288
Views
0
CrossRef citations to date
0
Altmetric
Articles

Variation of Ba concentration in some plants grown in industrial zone in Türkiye

Pages 38-46 | Received 27 Jul 2023, Accepted 29 Nov 2023, Published online: 08 Dec 2023

References

  • Aricak B, Cetin M, Erdem R, Sevik H, Cometen H. 2020. The usability of Scotch pine (Pinus sylvestris) as a biomonitor for trafficoriginated heavy metal concentrations in Turkey. Pol J Environ Stud. 29(2):1051–1057. doi:10.15244/pjoes/109244.
  • ATSDR (Agency for Toxic Substances and Disease Registry). 2013. Minimal risk levels (MRLs); [accessed 2013 Oct 21]. http://www.atsdr.cdc.gov/mrls/pdfs/atsdr_mrls_july_2013. pdf.
  • Aziz HA, Ghazali MF, Hung YT, Wang LK. 2017. Toxicity, source, and control of barium in the environment. In Handbook of advanced ındustrial and hazardous wastes management. CRC Press: Boca Raton, FL; p. 463–482.
  • Beramendi-Orosco LE, Rodriguez-Estrada LE, Morton-Bermea ML, Romero O, Gonzalez-Hernandez FM, Hernandez-Alvarez GE. 2013. Correlations betweenmetals in tree-rings of Prosopis julifora as indicators of sources of heavy metal contamination. Appl Geochem. 39:78–84. doi:10.1016/j.apgeochem.2013.10.003.
  • Bowen HJM, Dymond JA. 1950. Strontium and Barium in plants and soils. Proc Royal Soc London B: Biol Sci. 144:355–368.
  • Bowen HJM. 1966. Trace elements in biochemistry. London: Academic.
  • Böttcher ME, Neubert N, Von Allmen K, Samankassou E, Nägler TF. 2018. Barium isotope fractionation during the experimental transformation of aragonite to witherite and of gypsum to barite, and the effect of ion (de) solvation. Isotopes Environ Health Stud. 54(3):324–335. doi:10.1080/10256016.2018.1430692.
  • Brázová T, Šalamún P, Miklisová D, Šestinová O, Findoráková L, Hanzelová V, Oros M. 2021. Transfer of heavymetals through three components: sediments, plants and fish in the area with previous mining activity. Bull Environ Contam Toxicol. 106(3):485–492. doi:10.1007/s00128-021-03114-w.
  • Centre for Ecology & Hydrology, National Environment Research Council. 2012. Heavy metal deposition mapping: concentrations and deposition of heavy metals in rural areas of the UK. London: Defra.
  • Cesur A, Zeren Cetin I, Abo Aisha AES, Alrabiti OBM, Aljama AMO, Jawed AA, Cetin M, Sevik H, Ozel HB. 2021. The usability of Cupressus arizonica annual rings in monitoring the changes in heavy metal concentration in air. Environ Sci Pollut Res Int. 28(27):35642–35648. doi:10.1007/s11356-021-13166-4.
  • Cesur A, Zeren Cetin I, Cetin M, Sevik H, Ozel HB. 2022. The use of Cupressus arizonica as a biomonitor of Li, Fe, and Cr pollution in Kastamonu. Water Air Soil Pollut. 233(6):193. doi:10.1007/s11270-022-05667-w.
  • Cetin M, Jawed AA. 2022. Variation of Ba concentrations in some plants grown in Pakistan depending on traffic density. Biomass Conv Bioref. 1–7. doi:10.1007/s13399-022-02334-2.
  • Chaudhry FM, Wallace A, Mueller RT. 1977. Barium toxicity in plants. Commun Soil Sci Plant Anal. 8(9):795–797. doi:10.1080/00103627709366776.
  • Cobanoglu H, Sevik H, Koç İ. 2023. Do annual rings really reveal Cd, Ni, and Zn pollution in the air related to traffic density? An example of the cedar tree. Water Air Soil Pollut. 234(2):65. doi:10.1007/s11270-023-06086-1.
  • Companhia Ambiental do Estado de São Paulo (CETESB). 2017. Ficha de informação toxicológica de bário; [accessed 2021 May 15] https://cetesb.sp.gov.br/laboratorios/wp-content/uploads/sites/ 24/2022/02/Bario.pdf.
