2,006
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Integrative analysis of Mendelian randomization and gene expression profiles reveals a null causal relationship between adiponectin and diabetic retinopathy

, , &
Article: 2234522 | Received 08 Apr 2023, Accepted 05 Jul 2023, Published online: 17 Jul 2023

References

  • Izzo A, Massimino E, Riccardi G, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors. Nutrients. 2021;13(1):183. doi: 10.3390/nu13010183
  • Ali MK, Pearson-Stuttard J, Selvin E, et al. Interpreting global trends in type 2 diabetes complications and mortality. Diabetologia. 2022;65(1):3–9. doi: 10.1007/s00125-021-05585-2
  • Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–277. doi: 10.1111/ceo.12696
  • Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. doi: 10.3390/ijms18061321
  • Yang HS, Choi YJ, Han HY, et al. Serum and aqueous humor adiponectin levels correlate with diabetic retinopathy development and progression. PLoS One. 2021;16(11):e0259683. doi: 10.1371/journal.pone.0259683
  • Jung CH, Kim BY, Mok JO, et al. Association between serum adipocytokine levels and microangiopathies in patients with type 2 diabetes mellitus. J Diabetes Investig. 2014;5(3):333–339. doi: 10.1111/jdi.12144
  • Sakaue TA, Fujishima Y, Fukushima Y, et al. Adiponectin accumulation in the retinal vascular endothelium and its possible role in preventing early diabetic microvascular damage. Sci Rep. 2022;12(1):4159. doi: 10.1038/s41598-022-08041-2
  • Pradeepa R, Surendar J, Indulekha K, et al. Association of serum adiponectin with diabetic microvascular complications among south Indian type 2 diabetic subjects — (CURES-133). Clinical Biochem. 2015;48(1–2):33–38. doi: 10.1016/j.clinbiochem.2014.10.009
  • Tasci E, Ozbek MN, Onenli Mungan N, et al. Low serum adiponectin levels in children and adolescents with diabetic retinopathy. Eurasian J Med. 2011;43(1):18–22. doi: 10.5152/eajm.2011.04
  • Fan XH, Wu QH, Yuan L, et al. Association between adiponectin concentrations and diabetic retinopathy in patients with type 2 diabetes: A meta analysis. Chin Med J (Engl). 2014;127(4):765–771.
  • Chen J, Coppola G. Bioinformatics and genomic databases. Handb Clin Neurol. 2018;147:75–92.
  • Reddy GT, Reddy MPK, Lakshmanna K, et al. Hybrid genetic algorithm and a fuzzy logic classifier for heart disease diagnosis. Evol Intel. 2020;13(2):185–196. doi: 10.1007/s12065-019-00327-1
  • Tian S, Zhang L. Identification of monotonically differentially expressed genes for IFN- β -treated multiple sclerosis patients. Biomed Res Int. 2019;2019:5647902. doi: 10.1155/2019/5647902
  • Tian S, Wang C, Zhang J, et al. The cox-filter method identifies respective subtype-specific lncRNA prognostic signatures for two human cancers. BMC Med Genomics. 2020;13(1):18. doi: 10.1186/s12920-020-0691-4
  • Saxena R, Sharma SK, Gupta M, et al. A novel approach for feature selection and classification of diabetes mellitus: machine learning methods. Comput Intell Neurosci. 2022;2022:1–11. doi: 10.1155/2022/3820360
  • Gu C, Lhamo T, Zou C, et al. Comprehensive analysis of angiogenesis-related genes and pathways in early diabetic retinopathy. BMC Med Genomics. 2020;13(1):142. doi: 10.1186/s12920-020-00799-6
  • Huang J, Zhou Q, Belluzzi E. Identification of the relationship between hub genes and immune cell infiltration in vascular endothelial cells of proliferative diabetic retinopathy using bioinformatics methods. Dis Markers. 2022;2022:1–21. doi: 10.1155/2022/7231046
  • Wang N, Wei L, Liu D, et al. Identification and validation of autophagy-related genes in diabetic retinopathy. Front Endocrinol. 2022;13:867600. doi: 10.3389/fendo.2022.867600
  • Becker K, Klein H, Simon E, et al. In-depth transcriptomic analysis of human retina reveals molecular mechanisms underlying diabetic retinopathy. Sci Rep. 2021;11(1):10494. doi: 10.1038/s41598-021-88698-3
  • Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: A review. Res Synth Methods. 2019;10(4):486–496. doi: 10.1002/jrsm.1346
  • Hemani G, Zheng J, Elsworth B, et al. The MR-base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408
  • Dastani Z, Hivert MF, Timpson NJ, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: A multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8(3):e1002607. doi: 10.1371/journal.pgen.1002607
  • Bowden J, Smith GD, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–525. doi: 10.1093/ije/dyv080
  • Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. doi: 10.1002/gepi.21965
  • Hartwig FP, Smith GD, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–1998. doi: 10.1093/ije/dyx102
  • Skrivankova VW, Richmond RC, Woolf BAR, et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ. 2021;375:n2233. doi: 10.1136/bmj.n2233
  • Brion MJA, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–1501. doi: 10.1093/ije/dyt179
  • Law CW, Chen Y, Shi W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):R29. doi: 10.1186/gb-2014-15-2-r29
  • Sherry ST, Ward MH, Kholodov M, et al. DbSNP: the NCBI database of genetic variation. Nucleic Acids Research. 2001;29(1):308–311. doi: 10.1093/nar/29.1.308
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium Nat Genet. 2000;25(1):25–29. doi: 10.1038/75556
  • Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999;27(1):29–34. doi: 10.1093/nar/27.1.29
  • Franceschini A, Szklarczyk D, Frankild S, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(41):D808–15. Database issue. doi: 10.1093/nar/gks1094
  • Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020. doi: 10.1093/database/baq020
  • Zhao B-W, Dai H-Y, Hao L-N, et al. MiR-29 regulates retinopathy in diabetic mice via the AMPK signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(9):3569–3574. doi: 10.26355/eurrev_201905_17778
  • Alavi MV. Aging and vision. Adv Exp Med Biol. 2016;854:393–399.
  • Sun H-H, Chai X-L, Li H-L, et al. Fufang xueshuantong alleviates diabetic retinopathy by activating the PPAR signalling pathway and complement and coagulation cascades. J Ethnopharmacol. 2021;265:113324. doi: 10.1016/j.jep.2020.113324
  • Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic retinopathy. Biomed Pharmacother. 2018;97:190–194. doi: 10.1016/j.biopha.2017.10.075
  • Wei Z, Yoshihara E, He N, et al. Vitamin D switches BAF complexes to protect β cells. Cell. 2019;173(5):1135–1149.e15. doi: 10.1016/j.cell.2018.04.013
  • Spaeth JM, Liu J-H, Peters D, et al. The Pdx1-Bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β-cell function. Diabetes. 2019;68(9):1806–1818. doi: 10.2337/db19-0349
  • Liu Y, Deng J, Fan D. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway. Food Funct. 2019;10(5):2538–2551. doi: 10.1039/C9FO00095J
  • Campbell SA, Hoffman BG. Chromatin regulators in pancreas development and diabetes. Trends Endocrinol Metab. 2016;27(3):142–152. doi: 10.1016/j.tem.2015.12.005
  • Huang YC, Chang YW, Cheng CW, et al. Causal relationship between adiponectin and diabetic retinopathy: A Mendelian randomization study in an Asian population. Genes (Basel). 2021;12(1):17. doi: 10.3390/genes12010017