-dependent cell migration and signaling to p130 Cas. J Biol Chem. 2006;281(49):37527–37535.
  • Galisteo ML, Yang Y, Ureña J, et al. Activation of the nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. Proc Natl Acad Sci U S A. 2006;103(26):9796–9801.
  • Kato-Stankiewicz J, Ueda S, Kataoka T, et al. Epidermal growth factor stimulation of the ACK1/Dbl pathway in a Cdc42 and Grb2-dependent manner. Biochem Biophys Res Commun. 2001;284(2):470–477.
  • Shen F, Lin Q, Gu Y, et al. Activated Cdc42-associated kinase 1 is a component of EGF receptor signaling complex and regulates EGF receptor degradation. Mol Biol Cell. 2007;18(3):732–742.
  • Yang W, Cerione RA. Cloning and characterization of a novel Cdc42-associated tyrosine kinase, ACK-2, from bovine brain. J Biol Chem. 1997;272(40):24819–24824.
  • La Torre A, Del Mar Masdeu M, Cotrufo T, et al. A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching. Cell Death Dis. 2013;4(4):e602. DOI:10.1038/cddis.2013.99
  • Pao-Chun L, Chan PM, Chan W, et al. Cytoplasmic ACK1 interaction with multiple receptor tyrosine kinases is mediated by Grb2: an analysis of ACK1 effects on Axl signaling. J Biol Chem. 2009;284(50):34954–34963.
  • Satoh T, Kato J, Nishida K, et al. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett. 1996;386(2–3):230–234.
  • Xu W, Doshi A, Lei M, et al. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell. 1999;3(5):629–638.
  • Duong-Ly KC, Peterson JR. The human kinome and kinase inhibition. Curr Protoc Pharmacol. 2013;60(1). DOI:10.1002/0471141755.ph0209s60
  • Lin Q, Wang J, Childress C, et al. The activation mechanism of ACK1 (activated Cdc42-associated tyrosine kinase 1). Biochem J. 2012;445(2):255–264.
  • Prieto-Echagüe V, Gucwa A, Craddock BP, et al. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. J Biol Chem. 2010;285(14):10605–10615.
  • Chan W, Sit ST, Manser E. The Cdc42-associated kinase ACK1 is not autoinhibited but requires Src for activation. Biochem J. 2011;435(2):355–364.
  • Yokoyama N, Lougheed J, Miller WT. Phosphorylation of WASP by the Cdc42-associated kinase ACK1: dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem. 2005;280(51):42219–42226.
  • Kelley LC, Weed SA, Hotchin NA. Cortactin is a substrate of activated Cdc42-associated kinase 1 (ACK1) during ligand-induced epidermal growth factor receptor downregulation. PLoS ONE. 2012;7(8):e44363.
  • Thaker YR, Recino A, Raab M, et al. Activated Cdc42-Associated kinase 1 (ACK1) binds the sterile - Motif (SAM) domain of the adaptor SLP-76 and phosphorylates proximal tyrosines. J Biol Chem. 2017 Apr 14;292(15):6281–6290.
  • Schoenherr JA, Drennan JM, Martinez JS, et al. Drosophila activated Cdc42 kinase has an anti-apoptotic function. PLoS Genet. 2012;8(5):e1002725. DOI:10.1371/journal.pgen.1002725
  • Brandao R, Kwa MQ, Yarden Y, et al. ACK1 is dispensable for development, skin tumor formation, and breast cancer cell proliferation. FEBS Open Bio. 2021 Jun 1;11(6):1579–1592.
  • Xie B, Zen Q, Wang X, et al. ACK1 promotes hepatocellular carcinoma progression via downregulating WWOX and activating AKT signaling. Int J Oncol. 2015;46(5):2057–2066. DOI:10.3892/ijo.2015.2910
  • Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65(10):1566–1584.
  • Oda K, Matsuoka Y, Funahashi A, et al. A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol. 2005;1(1):1.
  • Purba E, Saita E, Maruyama I. Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells. 2017;6(2):13.
