1,654
Views
0
CrossRef citations to date
0
Altmetric
Review

Brown adipocyte and browning thermogenesis: metabolic crosstalk beyond mitochondrial limits and physiological impacts

, & ORCID Icon
Article: 2237164 | Received 27 Feb 2023, Accepted 12 Jul 2023, Published online: 24 Jul 2023

References

  • Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–19. doi: 10.1056/NEJMoa0810780
  • Leitner BP, Huang S, Brychta RJ, et al. Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci, USA. 2017;114(32):8649–8654. doi: 10.1073/pnas.1705287114
  • Cypess AM, White AP, Vernochet C, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Med. 2013;19(5):635–639. doi: 10.1038/nm.3112
  • Cheng Y, Jiang L, Keipert S, et al. Prediction of adipose browning capacity by systematic integration of transcriptional profiles. Cell Rep. 2018;23(10):3112–3125. doi: 10.1016/j.celrep.2018.05.021
  • Inagaki T, Sakai J, Kajimura S. Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol. 2016;17(8):480–495. doi: 10.1038/nrm.2016.62
  • Ding C, Lim YC, Chia SY, et al. De Novo reconstruction of human adipose transcriptome reveals conserved lncRnas as regulators of brown adipogenesis. Nat Commun. 2018;9(1):1329. doi: 10.1038/s41467-018-03754-3
  • Vargas-Castillo A, Fuentes-Romero R, Rodriguez-Lopez LA, et al. Understanding the biology of thermogenic fat: is browning a new approach to the treatment of obesity? Arch Med Res. 2017;48(5):401–413. doi: 10.1016/j.arcmed.2017.10.002
  • Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 2019;29(1):27–37. doi: 10.1016/j.cmet.2018.11.002
  • Emont MP, Kim DI, Wu J. Development, activation, and therapeutic potential of thermogenic adipocytes. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2019;1864(1):13–19. doi: 10.1016/j.bbalip.2018.05.004
  • Chondronikola M, Volpi E, Borsheim E, et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 2016;23(6):1200–1206. doi: 10.1016/j.cmet.2016.04.029
  • Duta-Mare M, Sachdev V, Leopold C, et al. Lysosomal acid lipase regulates fatty acid channeling in brown adipose tissue to maintain thermogenesis. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2018;1863(4):467–478. doi: 10.1016/j.bbalip.2018.01.011
  • Yu J, Zhang S, Cui L, et al. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment. Biochim Biophys Acta, Mol Cell Res. 2015;1853(5):918–928. doi: 10.1016/j.bbamcr.2015.01.020
  • Sanchez-Gurmaches J, Hung CM, Sparks CA, et al. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab. 2012;16(3):348–362. doi: 10.1016/j.cmet.2012.08.003
  • Kothari C, Diorio C, Durocher F. The importance of breast adipose tissue in breast cancer. Int J Mol Sci. 2020;21(16):21. doi: 10.3390/ijms21165760
  • Cedikova M, Kripnerova M, Dvorakova J, et al. Mitochondria in white, brown, and beige adipocytes. Stem Cells Int. 2016;2016:6067349. doi: 10.1155/2016/6067349
  • Carobbio S, Guenantin AC, Samuelson I, et al. Brown and beige fat: from molecules to physiology and pathophysiology. Biochimica et biophysica acta Mol Cell Biol Lipids. 2019;1864:37–50. doi: 10.1016/j.bbalip.2018.05.013
  • Ballinger MA, Andrews MT, Suarez RK, et al. Nature’s fat-burning machine: brown adipose tissue in a hibernating mammal. J Exp Biol. 2018;221(Suppl_1):221. doi: 10.1242/jeb.162586
  • de Jong JMA, Sun W, Pires ND, et al. Human brown adipose tissue is phenocopied by classical brown adipose tissue in physiologically humanized mice. Nat Metab. 2019;1:830–843. doi: 10.1038/s42255-019-0101-4
  • Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36. doi: 10.1038/nrendo.2013.204
  • Roth CL, Molica F, Kwak BR. Browning of white adipose tissue as a therapeutic tool in the fight against atherosclerosis. Metabolites. 2021;11(5):11. doi: 10.3390/metabo11050319
  • Wang QA, Tao C, Gupta RK, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Med. 2013;19(10):1338–1344. doi: 10.1038/nm.3324