  • Crum JR, Franzmeier DP. 1980. Soil properties and chemical composition of tree leaves in Southern Indiana. Soil Sci Soc Am J. 44(5):1063–1069. doi:10.2136/sssaj1980.03615995004400050038x.
  • Çelik BD, Arici N. 2021. Covid-19 Salgın Sürecinde Hava Kalitesi Tahmini: zonguldak Örneği. GMBD. 7(3):222–232. doi:10.30855/gmbd.2021.03.05.
  • Davis HT, Aelion CM, McDermott S, Lawson AB. 2009. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ Pollut. 157(8-9):2378–2385. doi:10.1016/j.envpol.2009.03.021.
  • Dibello PM, Manganaro JL, Aguinaldo ER, Mahmood T, Lindahl CB. 2000. Barium compounds. In Othmer K, editor. Encyclopedia of chemical technology, 5rd ed. New York: Wiley; p. 351–375.
  • Dołęgowska S, Gałuszka A, Migaszewski ZM. 2021. Significance of the long-term biomonitoring studies for understanding the impact of pollutants on the environment based on a synthesis of 25-year biomonitoring in the Holy Cross Mountains, Poland. Environ Sci Pollut Res Int. 28(9):10413–10435. doi:10.1007/s11356-020-11817-6.
  • Elias R, Hirao Y, Patterson CC. 1977. Impact of present levels of aerosol lead concentrations of both natural ecosystems and humans. Proceeding of the International Conference Heavy Metals Environment Vol. 2. p. 257–272.
  • Farzin L, Shamsipur M, Sheibani S. 2017. A review: aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta. 174:619–627. doi:10.1016/j.talanta.2017.06.066.
  • Goddard SL, Williams KR, Robins C, Brown RJC. 2019. Determination of antimony and barium in UK air quality samples as indicators of non-exhaust traffic emissions. Environ Monit Assess. 191(11):641. doi:10.1007/s10661-019-7774-8.
  • Harrison RM, Jones AM, Gietl J, Yin J, Green DC. 2012. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements. Environ Sci Technol. 46(12):6523–6529. doi:10.1021/es300894r.
  • Hope B, Loy C, Miller P. 1996. Uptake and trophic transfer of barium in a terrestrial ecosystem. Bull Environ Contam Toxicol. 56(5):683–689. doi:10.1007/s001289900100.
  • HSE (Health and Safety Executive). 1984. Occupational exposure limits. Resource document: guidance Note EH40.
  • IRIS (Integrated Risk Information System). 2005. Barium and compounds: CASRN 7440-39-3. Washington, DC: U.S. Environmental Protection Agency; [accessed 2013 October 21]. http://www.epa.gov/iris/subst/0010.htm.
  • Isinkaralar K. 2022. The large-scale period of atmospheric trace metal deposition to urban landscape trees as a biomonitor. Biomass Conv Bioref. 1–10. doi:10.1007/s13399-022-02796-4.
  • Isinkaralar K. 2023. A study on the gaseous benzene removal based on adsorption onto the cost-effective and environmentally friendly adsorbent. Molecules. 28(8):3453. doi:10.3390/molecules28083453.
  • Isinkaralar K, Koc I, Erdem R, Sevik H. 2022. Atmospheric Cd, Cr, and Zn deposition in several landscape plants in Mersin, Türkiye. Water Air Soil Pollut. 233(4):1–10. doi:10.1007/s11270-022-05607-8.
  • Istanbullu SN, Sevik H, Isinkaralar K, Isinkaralar O. 2023. Spatial distribution of heavy metal contamination in road dust samples from an urban environment in Samsun, Türkiye. Bull Environ Contam Toxicol. 110(4):78. doi:10.1007/s00128-023-03720-w.
  • Johnson CA, Piatak NM, Miller MM. 2017. Barite (barium). In: Schulz KJ, DeYoung JH, Seal RR, Bradley DC, editors. Critical mineral resources of the United States—economic and environmental geology and prospects for future supply. Reston: U.S. Geological Survey; p. 1–18.
