3,683
Views
16
CrossRef citations to date
0
Altmetric
Report

Enhanced bioactivity of glass ionomer cement by incorporating calcium silicates

, , &
Article: e1123842 | Received 16 Dec 2014, Accepted 18 Nov 2015, Published online: 22 Mar 2016

References

  • Croll TP, Nicholson JW. Glass ionomer cements in pediatric dentistry: review of the literature. Pediatric Dentistry 2002; 24:423-9; PMID:12412956
  • Smith DC. Development of glass-ionomer cement systems. Biomaterials 1998; 19:467-78; PMID:9645552; http://dx.doi.org/10.1016/S0142-9612(97)00126-9
  • Kenneth JCS, Ralph H. Rawls. Philips' science of dental materials. 12th ed, 2013
  • Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of powder modifications in conventional glass-ionomer dental cements. J Materials Chem 2011; 21:1319; http://dx.doi.org/10.1039/C0JM02309D
  • Moshaverinia A, Roohpour N, Chee WWL, Schricker SR. A review of polyelectrolyte modifications in conventional glass-ionomer dental cements. J Materials Chem 2012; 22:2824; http://dx.doi.org/10.1039/c2jm14880c
  • Moshaverinia A, Roohpour N, Rehman IU. Synthesis and characterization of a novel fast-set proline-derivative-containing glass ionomer cement with enhanced mechanical properties. Acta Biomaterialia 2009; 5:498-507; PMID:18640084; http://dx.doi.org/10.1016/j.actbio.2008.06.011
  • Masanobu Kamitakahara MK, Tadashi K, Takashi N. Effect of polyacrylic acid on the apatite formation of a bioactive ceramic in a simulated body fluid: fundamental examination of the possibility fo obtaining bioactive glass-ionomer cements for orthopaedic use. Biomaterials 2001; 22:3191-6; PMID:11603591; http://dx.doi.org/10.1016/S0142-9612(01)00071-0
  • Yoshida Y, Van Meerbeek B, Nakayama Y, Snauwaert J, Hellemans L, Lambrechts P, Vanherle G, Wakasa K. Evidence of Chemical Bonding at Biomaterial-Hard Tissue Interfaces. J Dental Res 2000; 79:709-14; PMID:10728971; http://dx.doi.org/10.1177/00220345000790020301
  • Kokub T. Bioactive glass ceramics properties and applications. Biomaterials 1990; 12:155-63; http://dx.doi.org/10.1016/0142-9612(91)90194-F
  • Loof J, Svahn F, Jarmar T, Engqvist H, Pameijer CH. A comparative study of the bioactivity of three materials for dental applications. Dent Mater 2008; 24:653-9; PMID:17727942; http://dx.doi.org/10.1016/j.dental.2007.06.028
  • Hench LL. The story of Bioglass. J Materials Sci Materials Med 2006; 17:967-78; PMID:17122907; http://dx.doi.org/10.1007/s10856-006-0432-z
  • Jones JR. Review of bioactive glass: from Hench to hybrids. Ac+++ta Biomaterialia 2013; 9:4457-86; http://dx.doi.org/10.1016/j.actbio.2012.08.023
  • Yli-Urpo H, Narhi M, Narhi T. Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials 2005; 26:5934-41; PMID:15958240; http://dx.doi.org/10.1016/j.biomaterials.2005.03.008
  • Yli-Urpo H, Vallittu PK, Narhi TO, Forsback AP, Vakiparta M. Release of silica, calcium, phosphorus, and fluoride from glass ionomer cement containing bioactive glass. J Biomater App 2004; 19:5-20; PMID:15245640; http://dx.doi.org/10.1177/0085328204044538
  • Yli-Urpo H, Lassila LV, Narhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dent Mater 2005; 21:201-9; PMID:15705426; http://dx.doi.org/10.1016/j.dental.2004.03.006
  • Wu C, Chang J. A review of bioactive silicate ceramics. Biomed Materials 2013; 8:032001; PMID:23567351; http://dx.doi.org/10.1088/1748-6041/8/3/032001
  • PN De Aza, Guitian F, S De Aza. Bioactivity of wollastonite ceramics in vitro evaluation. Scripta Metallurgica Et Materialia 1994; 31:1001-5; http://dx.doi.org/10.1016/0956-716X(94)90517-7