  • Dempersmier J, Sambeat A, Gulyaeva O, et al. Cold-inducible zfp516 activates UCP1 transcription to promote browning of white fat and development of brown fat. Molecular Cell. 2015;57(2):235–246. doi: 10.1016/j.molcel.2014.12.005
  • Lapa C, Arias-Loza P, Hayakawa N, et al. Whitening and impaired glucose utilization of brown adipose tissue in a rat model of type 2 diabetes mellitus. Sci Rep. 2017;7(1):16795. doi: 10.1038/s41598-017-17148-w
  • Kotzbeck P, Giordano A, Mondini E, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J Lipid Res. 2018;59(5):784–794. doi: 10.1194/jlr.M079665
  • Schosserer M, Grillari J, Wolfrum C, et al. Age-induced changes in white, brite, and brown adipose depots: a mini-review. Gerontology. 2018;64(3):229–236. doi: 10.1159/000485183
  • Zoico E, Rubele S, De Caro A, et al. Brown and beige adipose tissue and aging. Front Endocrinol. 2019;10:368. doi: 10.3389/fendo.2019.00368
  • Ziqubu K, Dludla PV, Mthembu SXH, et al. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol. 2023;14:1114767. doi: 10.3389/fendo.2023.1114767
  • Graja A, Gohlke S, Schulz TJ. Aging of brown and beige/brite adipose tissue. Handb Exp Pharmacol. 2019;251:55–72.
  • Basse AL, Isidor MS, Winther S, et al. Regulation of glycolysis in brown adipocytes by HIF-1alpha. Sci Rep. 2017;7:4052. doi: 10.1038/s41598-017-04246-y
  • Jankovic A, Golic I, Markelic M, et al. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. Journal Of Physiology. 2015;593(15):3267–3280. doi: 10.1113/JP270805
  • Cypess AM, Haft CR, Laughlin MR, et al. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20(3):408–415. doi: 10.1016/j.cmet.2014.07.025
  • Lee P, Brychta RJ, Collins MT, et al. Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women. Osteoporos Int. 2013;24:1513–1518. doi: 10.1007/s00198-012-2110-y
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–1508. doi: 10.1056/NEJMoa0808718
  • Gao Y, Qimuge NR, Qin J, et al. Acute and chronic cold exposure differentially affects the browning of porcine white adipose tissue. Animal. 2018;12(7):1435–1441. doi: 10.1017/S1751731117002981
  • Chi J, Wu Z, Choi CHJ, et al. Three-dimensional adipose tissue imaging reveals regional variation in beige fat biogenesis and PRDM16-dependent sympathetic neurite density. Cell Metab. 2018;27(1):226–36.e3. doi: 10.1016/j.cmet.2017.12.011
  • Weir G, Ramage LE, Akyol M, et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 2018;27(6):1348–55.e4. doi: 10.1016/j.cmet.2018.04.020
  • Lee MK, Lee B, Kim CY. Natural extracts that stimulate adipocyte browning and their underlying mechanisms. Antioxidants. 2021;10:308. doi: 10.3390/antiox10020308
  • Warner A, Kjellstedt A, Carreras A, et al. Activation of beta3-adrenoceptors increases in vivo free fatty acid uptake and utilization in brown but not white fat depots in high-fat-fed rats. Am J Physiol Endocrinol Metab. 2016;311:E901–e10. doi: 10.1152/ajpendo.00204.2016
  • Mottillo EP, Balasubramanian P, Lee YH, et al. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–2286. doi: 10.1194/jlr.M050005
  • de Jong JMA, Wouters RTF, Boulet N, et al. The beta3-adrenergic receptor is dispensable for browning of adipose tissues. Am J Physiol Endocrinol Metab. 2017;312:E508–e18. doi: 10.1152/ajpendo.00437.2016
  • Cao W, Medvedev AV, Daniel KW, et al. Beta-adrenergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001;276:27077–27082. doi: 10.1074/jbc.M101049200
  • Chartoumpekis DV, Habeos IG, Ziros PG, et al. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med. 2011;17(7–8):736–740. doi: 10.2119/molmed.2011.00075
  • Fan L, Xu H, Yang R, et al. Combination of capsaicin and capsiate induces browning in 3T3-L1 white adipocytes via activation of the peroxisome proliferator-activated receptor γ/β(3)-adrenergic receptor signaling pathways. J Agric Food Chemistry. 2019;67:6232–6240. doi: 10.1021/acs.jafc.9b02191
