603
Views
0
CrossRef citations to date
0
Altmetric
Articles

Assessing structure, species diversity, and carbon stocks across altitudinal gradients in Hugumbrda Grat-kahsu forest, Tigray, Ethiopia: Implications for ecosystem service management

, , , &
Pages 67-77 | Received 15 Sep 2023, Accepted 12 Dec 2023, Published online: 27 Dec 2023

References

  • Abrha, H., Dodiomon, S., Ongoma, V., Hagos, H. and Birhane, E., 2023. Spatio-temporal prediction of climate and wildfire in Hugumbrda Grat-Kahsu forest, Tigray: priority for early warning. Geomatics, Natural Hazards and Risk, 14(1), p.2250517. doi: 10.1080/19475705.2023.2250517.
  • Ahmad, A., Ahmad, S., Nabi, G., Liu, Q.J., Islam, N. and Luan, X., 2022. Trends in deforestation as a response to management regimes and policy intervention in the Hindu Kush Himalaya of Pakistan. Frontiers in Environmental Science, 10, p.810806. doi: 10.3389/fenvs.2022.810806.
  • Ahmad, A., Liu, Q.-J., Nizami, S. M., Mannan, A., and Saeed, S. (2018). Carbon Emission from Deforestation, forest Degradation and wood Harvest in the Temperate Region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 78, 781–790. doi: 10.1016/j.landusepol.2018.07.009.
  • Ahmad, I.F.T.I.K.H.A.R., Ahmad, M.S.A., Hussain, M.U.M.T.A.Z., Ashraf, M.U.H.A.M.M.A.D. and Ashraf, M.Y., 2011. Spatio-temporal variations in soil characteristics and nutrient availability of an open scrub type rangeland in the sub-mountainous Himalayan tract of Pakistan. Pak. J. Bot, 43(1), pp.565–571. https://www.pakbs.org/pjbot/PDFs/43(1)/PJB43(1)565.pdf
  • Ali, F., Khan, N., Abd_Allah, E.F. and Ahmad, A., 2022. Species diversity, growing stock variables and carbon mitigation potential in the phytocoenosis of Monotheca buxifolia forests along altitudinal gradient across Pakistan. Applied Sciences, 12(3), p.1292. doi: 10.3390/app12031292.
  • Ali, F., Khan, N., Ahmad, A. and Khan, A.A., 2019. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush range mountains of Pakistan. Acta Ecologica Sinica, 39(4), pp.261–266. doi: 10.1016/j.chnaes.2019.05.011.
  • Alves, L.F., Vieira, S.A., Scaranello, M.A., Camargo, P.B., Santos, F.A., Joly, C.A. and Martinelli, L.A., 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest ecology and management, 260(5), pp.679–691. doi: 10.1016/j.foreco.2010.05.023.
  • Angassa, A., Oba, G., Treydte, A.C. and Weladji, R.B., 2010. Role of traditional enclosures on the diversity of herbaceous vegetation in a semi-arid rangeland, southern Ethiopia. Livestock Research for Rural Development, 22(9).
  • Assefa, G., 2009. Evaluation models for estimation of carbon sequestrated by Cupressues lustanica plantation at Wondo Genet, Ethiopia. M.Sc. Thesis. Hawassa University, WGCF&NR, Ethiopia.
  • Aynekulu, E., Denich, M., Tsegaye, D., Aerts, R., Neuwirth, B. and Boehmer, H.J., 2011. Dieback affects forest structure in a dry Afromontane forest in northern Ethiopia. Journal of Arid Environments, 75(5), pp.499–503. doi: 10.1016/j.jaridenv.2010.12.013.
  • Basile, M., 2022. Rare species disproportionally contribute to functional diversity in managed forests. Scientific Reports, 12(1), p.5897. doi: 10.1038/s41598-022-09624-9.
  • Beisel, J.N. and Moreteau, J.C., 1997. A simple formula for calculating the lower limit of Shannon's diversity index. Ecological Modelling, 99(2-3), pp.289–292. doi: 10.1016/S0304-3800(97)01954-6.
  • Bekele-Tesemma, A. and Tengnäs, B., 2007. Useful trees and shrubs of Ethiopia: identification, propagation, and management for 17 agroclimatic zones (p. 552). Nirobi: RELMA in ICRAF Project, World Agroforestry Centre, Eastern Africa Region.
  • Biau, G., Devroye, L. and Lugosi, G., 2008. Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research, 9(9).