  • Zahorowska B, Crowe PJ, Yang JL. Combined therapies for cancer: a review of EGFR-targeted monotherapy and combination treatment with other drugs. J Cancer Res Clin Oncol. 2009;135(9):1137–1148.
  • Wang Y, Gao J, Guo X, et al. Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res. 2014;24(8):959–976. DOI:10.1038/cr.2014.89
  • Sorkin A, Paolo Di Fiore P, Carpenter G. The carboxyl terminus of epidermal growth factor receptor/erbB-2 chimerae is internalization impaired. Oncogene. 1993;8(11):3021–3028.
  • Waterman H, Sabanai I, Geiger B, et al. Alternative intracellular routing of ErbB receptors may determine signaling potency. J Biol Chem. 1998;273(22):13819–13827.
  • Lenferink AEG, Pinkas-Kramarski R, Van De Poll MLM, et al. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. Embo J. 1998;17(12):3385–3397. DOI:10.1093/emboj/17.12.3385
  • Lin Q, Wang J, Childress C, et al. HECT E3 ubiquitin ligase Nedd4-1 ubiquitinates ACK and regulates epidermal growth factor (EGF)-Induced degradation of EGF receptor and ACK. Mol Cell Biol. 2010;30(6):1541–1554.
  • Chan W, Tian R, Lee YF, et al. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem. 2009;284(12):8185–8194.
  • Grøvdal LM, Johannessen LE, Rødland MS, et al. Dysregulation of Ack1 inhibits down-regulation of the EGF receptor. Exp Cell Res. 2008;314(6):1292–1300.
  • Teo M, Tan L, Lim L, et al. The tyrosine kinase ACK1 associates with clathrin-coated vesicles through a binding motif shared by arrestin and other adaptors. J Biol Chem. 2001 Jan 25;276(21):18392–18398.
  • Wang Y, Pennock S, Chen X, et al. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol. 2002;22(20):7279–7290.
  • Chiarle R, Pagano M, Inghirami G. The cyclin dependent kinase inhibitor p27 and its prognostic role in breast cancer. Breast Cancer Res. 2001;3(2):91–94.
  • Chim CS, Fung TK, Wong F, et al. Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J Clin Pathol. 2006;59(9):921–926.
  • Lee J, Kim SS. The function of p27KIP1 during tumor development. Exp Mol Med. 2009;41(11):765–771.
  • Migita T, Oda Y, Naito S, et al. Low expression of p27Kip1 is associated with tumor size and poor prognosis in patients with renal cell carcinoma. Cancer. 2002;94(4):973–979.
  • Peng HH, Yang HC, Rupa D, et al. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation. J Cell Commun Signal. 2022;16(4):567–578. DOI:10.1007/s12079-022-00670-6
  • Tsvetkov LM, Yeh KH, Lee SJ, et al. P27(kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol. 1999;9(12):661–S2.
  • Mahajan K, Coppola D, Ann Chen Y, et al. Ack1 tyrosine kinase activation correlates with pancreatic cancer progression from the departments of drug discovery. Am J Pathol. 2012;180(4):1386–1393. DOI:10.1016/j.ajpath.2011.12.028
  • Hernández Borrero LJ, El-Deiry WS. Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer. 2021;1876(1):188556.
  • Liu Y, Wang X, Wang G, et al. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy. Eur J Med Chem. 2019 Aug 15;176:92–104.
  • Xu SH, Huang JZ, Chen M, et al. Amplification of ACK1 promotes gastric tumorigenesis via ECD-dependent p53 ubiquitination degradation. Oncotarget. 2017;8(8):12705–12716. DOI:10.18632/oncotarget.6194
  • Xu SH, Huang JZ, Xu ML, et al. ACK1 promotes gastric cancer epithelial–mesenchymal transition and metastasis through AKT–POU2F1–ECD signalling. J Pathol. 2015;236(2):175–185. DOI:10.1002/path.4515
  • Sridaran D, Chouhan S, Mahajan K, et al. Inhibiting ACK1-mediated phosphorylation of C-terminal Src kinase counteracts prostate cancer immune checkpoint blockade resistance. Nat Commun. 2022 Dec 1;13(1). Available from: /pmc/articles/PMC9663509/. DOI:10.1038/s41467-022-34724-5
  • Salmond RJ, Filby A, Qureshi I, et al. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev. 2009;228(1):9–22.