  • Wan X, Chang C, Mao D, Jiang L, Li M. Preparation and in vitro bioactivities of calcium silicate nanophase materials. Materials Sci Engineering: C 2005; 25:455-61; http://dx.doi.org/10.1016/j.msec.2004.12.003
  • Darvell BW, Wu RC. "MTA"-an Hydraulic Silicate Cement: review update and setting reaction. Dent Mater 2011; 27:407-22; PMID:21353694; http://dx.doi.org/10.1016/j.dental.2011.02.001
  • Singh SP. Mechanochemical Synthesis of Nano Calcium Silicate Particles at Room Temperature. N J Glass Ceramics 2011; 01:49-52; http://dx.doi.org/10.4236/njgc.2011.12008
  • Tangboriboon N, Khongnakhon T, Kittikul S, Kunanuruksapong R, Sirivat A. An innovative CaSiO3 dielectric material from eggshells by sol–gel process. J Sol-Gel Sci Tech 2010; 58:33-41; http://dx.doi.org/10.1007/s10971-010-2351-1
  • Wang H, Zhang Q, Yang H, Sun H. Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol–gel process. Ceramics Int 2008; 34:1405-8; http://dx.doi.org/10.1016/j.ceramint.2007.05.001
  • Takahashi Y, Imazato S, Kaneshiro AV, Ebisu S, Frencken JE, Tay FR. Antibacterial effects and physical properties of glass-ionomer cements containing chlorhexidine for the ART approach. Dent Mater 2006;22:647-52; PMID:16226806; http://dx.doi.org/10.1016/j.dental.2005.08.003
  • Hill RG, Wilson AD. A rheological study of the role of additives on the setting of glass ionomer cements. J Dent Res 1988; 67:1446-50
  • Sarita Rai1 NBS, NP Singh. Tartaric acid with portland cement. Indian J Chem Tech 2006; 13:255-61
  • Roberts HW, Toth JM, Berzins DW, Charlton DG. Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 2008; 24:149-64; PMID:17586038; http://dx.doi.org/10.1016/j.dental.2007.04.007
  • Camilleri J, Montesin FE, Juszczyk AS, Papaioannou S, Curtis RV, Donald FM, Ford TR. The constitution, physical properties and biocompatibility of modified accelerated cement. Dent Mater 2008; 24:341-50; PMID:17659330; http://dx.doi.org/10.1016/j.dental.2007.06.004
  • Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials 2009; 30:2175-9; PMID:19176246; http://dx.doi.org/10.1016/j.biomaterials.2009.01.008
  • Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006; 27:2907-15; PMID:16448693; http://dx.doi.org/10.1016/j.biomaterials.2006.01.017
  • Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. Dent Mater 2011; 27:e134-57; PMID:21529922; http://dx.doi.org/10.1016/j.dental.2011.03.011
  • Pan H, Zhao X, Darvell BW, Lu WW. Apatite-formation ability–predictor of "bioactivity"? Acta Biomaterialia 2010; 6:4181-8; PMID:20493974
  • Gandolfi MG, Taddei P, Siboni F, Modena E, Ciapetti G, Prati C. Development of the foremost light-curable calcium-silicate MTA cement as root-end in oral surgery. Chemical-physical properties, bioactivity and biological behavior. Dent Mater 2011; 27:e134-57; PMID:21529922; http://dx.doi.org/10.1016/j.dental.2011.03.011
  • Kim HM, Himeno T, Kokubo T, Nakamura T. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials 2005; 26:4366-73; PMID:15701365; http://dx.doi.org/10.1016/j.biomaterials.2004.11.022
  • Hiroaki Takadama HMK, Tadashi K, Nakamura T. Mechanism of Biomineralization of Apatite on a Sodium Silicate Glass: TEM-EDX Study In Vitro. ChemMater 2001; 13:1103-8.
  • Liu X, Ding C, Wang Z. Apatite formed on the surface of plasma-sprayed wollastonite coating. Biomaterials 2001; 22:2007-12; PMID:11426878; http://dx.doi.org/10.1016/S0142-9612(00)00386-0
  • Liu X, Ding C, Chu PK. Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 2004; 25:1755-61; PMID:14738838; http://dx.doi.org/10.1016/j.biomaterials.2003.08.024
  • American Society for Testing and Materials. ASTM C266-03: Standard test method for time and setting of hydraulic-cement paste by Gilmore needles. Philadelphia: ASTM; 2000.