  • Birhane, E., Teketay, D. and Barklund, P., 2007. Enclosures to enhance woody species diversity in the dry lands of eastern Tigray, Ethiopia. East African Journal of Sciences, 1(2), pp.136–147. doi: 10.4314/eajsci.v1i2.40352.
  • Bordin, K.M., Esquivel-Muelbert, A., Bergamin, R.S., Klipel, J., Picolotto, R.C., Frangipani, M.A., Zanini, K.J., Cianciaruso, M.V., Jarenkow, J.A., Jurinitz, C.F. and Molz, M., 2021. Climate and large-sized trees, but not diversity, drive above-ground biomass in subtropical forests. Forest Ecology and Management, 490, p.119126. doi: 10.1016/j.foreco.2021.119126.
  • Böttcher, H., Kurz, W.A. and Freibauer, A., 2008. Accounting of forest carbon sinks and sources under a future climate protocol—factoring out past disturbance and management effects on age–class structure. Environmental Science & Policy, 11(8), pp.669–686. doi: 10.1016/j.envsci.2008.08.005.
  • Breiman, L., 2001. Random forests. Machine learning, 45, pp.5–32. doi: 10.1023/A:1010933404324.
  • Brown, S., 1997. Estimating biomass and biomass change of tropical forests: a primer. For the Food and Agriculture Organization of the United Nations. Rome, 1997. FAO Forestry Paper-134. ISBN 92-5-103955-0.
  • Brown, S., Pearson, T., Slaymaker, D., Ambagis, S., Moore, N., Novelo, D. and Sabido, W., 2005. Creating a virtual tropical forest from three‐dimensional aerial imagery to estimate carbon stocks. Ecological applications, 15(3), pp.1083–1095. doi: 10.1890/04-0829.
  • Canadell, J.G. and Raupach, M.R., 2008. Managing forests for climate change mitigation. science, 320(5882), pp.1456–1457. doi: 10.1126/science.1155458.
  • Canadell, J.G., Le Quéré, C., Raupach, M.R., Field, C.B., Buitenhuis, E.T., Ciais, P., Conway, T.J., Gillett, N.P., Houghton, R.A. and Marland, G., 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the national academy of sciences, 104(47), pp.18866–18870. doi: 10.1073/pnas.0702737104.
  • Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B., Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C. and Henry, M., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology, 20(10), pp.3177–3190. doi: 10.1111/gcb.12629.
  • Coulston, J.W., Wear, D.N. and Vose, J.M., 2015. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Scientific reports, 5(1), p.8002. doi: 10.1038/srep08002.
  • DeFries, R.S., Rudel, T., Uriarte, M. and Hansen, M., 2010. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nature Geoscience, 3(3), pp.178–181. doi: 10.1038/ngeo756.
  • Dharmesh G. Jaiswal, Chirag N. Patel, Hitesh A. Solanki and Himanshu A. Pandya (2018). Allometric model to determine carbon stock from DBH of major tree species in Mansa Range, Gandhinagar Forest Division, Gujarat, India. International Journal of Research in Advent Technology, 6 (6), 2321–9637.
  • Edwards, S., Demissew, S. and Hedberg, I., 1997. Flora of Ethiopia and Eritrea: Hydrocharitaceae to Arecaceae. The National Herbarium, Addis Ababa University.
  • Edwards, S., Mesfin, T., Sebsebe, D. and Hedberg, I., 2000. Flora of Ethiopia and Eritrea, vol. 2 (1). The National Herbarium, Addis Ababa University, Addis Ababa and Department of Systematic Botany, Uppsala University, Uppsala.
  • Fick, S.E. and Hijmans, R.J. (2017) WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. International Journal of Climatology, 37, 4302–4315. doi: 10.1002/joc.5086.
  • Gairola, S., Rawal, R.S. and Todaria, N.P., 2008. Forest vegetation patterns along an altitudinal gradient in sub-alpine zone of west Himalaya, India. African Journal of Plant Science, 2(6), pp.42–48. http://www.academicjournals.org/AJPS
  • Galván-Cisneros, C.M., Villa, P.M., Coelho, A.J., Campos, P.V. and Meira-Neto, J.A., 2023. Altitude as environmental filtering influencing phylogenetic diversity and species richness of plants in tropical mountains. Journal of Mountain Science, 20(2), pp.285–298. doi: 10.1016/j.envexpbot.2019.10385310.1007/s11629-022-7687-9.
  • Gaston, K.J., 2000. Global patterns in biodiversity. Nature, 405(6783), pp.220–227. doi: 10.1038/35012228.