  • Blondin DP, Nielsen S, Kuipers EN, et al. Human brown adipocyte thermogenesis is driven by β2-AR stimulation. Cell Metab. 2020;32(2):287–300.e7. doi: 10.1016/j.cmet.2020.07.005
  • Dickson LM, Gandhi S, Layden BT, et al. Protein kinase a induces UCP1 expression in specific adipose depots to increase energy expenditure and improve metabolic health. Am J Physiol Regulatory Integr Comp Physiol. 2016;311(1):R79–88. doi: 10.1152/ajpregu.00114.2016
  • Yehuda-Shnaidman E, Buehrer B, Pi J, et al. Acute stimulation of white adipocyte respiration by PKA-induced lipolysis. Diabetes. 2010;59(10):2474–2483. doi: 10.2337/db10-0245
  • Cao W, Daniel KW, Robidoux J, et al. P38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004;24(7):3057–3067. doi: 10.1128/MCB.24.7.3057-3067.2004
  • Liu D, Bordicchia M, Zhang C, et al. Activation of mTORC1 is essential for β-adrenergic stimulation of adipose browning. J Clin Investig. 2016;126(5):1704–1716. doi: 10.1172/JCI83532
  • Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98(1):115–124. doi: 10.1016/S0092-8674(00)80611-X
  • Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–839. doi: 10.1016/S0092-8674(00)81410-5
  • Shamsi F, Xue R, Huang TL, et al. FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nat Commun. 2020;11(1):1421. doi: 10.1038/s41467-020-15055-9
  • Ribeiro MO, Carvalho SD, Schultz JJ, et al. Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Investig. 2001;108(1):97–105. doi: 10.1172/JCI200112584
  • Martinez de Mena R, Scanlan TS, Obregon MJ. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology. 2010;151:5074–5083. doi: 10.1210/en.2010-0533
  • Oliveira FCB, Bauer EJ, Ribeiro CM, et al. Liraglutide activates type 2 deiodinase and enhances β3-adrenergic-induced thermogenesis in mouse adipose tissue. Front Endocrinol. 2021;12:803363. doi: 10.3389/fendo.2021.803363
  • Nappi A, Murolo M, Cicatiello AG, et al. Thyroid hormone receptor isoforms alpha and beta play convergent roles in muscle physiology and metabolic regulation. Metabolites. 2022;12(5):12. doi: 10.3390/metabo12050405
  • Sentis SC, Oelkrug R, Mittag J. Thyroid hormones in the regulation of brown adipose tissue thermogenesis. Endocr Connect. 2021;10:R106–r15. doi: 10.1530/EC-20-0562
  • Yau WW, Yen PM. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci. 2020;21(8):21. doi: 10.3390/ijms21083020
  • Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–382. doi: 10.1152/physrev.00030.2013
  • Liu S, Shen S, Yan Y, et al. Triiodothyronine (T3) promotes brown fat hyperplasia via thyroid hormone receptor α mediated adipocyte progenitor cell proliferation. Nat Commun. 2022;13(1):3394. doi: 10.1038/s41467-022-31154-1
  • Cantó C, Houtkooper RH, Pirinen E, et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012;15(6):838–847. doi: 10.1016/j.cmet.2012.04.022
  • Yau WW, Singh BK, Lesmana R, et al. Thyroid hormone (T(3)) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy. 2019;15:131–150. doi: 10.1080/15548627.2018.1511263
  • Boutant M, Joffraud M, Kulkarni SS, et al. SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Mol Metabol. 2015;4(2):118–131. doi: 10.1016/j.molmet.2014.12.008
  • Hilse KE, Kalinovich AV, Rupprecht A, et al. The expression of UCP3 directly correlates to UCP1 abundance in brown adipose tissue. Biochim Biophys Acta Bioenerg. 2016;1857(1):72–78. doi: 10.1016/j.bbabio.2015.10.011
  • Gong DW, He Y, Karas M, et al. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J Biol Chem. 1997;272:24129–24132. doi: 10.1074/jbc.272.39.24129
  • Riley CL, Dao C, Kenaston MA, et al. The complementary and divergent roles of uncoupling proteins 1 and 3 in thermoregulation. Journal Of Physiology. 2016;594(24):7455–7464. doi: 10.1113/JP272971
  • Christopher LR, Edward MM. UCP3 plays a complementary role to UCP1 in brown adipose tissue mitochondrial bioenergetics. bioRxiv 2020:2020.03.24.003442. 2020.