  • Karacocuk T, Sevik H, Isinkaralar K, Turkyilmaz A, Cetin M. 2022. The change of Cr and Mn concentrations in selected plants in Samsun city center depending on traffic density. Landscape Ecol Eng. 18(1):75–83. doi:10.1007/s11355-021-00483-6.
  • Key K, Kulaç Ş, Koç İ, Sevik H. 2022. Determining the 180-year change of Cd, Fe, and Al concentrations in the air by using annual rings of Corylus colurna L. Water Air Soil Pollut. 233(7):244. doi:10.1007/s11270-022-05741-3.
  • Khan RU, Hamayun M, Altaf AA, Kausar S, Razzaq Z, Javaid T. 2022. Assessment and removal of heavy metals and other ıons from the ındustrial wastewater of Faisalabad, Pakistan. Processes. 10(11):2165. doi:10.3390/pr10112165.
  • Kilicoglu C, Cetin M, Aricak B, Sevik H. 2020. Site selection by using the multi-criteria technique_a case study of Bafra, Turkey. Environ Monit Assess. 192(9):608. doi:10.1007/s10661-020-08562-1.
  • Kilicoglu C, Cetin M, Aricak B, Sevik H. 2021. Integrating multicriteria decision-making analysis for a GIS-based settlement area in the district of Atakum, Samsun, Turkey. Theor Appl Climatol. 143(1-2):379–388. doi:10.1007/s00704-020-03439-2.
  • Koc I. 2021. Using Cedrus atlantica’s annual rings as a biomonitor in observing the changes of Ni and Co concentrations in the atmosphere. Environ Sci Pollut Res. 28(27):35880–35886. doi:10.1007/s11356-021-13272-3.
  • Koc I, Cobanoglu H, Canturk U, Key K, Kulac S, Sevik H. 2023. Change of Cr concentration from past to present in areas with elevated air pollution. Int J Environ Sci Technol. 1–12. doi:10.1007/s13762-023-05239-3.
  • Kravchenko J, Darrah TH, Miller RK, Lyerly HK, Vengosh A. 2014. A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health. 36(4):797–814. doi:10.1007/s10653-014-9622-7.
  • Kumar D, Khan EA. 2021. Remediation and detection techniques for heavy metals in the environment. In Heavy metals in the environment. New York: Elsevier; p. 205–222. doi:10.1016/B978-0-12-821656-9.00012-2.
  • Kumar V, Dwivedi SK. 2021. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. Environ Sci Pollut Res. 28(9):10375–10412. doi:10.1007/s11356-020-11491-8.
  • Kuzmina N, Menshchikov S, Mohnachev P, Zavyalov K, Petrova I, Ozel HB, Aricak B, Onat SM, Sevik H. 2022. Change of aluminum concentrations in specific plants by species, organ, washing, and traffic density. BioRes. 18(1):792–803. doi:10.15376/biores.18.1.792-803.
  • Lima LHV, do Nascimento CWA, da Silva FBV, Araújo PRM. 2023. Baseline concentrations, source apportionment, and probabilistic risk assessment of heavy metals in urban street dust in Northeast Brazil. Sci Total Environ. 858(Pt 2):159750. doi:10.1016/j.scitotenv.2022.159750.
  • Lledó D, Poschenrieder C, Barceló J. 1998. Lead and barium accumulation in wild plant species from a mine soil. In Actas del VII Simposio Nacional—III Ibérico sobre Nutrición Mineral de las Plantas. Madrid: Ediciones Universidad Autónoma de Madrid; p. 423–428.
  • Llugany M, Poschenrieder C, Barceló J. 2000. Assessment of barium toxicity in bush beans. Arch Environ Contam Toxicol. 39(4):440–444. doi:10.1007/s002440010125.
  • Madejón P, Ciadamidaro L, Marañón T, Murillo JM. 2013. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits. Int J Phytoremediation. 15(6):602-614. doi:10.1080/15226514.2012.723062.
  • Menzie CA, Southworth B, Stephenson G, Feisthauer N. 2008. The importance of understanding the chemical form of a metal in the environment: the case of barium sulfate (barite). Human Ecol Risk Assess. 14(5):974–991. doi:10.1080/10807030802387622.