  • Clayton NS, Fox M, Vicenté-Garcia JJ, et al. Assembly of nuclear dimers of PI3K regulatory subunits is regulated by the Cdc42-activated tyrosine kinase ACK. J Biol Chem. 2022;298(6):101916. DOI:10.1016/j.jbc.2022.101916
  • Fox M, Mott HR, Owen D. Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochem Soc Trans. 2020;48:1397–1417.
  • Geering B, Cutillas PR, Nock G, et al. Class IA phosphoinositide 3-kinases are obligate p85-p110 heterodimers. Proc Natl Acad Sci U S A. 2007;104(19):7809–7814.
  • Fu Z, Aronoff-Spencer E, Backer JM, et al. The structure of the inter-SH2 domain of class IA phosphoinositide 3-kinase determined by site-directed spin labeling EPR and homology modeling. Proc Natl Acad Sci U S A. 2003;100(6):3275–3280.
  • Vallejo-Díaz J, Chagoyen M, Olazabal-Morán M, et al. The opposing roles of PIK3R1/p85a and PIK3R2/p85b in cancer. Trends Cancer. 2019;5(4):233–244.
  • Wang G, Zhang M, Jang H, et al. Interaction of calmodulin with the cSH2 domain of the p85 regulatory subunit. Biochemistry. 2018;57(12):1917–1928. DOI:10.1021/acs.biochem.7b01130
  • Luo J, Cantley LC. Cell cycle then negative regulation of phosphoinositide 3-kinase signaling by p85 and its implication in cancer. Cell Cycle. 2005;4(10):1309–1312.
  • Miao B, Skidan I, Yang J, et al. Small molecule inhibition of phosphatidylinositol-3,4,5-triphosphate (PIP3) binding to pleckstrin homology domains. Proc Natl Acad Sci U S A. 2010;107(46):20126–20131. DOI:10.1073/pnas.1004522107
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.
  • Chen M, Choi S, Wen T, et al. A p53–phosphoinositide signalosome regulates nuclear AKT activation. Nat Cell Biol. 2022;24(7):1099–1113. DOI:10.1038/s41556-022-00949-1
  • Clayton NS, Fox M, Vicenté-Garcia JJ, et al. Regulation of the PI3-kinase regulatory subunits by ACK assembly of novel, nuclear dimers of the PI3-kinase regulatory subunits underpins the pro-proliferative activity of the Cdc42-activated tyrosine kinase, ACK. DOI:10.101101/791277
  • Ahmad Mokhtar AMB, Ahmed SBM, Darling NJ, et al. A complete survey of RhoGDI targets reveals novel interactions with atypical small gtpases. Biochemistry. 2021;60(19):1533–1551.
  • AM M, Binti A. Investigating the functional interaction between RhoGDI family proteins and activated Cdc42 associated-kinase (ACK). Cambridge: University of Cambridge; 2020.
  • Chua BT, Lim SJ, Tham SC, et al. Somatic mutation in the ACK1 ubiquitin association domain enhances oncogenic signaling through EGFR regulation in renal cancer derived cells. Mol Oncol. 2010;4(4):323–334.
  • Mahajan K, Coppola D, Rawal B, et al. Ack1-mediated androgen receptor phosphorylation modulates radiation resistance in castration-resistant prostate cancer. J Biol Chem. 2012;287(26):22112–22122. DOI:10.1074/jbc.M112.357384
  • Lawrence HR, Mahajan K, Luo Y, et al. Development of novel ACK1/TNK2 inhibitors using a fragment-based approach HHS public access. J Med Chem. 2015;58(6):2746–2763. DOI:10.1021/jm501929n
  • Soave CL, Guerin T, Liu J, et al. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev. 2017;36(4):717.