  • Gayton, D.V., 2008. Impacts of climate change on British Columbia's biodiversity: a literature review. Journal of Ecosystems and Management. doi: 10.22230/jem.2008v9n2a393.
  • Gebru, B.M., Lee, W.K., Khamzina, A., Lee, S.G. and Negash, E., 2019. Hydrological response of dry afromontane forest to changes in land use and land cover in northern Ethiopia. Remote sensing, 11(16), p.1905. doi: 10.3390/rs11161905.
  • Gereslassie, T., Workineh, A., Takele, G., Adem, M. and Berhe, L., 2019. Total volume and aboveground biomass models for Juniperus procera plantation in Wondo Genet, Southern Ethiopia. Open Journal of Forestry, 9(02), p.89. doi: 10.4236/ojf.2019.92004.
  • Gibbs, H.K., Brown, S., Niles, J.O. and Foley, J.A., 2007. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental research letters, 2(4), p.045023. doi: 10.1088/1748-9326/2/4/045023.
  • Gidey, K., Eshete, G., Barklund, P., Aertsen, W., Muys, B., 2013. Wood biomass functions for Acacia abyssinica trees and shrubs and implications for provision of ecosystem services in a community managed exclosure in Tigray, Ethiopia. Journal of Arid Environments, 94, pp.80–86. doi: 10.1088/1748-9326/2/4/045023.
  • Gregorius, H.R. and Gillet, E.M., 2008. Generalized Simpson-diversity. Ecological Modelling, 211(1-2), pp.90–96. doi: 10.1016/j.ecolmodel.2007.08.026.
  • Grytnes, J.A. and Beaman, J.H., 2006. Elevational species richness patterns for vascular plants on Mount Kinabalu, Borneo. Journal of biogeography, 33(10), pp.1838–1849. doi: 10.1111/j.1365-2699.2006.01554.x.
  • Gutiérrez, A.G. and Huth, A., 2012. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspectives in Plant Ecology, Evolution and Systematics, 14(4), pp.243–256. doi: 10.1016/j.ppees.2012.01.004.
  • Hailu, Z., 2002. Ecological impact evaluation of Eucalyptus plantations in comparison with agricultural and grazing land-use types in the Highlands of Ethiopia. Vienna University of Agricultural Sciences, Vienna.
  • Hedberg, I., Edwards, S., Sileshi, N. (Eds.), 1995. Flora of Ethiopia and Eritrea, Vol. 4 (1). The National Herbarium Addis Abeba University, Addis Abeba and Department of Systematic Botany, Uppsala University, Uppsala
  • Henry, R.C., Palmer, S.C., Watts, K., Mitchell, R.J., Atkinson, N. and Travis, J.M., 2017. Tree loss impacts on ecological connectivity: Developing models for assessment. Ecological Informatics, 42, pp.90–99. doi: 10.1016/j.ecoinf.2017.10.010.
  • Jalkanen, A., Mäkipää, R., Ståhl, G., Lehtonen, A. and Petersson, H., 2005. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science, 62(8), pp.845–851. doi: 10.1051/forest:2005075.
  • Jia, B., Guo, W., He, J., Sun, M., Chai, L., Liu, J. and Wang, X., 2022. Topography, diversity, and forest structure attributes drive aboveground carbon storage in different forest types in Northeast China. Forests, 13(3), p.455. doi: 10.3390/f13030455.
  • Kaushal, S. and Baishya, R., 2021. Stand structure and species diversity regulate biomass carbon stock under major Central Himalayan forest types of India. Ecological Processes, 10, pp.1-18. doi: 10.1186/s13717-021-00283-8.
  • Kidane, L., Nemomissa, S. & Bekele, T. (2018). Human-forest interfaces in hugumburda-gratkhassu national forest priority area, north-eastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 14(1), 1–12. doi: 10.1186/s13002-018-0218-7.
  • Kidane, L., Nemomissa, S. and Woldu, Z., 2016. The effects of disturbance on the population structure and regeneration potential of five dominant woody species–in Hugumburda‐Gratkhassu National Forest Priority Area, North‐eastern Ethiopia. African journal of ecology, 54(1), pp.20–28. doi: 10.1111/aje.12254.
  • Konopiński, M.K., 2020. Shannon diversity index: a call to replace the original Shannon’s formula with unbiased estimator in the population genetics studies. PeerJ, 8, p.e9391. doi: 10.7717/peerj.9391.
  • Körner, C., 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology & Evolution, 15(12), pp.513–514. doi: 10.1016/S0169-5347(00)02004-8.
  • Kreft, H. and Jetz, W., 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, 104(14), pp.5925–5930. doi: 10.1073/pnas.060836110.