  • Natasha N, Shahid M, Murtaza B, Bibi I, Khalid S, Al-Kahtani AA, Naz R, Ali EF, Niazi NK, Rinklebe J, et al. 2022. Accumulation pattern and risk assessment of potentially toxic elements in selected wastewater-irrigated soils and plants in Vehari, Pakistan. Environ Res. 214(Pt 3):114033. doi:10.1016/j.envres.2022.114033.
  • Ozel HB, Sen M, Sevik H. 2021. Change of Ba concentration by species and organ in several fruits grown in city centers. World J Adv Res Rev. 12(3):143–150. doi:10.30574/wjarr.2021.12.3.0681.
  • Padilla KL, Anderson KA. 2002. Trace element concentration in tree-rings biomonitoring centuries of environmental change. Chemosphere. 49(6):575–585. doi:10.1016/S0045-6535(02)00402-2.
  • Pais I, Jones JB. Jr. 1998. The handbook of trace elements. Boca Raton: St Lucie Press.
  • Peana M, Medici S, Dadar M, Zoroddu MA, Pelucelli A, Chasapis CT, Bjørklund G. 2021. Environmental barium: potential exposure and health-hazards. Arch Toxicol. 95(8):2605–2612. doi:10.1007/s00204-021-03049-5.
  • Perone A, Cocozza C, Cherubini P, Bachmann O, Guillong M, Lasserre B, Marchetti M, Reeves A. 1979. Barium. In Friberg L, Nordberg GF, Kessler E, and Vouk VB, editors. Handbook on the toxicology of metals. Amsterdam: Elsevier Science; p. 321–328.
  • Sulhan OF, Sevik H, Isinkaralar K. 2023. Assessment of Cr and Zn deposition on Picea pungens Engelm. in urban air of Ankara, Türkiye. Environ Dev Sustain. 25(5):4365–4384. doi:10.1007/s10668-022-02647-2.
  • Perone A, Cocozza C, Cherubini P, Bachmann O, Guillong M, Lasserre B, Marchetti M, Tognetti R. 2018. Oak tree-rings record spatialtemporal pollution trends from different sources in Terni (Central Italy. Environ Pollut. 233:278–289. doi:10.1016/j.envpol.2017.10.062.
  • Reeves AL. 1979. Barium (toxicity). In Friberg L, Nordberg GF, Velimir B, editors. Handbook on the toxicology of metals. Amsterdam: Elsevier Science Publishers; p. 321–328.
  • Savas DS, Sevik H, Isinkaralar K, Turkyilmaz A, Cetin M. 2021. The potential of using Cedrus atlantica as a biomonitor in the concentrations of Cr and Mn. Environ Sci Pollut Res Int. 28(39):55446–55453. doi:10.1007/s11356-021-14826-1.
  • Sawidis T, Breuste J, Mitrovic M, Pavlovic P, Tsigaridas K. 2011. Trees as bio-indicator of heavy metal pollution in three European cities. Environ Pollut. 159(12):3560–3570. doi:10.1016/j.envpol.2011.08.008.
  • Schroeder HA. 1970. Barium (air quality monograph No. 70–12). Washington, DC: American Petroleum Institute.
  • Schroeder HA, Tipton JH, Nason AP. 1972. Trace metals in man: strontium and barium. J Chronic Dis. 25(9):491–517. doi:10.1016/0021-9681(72)90150-6.
  • Sevik H, Cetin M, Ozel HB, Ozel S, Zeren Cetin I. 2020. Changes in heavy metal accumulation in some edible landscape plants depending on traffic density. Environ Monit Assess. 192(2):78. doi:https://doi.org/10.1007/s10661-019-8041-8.
  • Sevik H, Cetin M, Ozturk A, Ozel HB, Pinar B. 2019a. Changes in Pb, Cr and Cu concentrations in some bioindicator depending on traffic density on the basis of species and organs. Appl Ecol Environ Res. 17(6):12843–12857. doi:10.15666/aeer/1706_1284312857.
  • Sevik H, Ozel HB, Cetin M, Özel HU, Erdem T. 2019b. Determination of changes in heavy metal accumulation depending on plant species, plant organism, and traffic density in some landscape plants. Air Qual Atmos Health. 12(2):189–195. doi:10.1007/s11869-018-0641-x.