  • Liebig M, von Praun C, Heldmaier G, et al. Absence of UCP3 in brown adipose tissue does not impair nonshivering thermogenesis. Physiol Biochem Zool. 2004;77(1):116–126. doi: 10.1086/381464
  • Rial-Pensado E, Rivas-Limeres V, Grijota-Martínez C, et al. Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis. Front Physiol. 2022;13:1017381. doi: 10.3389/fphys.2022.1017381
  • Dube MG, Beretta E, Dhillon H, et al. Central leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, and hyperinsulinemia: increase in serum ghrelin levels. Diabetes. 2002;51(6):1729–1736. doi: 10.2337/diabetes.51.6.1729
  • Rezai-Zadeh K, Yu S, Jiang Y, et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metabol. 2014;3(7):681–693. doi: 10.1016/j.molmet.2014.07.008
  • Zhang Y, Kerman IA, Laque A, et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci. 2011;31:1873–1884. doi: 10.1523/JNEUROSCI.3223-10.2011
  • Haynes WG, Morgan DA, Walsh SA, et al. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Investig. 1997;100(2):270–278. doi: 10.1172/JCI119532
  • Mark AL, Agassandian K, Morgan DA, et al. Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension. 2009;53(2):375–380. doi: 10.1161/HYPERTENSIONAHA.108.124255
  • Hoffmann A, Ebert T, Hankir MK, et al. Leptin improves parameters of brown adipose tissue thermogenesis in lipodystrophic mice. Nutrients. 2021;13(8):2499. doi: 10.3390/nu13082499
  • Rogers RC, Barnes MJ, Hermann GE. Leptin “gates” thermogenic action of thyrotropin-releasing hormone in the hindbrain. Brain Res. 2009;1295:135–141. doi: 10.1016/j.brainres.2009.07.063
  • Pisani DF, Barquissau V, Chambard JC, et al. Mitochondrial fission is associated with UCP1 activity in human brite/beige adipocytes. Mol Metabol. 2018;7:35–44. doi: 10.1016/j.molmet.2017.11.007
  • Berbee JF, Boon MR, Khedoe PP, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356. doi: 10.1038/ncomms7356
  • Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nature Med. 2011;17(2):200–205. doi: 10.1038/nm.2297
  • Sustarsic EG, Ma T, Lynes MD, et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 2018;28(1):159–74.e11. doi: 10.1016/j.cmet.2018.05.003
  • Simcox J, Geoghegan G, Maschek JA, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab. 2017;26(3):509–22.e6. doi: 10.1016/j.cmet.2017.08.006
  • Owei I, Umekwe N, Stentz F, et al. Association of plasma acylcarnitines with insulin sensitivity, insulin secretion, and prediabetes in a biracial cohort. Exp Biol Med (Maywood). 2021;246:1698–1705. doi: 10.1177/15353702211009493
  • Liepinsh E, Makrecka-Kuka M, Makarova E, et al. Decreased acylcarnitine content improves insulin sensitivity in experimental mice models of insulin resistance. Pharmacol Res. 2016;113:788–795. doi: 10.1016/j.phrs.2015.11.014
  • Nowak C, Hetty S, Salihovic S, et al. Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance. Sci Rep. 2018;8(1):8691. doi: 10.1038/s41598-018-26701-0
  • Guasch-Ferré M, Ruiz-Canela M, Li J, et al. Plasma acylcarnitines and risk of type 2 diabetes in a mediterranean population at high cardiovascular risk. J Clin Endocrinol Metab. 2019;104(5):1508–1519. doi: 10.1210/jc.2018-01000
  • McCoin CS, Knotts TA, Adams SH. Acylcarnitines–old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015;11:617–625. doi: 10.1038/nrendo.2015.129
  • Schooneman MG, Vaz FM, Houten SM, et al. Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013;62(1):1–8. doi: 10.2337/db12-0466
