1,803
Views
0
CrossRef citations to date
0
Altmetric
Life in Science

My scientific life

Article: e1271250 | Published online: 15 Dec 2016

References

  • Anderson DL, Hickmann DD, Reilly BE. Structure of Bacillus subtilis bacteriophage ø29 and the length of ø29 deoxyribonucleic acid. J Bacteriol 1966; 91:2081-9; PMID:4957028
  • Avila J, Hermoso JM, Viñuela E, Salas M. Subunit composition of B. subtilis RNA polymerase. Nature 1970; 226:1244-5; PMID:4987217; http://dx.doi.org/10.1038/2261244a0
  • Blanco L, Salas M. Relating structure to function in ø29 DNA polymerase. J Biol Chem 1996; 271:8509-12; PMID:8621470; http://dx.doi.org/10.1074/jbc.271.15.8509
  • Blanco L, Bernad A, Lázaro JM, Martín G, Garmendia C, Salas M. Highly efficient DNA synthesis by the phage ø29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 1989; 264:8935-40.
  • Blanco L, Lázaro JM, de Vega M, Bonnin A, Salas M. Terminal protein-primed DNA amplification. Proc Natl Acad Sci USA 1994; 91:12198-202; PMID:7991606; http://dx.doi.org/10.1073/pnas.91.25.12198
  • de Vega M, Lázaro JM, Mencía M, Blanco L, Salas M. Improvement of ø29 DNA polymerase amplification performance by fusion of DNA binding motifs. Proc Natl Acad Sci USA 2010; 107:16506-11; PMID:20823261; http://dx.doi.org/10.1073/pnas.1011428107
  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 2002; 99:5261-6; http://dx.doi.org/10.1073/pnas.082089499
  • Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using ø29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 2001; 11:1095-9; PMID:11381035; http://dx.doi.org/10.1101/gr.180501
  • Elías-Arnanz M, Salas M. Functional interactions between a phage histone-like protein and a transcriptional factor in regulation of ø29 early-late transcriptional switch. Genes Dev 1999; 13:2502-13; http://dx.doi.org/10.1101/gad.13.19.2502
  • Kamtekar S, Berman A, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Mol Cell 2004; 16:609-18; PMID:15546620; http://dx.doi.org/10.1016/j.molcel.2004.10.019
  • Kamtekar S, Berman A, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. The ø29 DNA polymerase: protein-primed structure suggests a model for the initiation to elongation transition. EMBO J 2006; 25:1335-43; PMID:16511564; http://dx.doi.org/10.1038/sj.emboj.7601027
  • Mencía M, Gella P, Camacho A, de Vega M, Salas M. Terminal protein-primed amplification of heterologous DNA with a minimal replication system based on phage ø29. Proc Natl Acad Sci USA 2011; 108:18655-60; http://dx.doi.org/10.1073/pnas.1114397108
  • Méndez J, Blanco L, Esteban JA, Bernad A, Salas M. Initiation of ø29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding-back mechanism for protein-primed DNA replication. Proc Natl Acad Sci USA 1992; 89:9579-83; http://dx.doi.org/10.1073/pnas.89.20.9579
  • Muñoz-Espín D, Holguera I, Ballesteros-Plaza D, Carballido-López R, Salas M. Viral terminal protein directs early organization of phage DNA replication at the bacterial nucleoid. Proc Natl Acad Sci USA 2010; 107:16548-53; ; http://dx.doi.org/10.1073/pnas.1010530107
  • Ortín J, Viñuela E, Salas M, Vásquez C. DNA-protein complex in circular DNA from phage ø29. Nature New Biology 1971; 234:275-7; http://dx.doi.org/10.1038/newbio234275a0
  • Redrejo-Rodríguez M, Muñoz-Espín D, Holguera I, Mencía M, Salas M. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages. Proc Natl Acad Sci USA 2012; 109:18482-7; http://dx.doi.org/10.1073/pnas.1216635109
  • Robinson AJ, Younghusband HB, Bellett AJ. A circular DNA- protein complex from adenoviruses. Virology 1973; 56:54-69; PMID:4745628; http://dx.doi.org/10.1016/0042-6822(73)90287-0
  • Rodríguez I, Lázaro JM, Blanco L, Kamtekar S, Berman AJ, Wang J, Steitz TA, Salas M, de Vega M. A specific subdomain in ø29 DNA polymerase confers both processivity and strand displacement capacity. Proc Natl Acad Sci USA 2005; 102:6407-12; http://dx.doi.org/10.1073/pnas.0500597102
  • Rojo F, Mencía M, Monsalve M, Salas M. Transcription activation and repression by interaction of a regulator with the α-subunit of RNA polymerase: the model of phage ø29 protein p4. Progress Nucleic Acids Res Mol Biol 1998; 60:29-46; http://dx.doi.org/10.1016/S0079-6603(08)60888-0
  • Salas M, de Vega M. Bacteriophage protein-primed DNA replication. In “Recent Advances in DNA Virus Replication” by Research Signpost Transworld Research Network. Ed. Kathleen L. Hefferon 2006; 259-88. ISBN-81-308-0042-X.
  • Salas M, Hille MB, Last JA, Wahba AJ, Ochoa S. Translation of the genetic message. II. Effect of initiation factors on the binding of formyl-methionyl-tRNA to ribosomes. Proc Natl Acad Sci USA 1967; 57:387-394; http://dx.doi.org/10.1073/pnas.57.2.387
  • Salas M, Mellado RP, Viñuela E, Sogo JM. Characterization of a protein covalently linked to the 5' termini of the DNA of Bacillus subtilis phage ø29. J Mol Biol 1978; 119:269-91; PMID:416224; http://dx.doi.org/10.1016/0022-2836(78)90438-2
  • Salas M, Miller JT, Leis J, DePamphilis ML. Mechanisms for priming DNA synthesis. In DNA Replication in Eukaryotic Cells. M. DePamphilis, ed. Cold Spring Harbor Press 1996; pp. 131-76. http://dx.doi.org/10.1101/087969459.31.131
  • Salas M, Smith MA, Stanley WM Jr, Wahba AJ, Ochoa S. Direction of reading of the genetic message. J Biol Chem 1965b; 240:3988-95.
  • Salas M, Viñuela E, Sols A. Insulin-dependent synthesis of liver glucokinase in the rat. J Biol Chem 1963; 238:3535-8; PMID:14109182.
  • Salas M, Viñuela E, Sols A. Spontaneous and enzymatically catalyzed anomerization of glucose-6-P and anomeric specificity of related enzymes. J Biol Chem 1965a; 240:561-8; PMID:14275652
  • Serrano-Heras G, Bravo A, Salas M. Phage ø29 protein p56 prevents viral DNA replication impairment caused by uracil excision activity of uracil-DNA glycosylase. Proc Natl Acad Sci USA 2008; 105:19044- 19049; ; http://dx.doi.org/10.1073/pnas.0808797105
  • Smith MA, Salas M, Stanley Jr. WM, Wahba AJ, Ochoa S. Direction of reading of the genetic message. II Proc Natl Acad Sci USA 1966; 55:141-7; PMID:5328637; http://dx.doi.org/10.1073/pnas.55.1.141
  • Stanley WM Jr, Salas M, Wahba AJ, Ochoa S. Translation of the genetic message. I. Factors involved in the initiation of protein synthesis. Proc Natl Acad Sci USA 1966; 56:290-5; PMID:5338590; http://dx.doi.org/10.1073/pnas.56.1.290
  • Viñuela E, Salas M, Sols A. Glucokinase and hexokinase in liver in relation to glycogen synthesis. J Biol Chem 1963; 238:1175-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.