  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Smith KA. 1971. The comparative uptake and translocation by plants of calcium, strontium, barium and radium. I. Bertholletia excelsa (Brazil nut tree). Plant Soil. 34(1):369–379. doi:10.1007/BF01372791.
  • Turkyilmaz A, Cetin M, Sevik H, Isinkaralar K, Saleh EAA. 2020. Variation of heavy metal accumulation in certain landscaping plants due to traffic density. Environ Dev Sustain. 22(3):2385–2398. doi:10.1007/s10668-018-0296-7.
  • Turkyilmaz A, Sevik H, Cetin M. 2018b. The use of perennial needles as bio-monitors for recently accumulated heavy metals. Landscape Ecol Eng. 14(1):115–120. doi:10.1007/s11355-017-0335-9.
  • Turkyilmaz A, Sevik H, Cetin M, Saleh E. 2018a. Changes in heavy metal accumulation depending on traffic density in some landscape plants. Pol J Environ Stud. 27(5):2277–2284. doi:https://doi.org/10.15244/pjoes/78620.
  • Turkyilmaz A, Sevik H, Isinkaralar K, Cetin M. 2019. Use of tree rings as a bioindicator to observe atmospheric heavy metal deposition. Environ Sci Pollut Res Int. 26(5):5122–5130. doi:10.1007/s11356-018-3962-2.
  • Ucun Ozel H, Gemici BT, Gemici E, Ozel HB, Cetin M, Sevik H. 2020. Application of artificial neural networks to predict the heavy metal contamination in the Bartin River. Environ Sci Pollut Res Int. 27(34):42495–42512. doi:10.1007/s11356-020-10156-w.
  • URL-1, Zonguldak Çevre ve Şehircilik İl Müdürlüğü. Zonguldak 2019 yılı çevre durum raporu [Erişim tarihi 2023 May 21]. https://webdosya.csb.gov.tr/db/ced/icerikler/2019_zonguldak_cdr-20200914150210.pdf.
  • U.S. Environmental Protection Agency (US EPA). 1984. Health effects assessment for barium; [accessed 2021 May 15]. https://nepis.epa.gov/Exe/ZyPDF.cgi/2000FDFS.PDF?Dockey=2000FDFS.PDF
  • U.S. Environmental Protection Agency (US EPA). 1987. Barium: health advisory; [accessed 2021 May 15]. https://nepis.epa.gov/Exe/ZyPDF.cgi/94006C0D.PDF?Dockey=94006C0D.PDF
  • Wallace A, Romney EM. 1971. Some interactions of Ca, Sr, and Ba in plants. Agron J. 63(2):245–248. doi:10.2134/agronj1971.00021962006300020015x.
  • Wang W. 1988. Site-specific barium toxicity to common duckweed, Lemna minor. Aquat Toxicol. 12(3):203–212. doi:10.1016/0166-445X(88)90023-9.
  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA. 2018. Engineering plants for heavy metal stress tolerance. Rend Fis Acc Lincei. 29(3):709–723. doi:10.1007/s12210-018-0702-y.
  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C. 2010. A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater. 174(1-3):1–8. doi:10.1016/j.jhazmat.2009.09.113.
  • Yayla EE, Sevik H, Isinkaralar K. 2022. Detection of landscape species as a low-cost biomonitoring study: Cr, Mn, and Zn pollution in an urban air quality. Environ Monit Assess. 194(10):687. doi:10.1007/s10661-022-10356-6.
  • Yıldırım Y, Zeydan Ö, Karakavuz E. 2011. Kentleşme ve hava kalitesi açısından ilimiz Zonguldak. İn Zonguldak Kent Sempozyumu, 81–89.
  • Yigit N. 2019. Determination of heavy metal accumulation in air through annual rings: the case of Malus floribunda species. Appl Ecol Environ Res. 17(2):2755–2764. doi:10.15666/aeer/1702_27552764.
  • Yigit N, Cetin M, Ozturk A, Sevik H, Cetin S. 2019. Varitation of stomatal characteristics in broad leaved species based on habitat. Appl Ecol Environ Res. 17(6):12859–12868. doi:10.15666/aeer/1706_1285912868.
  • Zhang X. 2019. The history of pollution elements in Zhengzhou, China recorded by tree rings. Dendrochronologia. 54:71–77. doi:10.1016/j.dendro.2019.02.004.