  • Stanford KI, Middelbeek RJ, Townsend KL, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Investig. 2013;123:215–223. doi: 10.1172/JCI62308
  • Zhu Q, Glazier BJ, Hinkel BC, et al. Neuroendocrine regulation of energy metabolism involving different types of adipose tissues. Int J Mol Sci. 2019;20(11):20. doi: 10.3390/ijms20112707
  • Mottillo EP, Bloch AE, Leff T, et al. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem. 2012;287(30):25038–25048. doi: 10.1074/jbc.M112.374041
  • Markussen LK, Rondini EA, Johansen OS, et al. Lipolysis regulates major transcriptional programs in brown adipocytes. Nat Commun. 2022;13(1):3956. doi: 10.1038/s41467-022-31525-8
  • Chouchani ET, Kazak L, Jedrychowski MP, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016;532(7597):112–116. doi: 10.1038/nature17399
  • Mailloux RJ, Adjeitey CN, Xuan JY, et al. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics. Faseb J. 2012;26:363–375. doi: 10.1096/fj.11-189639
  • Sohn JH, Ji Y, Cho CY, et al. Spatial regulation of reactive oxygen species via G6PD in brown adipocytes supports thermogenic function. Diabetes. 2021;70(12):2756–2770. doi: 10.2337/db21-0272
  • Kazak L, Chouchani ET, Lu GZ, et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 2017;26(4):660–71.e3. doi: 10.1016/j.cmet.2017.08.009
  • Muller S, Balaz M, Stefanicka P, et al. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci Rep. 2016;6(1):30030. doi: 10.1038/srep30030
  • Rahbani JF, Roesler A, Hussain MF, et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature. 2021;590(7846):480–485. doi: 10.1038/s41586-021-03221-y
  • Kazak L, Chouchani ET, Stavrovskaya IG, et al. UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci, USA. 2017;114(30):7981–7986. doi: 10.1073/pnas.1705406114
  • Bertholet AM, Kirichok Y. UCP1: A transporter for H(+) and fatty acid anions. Biochimie. 2017;134:28–34. doi: 10.1016/j.biochi.2016.10.013
  • Paulo E, Wu D, Wang Y, et al. Sympathetic inputs regulate adaptive thermogenesis in brown adipose tissue through Camp-salt inducible kinase axis. Sci Rep. 2018;8(1):11001. doi: 10.1038/s41598-018-29333-6
  • de Meis L. Brown adipose tissue ca2±ATPase: uncoupled ATP hydrolysis and thermogenic activity. J Biol Chem. 2003;278:41856–41861. doi: 10.1074/jbc.M308280200
  • de Meis L, Arruda AP, da Costa RM, et al. Identification of a ca2±ATPase in brown adipose tissue mitochondria: regulation of thermogenesis by ATP and ca2+. J Biol Chem. 2006;281:16384–16390. doi: 10.1074/jbc.M600678200
  • Ikeda K, Kang Q, Yoneshiro T, et al. UCP1-independent signaling involving sERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nature Med. 2017;23(12):1454–1465. doi: 10.1038/nm.4429
  • Bauzá-Thorbrügge M, Banke E, Chanclón B, et al. Adipocyte-specific ablation of the ca(2+) pump SERCA2 impairs whole-body metabolic function and reveals the diverse metabolic flexibility of white and brown adipose tissue. Mol Metabol. 2022;63:101535. doi: 10.1016/j.molmet.2022.101535
  • Bonam SR, Wang F, Muller S. Lysosomes as a therapeutic target. Nat Rev Drug Discov. 2019;18(12):923–948. doi: 10.1038/s41573-019-0036-1
  • Hafner AL, Contet J, Ravaud C, et al. Brown-like adipose progenitors derived from human induced pluripotent stem cells: identification of critical pathways governing their adipogenic capacity. Sci Rep. 2016;6(1):32490. doi: 10.1038/srep32490
  • Rafiq S, McKenna SL, Muller S, et al. Lysosomes in acute myeloid leukemia: potential therapeutic targets? Leukemia. 2021;35(10):2759–2770. doi: 10.1038/s41375-021-01388-x