  • Kremen, C. and Merenlender, A.M., 2018. Landscapes that work for biodiversity and people. Science, 362(6412), p.eaau6020. doi: 10.1126/science.aau602.
  • Le Quéré, C., Raupach, M.R., Canadell, J.G., Marland, G., Bopp, L., Ciais, P., Conway, T.J., Doney, S.C., Feely, R.A., Foster, P. and Friedlingstein, P., 2009. Trends in the sources and sinks of carbon dioxide. Nature geoscience, 2(12), pp.831–836. doi: 10.1038/ngeo689.
  • Mansourian, S., Vallauri, D., Dudley, N. and Dudley, N., 2005. Impact of forest loss and degradation on biodiversity. Forest Restoration in Landscapes: Beyond Planting Trees, pp.17–21.
  • Mazarrasa, I., Marbà, N., Garcia‐Orellana, J., Masqué, P., Arias‐Ortiz, A. and Duarte, C.M., 2017. Effect of environmental factors (wave exposure and depth) and anthropogenic pressure in the C sink capacity of Posidonia oceanica meadows. Limnology and Oceanography, 62(4), pp.1436–1450. doi: 10.1002/lno.10510.
  • McDowell, N.G., Allen, C.D., Anderson-Teixeira, K., Aukema, B.H., Bond-Lamberty, B., Chini, L., Clark, J.S., Dietze, M., Grossiord, C., Hanbury-Brown, A. and Hurtt, G.C., 2020. Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), p.eaaz9463. doi: 10.1126/science.aaz94.
  • Mebrat, W., Molla, E. and Gashaw, T., 2014. A comparative study of woody plant species diversity at Adey Amba enclosed forest and nearby open site in West Belessa district, northwestern Ethiopia. J. Biol. Agricult. Healthc, 4, p.15.
  • Mengistu, T., Teketay, D., Hulten, H. and Yemshaw, Y., 2005. The role of enclosures in the recovery of woody vegetation in degraded dryland hillsides of central and northern Ethiopia. Journal of arid environments, 60(2), pp.259–281. doi: 10.1016/j.jaridenv.2004.03.014.
  • Mensah, S., Noulèkoun, F., Dimobe, K., Seifert, T. and Glèlè Kakaï, R., 2023. Climate and soil effects on tree species diversity and aboveground carbon patterns in semi-arid tree savannas. Scientific Reports, 13(1), p.11509. doi: 10.1038/s41598-023-38225-3.
  • Mensah, S., Noulèkoun, F., Salako, V.K., Lokossou, C.S., Akouété, P., Seifert, T. and Glèlè Kakaï, R., 2023. Structural and taxonomic diversity predict above‐ground biomass better than functional measures of maximum height in mixed‐species forests. Applied Vegetation Science, 26(2), p.e12732. doi: 10.1111/avsc.12732.
  • Messier, C., Bauhus, J., Doyon, F., Maure, F., Sousa-Silva, R., Nolet, P., Mina, M., Aquilué, N., Fortin, M.J. and Puettmann, K., 2019. The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems, 6(1), pp.1–16. doi: 10.1186/s40663-019-0166-2.
  • Mokria, M., Gebrekirstos, A., Aynekulu, E. and Braeuning, A., 2015. Tree dieback affects climate change mitigation potential of a dry afromontane forest in northern Ethiopia. Forest Ecology and Management, 344, pp.73–83. doi: 10.1016/j.foreco.2015.02.008.
  • Molina-Venegas, R., Fischer, M. and Hemp, A., 2020. Plant evolutionary assembly along elevational belts at Mt. Kilimanjaro: Using phylogenetics to asses biodiversity threats under climate change. Environmental and Experimental Botany, 170, p.103853. doi: 10.1016/j.envexpbot.2019.103853.
  • Muluneh, M.G. and Worku, B.B., 2022. Carbon storages and sequestration potentials in remnant forests of different patch sizes in northern Ethiopia: an implication for climate change mitigation. Agriculture & Food Security, 11(1), pp.1–38. doi: 10.1186/s40066-022-00395-0.
  • Noulèkoun, F., Birhane, E., Mensah, S., Kassa, H., Berhe, A., Gebremichael, Z.M., Adem, N.M., Seyoum, Y., Mengistu, T., Lemma, B. and Hagazi, N., 2021. Structural diversity consistently mediates species richness effects on aboveground carbon along altitudinal gradients in northern Ethiopian grazing exclosures. Science of the Total Environment, 776, p.145838. doi: 10.1016/j.scitotenv.2021.145838.
  • Seastedt, T.R. and Oldfather, M.F., 2021. Climate change, ecosystem processes and biological diversity responses in high elevation communities. Climate, 9(5), p.87. doi: 10.3390/cli9050087.
  • Seidl, R., Schelhaas, M.J., Rammer, W. and Verkerk, P.J., 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature climate change, 4(9), pp.806–810. doi: 10.1038/nclimate2318.
  • Simegn, T.Y., Soromessa, T. and Bayable, E., 2014. Forest carbon stocks in lowland area of Simien Mountains National Park: implication for climate change mitigation. Science, Technology and Arts Research Journal, 3(3), pp.29–36. doi: 10.4314/star.v3i3.5.
  • Simpson EH (1949). Measurement of diversity. Nature 163, pp.688:688 doi: 10.1038/163688a0.
  • Sintayehu, D.W., Belayneh, A. and Dechassa, N., 2020. Aboveground carbon stock is related to land cover and woody species diversity in tropical ecosystems of Eastern Ethiopia. Ecological Processes, 9(1), pp.1–10. doi: 10.1186/s13717-020-00237-6.
  • Slik, J.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C. and Collins, M., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global ecology and biogeography, 22(12), pp.1261–1271. doi: 10.1111/geb.12092.
  • Solomon, N., Birhane, E., Tadesse, T., Treydte, A.C. and Meles, K., 2017. Carbon stocks and sequestration potential of dry forests under community management in Tigray, Ethiopia. Ecological processes, 6(1), pp.1–11. doi: 10.1186/s13717-017-0088-2.
  • Srinivasarao, C., Lal, R., Kundu, S. and Thakur, P.B., 2015. Conservation agriculture and soil carbon sequestration. Conservation agriculture, pp.479–524. doi: 10.1007/978-3-319-11620-4_19.
  • Tang, R., Li, S., Lang, X., Huang, X. and Su, J., 2023. Rare species contribute greater to ecosystem multifunctionality in a subtropical forest than common species due to their functional diversity. Forest Ecology and Management, 538, p.120981. doi: 10.1016/j.foreco.2023.120981.
  • Tesfaye, M. and Negash, M., 2018. Combretum-Terminalia vegetation accumulates more carbon stocks in the soil than the biomass along the elevation ranges of dryland ecosystem in Southern Ethiopia. Journal of arid environments, 155, pp.59–64. doi: 10.1016/j.jaridenv.2018.02.004.
  • Thom, D., Golivets, M., Edling, L., Meigs, G.W., Gourevitch, J.D., Sonter, L.J., Galford, G.L. and Keeton, W.S., 2019. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Global Change Biology, 25(7), pp.2446–2458. doi: 10.1111/gcb.14656.
  • Ullah, S., Khan, N., Ali, F., Badshah, L., Ali, A. and Muhammad, M., 2020. An ecological assessment of Justicia adhatoda L. Malakand Division, Hindukush range of Pakistan. Bioscience Research, 17, pp.1082–1094.
  • Van der Maarel, E., 1979. Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio, 39, pp.97–114. doi: 10.1007/BF00052021.
  • Wani, Z.A., Khan, S., Bhat, J.A., Malik, A.H., Alyas, T., Pant, S., Siddiqui, S., Moustafa, M. and Ahmad, A.E., 2022. Pattern of β-diversity and plant species richness along vertical gradient in Northwest Himalaya, India. Biology, 11(7), p.1064. doi: 10.3390/biology11071064.
  • Whittaker, R.H., 1972. Evolution and measurement of species diversity. Taxon, 21(2-3), pp.213–251. doi: 10.2307/1218190.
  • Willig, M.R. and Presley, S.J., 2016. Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology, 32(5), pp.421–436. doi: 10.1017/S0266467415000589.
  • Woldemichael, L.K., Bekele, T. and Nemomissa, S., 2010. Vegetation composition in Hugumbirda-Gratkhassu national forest priority area, South Tigray. Momona Ethiopian Journal of Science, 2(2), pp.27–48. doi: 10.4314/mejs.v2i2.57673.
  • Zewdie, M., Olsson, M. and Verwijst, T., 2009. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia. Biomass and bioenergy, 33(3), pp.421–428. doi: 10.1016/j.biombioe.2008.08.007.
  • Zhao, S. and Fang, J., 2006. Patterns of species richness for vascular plants in China's nature reserves. Diversity and Distributions, 12(4), pp.364–372. doi: 10.1111/j.1366-9516.2006.00232.x.