  • Lu Y, Fujioka H, Joshi D, et al. Mitophagy is required for brown adipose tissue mitochondrial homeostasis during cold challenge. Sci Rep. 2018;8(1):8251. doi: 10.1038/s41598-018-26394-5
  • Cairo M, Villarroya J, Cereijo R, et al. Thermogenic activation represses autophagy in brown adipose tissue. Int J Obes. 2016;40:1591–1599. doi: 10.1038/ijo.2016.115
  • Altshuler-Keylin S, Shinoda K, Hasegawa Y, et al. Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab. 2016;24(3):402–419. doi: 10.1016/j.cmet.2016.08.002
  • Fischer AW, Jaeckstein MY, Gottschling K, et al. Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab. 2021;33(3):547–64.e7. Cell metabolism 2021. doi: 10.1016/j.cmet.2020.12.001
  • de Meis L, Ketzer LA, da Costa RM, et al. Fusion of the endoplasmic reticulum and mitochondrial outer membrane in rats brown adipose tissue: activation of thermogenesis by Ca2+. Plos One. 2010;5:e9439. doi: 10.1371/journal.pone.0009439
  • Bartelt A, Widenmaier SB, Schlein C, et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nature Med. 2018;24(3):292–303. doi: 10.1038/nm.4481
  • Zeng X, Ye M, Resch JM, et al. Innervation of thermogenic adipose tissue via a calsyntenin 3beta-S100b axis. Nature. 2019;569:229–235. doi: 10.1038/s41586-019-1156-9
  • Pfeifer A. NRG4: an endocrine link between brown adipose tissue and liver. Cell Metab. 2015;21(1):13–14. doi: 10.1016/j.cmet.2014.12.008
  • Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35. doi: 10.1038/nrendo.2016.136
  • Villarroya F, Gavalda-Navarro A, Peyrou M, et al. The lives and times of brown adipokines. Trends Endocrinol Metab. 2017;28:855–867. doi: 10.1016/j.tem.2017.10.005
  • Sugino T, Okada A, Taguchi K, et al. Brown adipocytes and β 3 -stimulant-induced brown-like adipocytes contribute to the prevention of renal crystal formation. Am J Physiol Renal Physiol. 2019;316(6):F1282–F1292. doi: 10.1152/ajprenal.00523.2018
  • van den Beukel JC, Grefhorst A. Interactions between the gut, the brain and brown adipose tissue function. Front Horm Res. 2014;42:107–122.
  • Bordicchia M, Liu D, Amri EZ, et al. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Investig. 2012;122(3):1022–1036. doi: 10.1172/JCI59701
  • Alcala M, Calderon-Dominguez M, Bustos E, et al. Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice. Sci Rep. 2017;7(1):16082. doi: 10.1038/s41598-017-16463-6
  • Li Y, Schnabl K, Gabler SM, et al. Secretin-activated brown fat mediates prandial thermogenesis to induce satiation. Cell. 2018;175(6):1561–74.e12. doi: 10.1016/j.cell.2018.10.016
  • Laurila S, Sun L, Lahesmaa M, et al. Secretin activates brown fat and induces satiation. Nat Metab. 2021;3(6):798–809. Nature metabolism 2021. doi: 10.1038/s42255-021-00409-4
  • Sun L, Laurila S, Lahesmaa M, et al. Secretin modulates appetite via brown adipose tissue-brain axis. Eur J Nucl Med Mol Imaging. 2023;50:1597–1606. doi: 10.1007/s00259-023-06124-4
  • Sun K, Kusminski CM, Luby-Phelps K, et al. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metabol. 2014;3(4):474–483. doi: 10.1016/j.molmet.2014.03.010
  • Mahdaviani K, Chess D, Wu Y, et al. Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism. 2016;65(1):26–35. doi: 10.1016/j.metabol.2015.09.012
  • Nisoli E, Tonello C, Benarese M, et al. Expression of nerve growth factor in brown adipose tissue: implications for thermogenesis and obesity. Endocrinology. 1996;137(2):495–503. doi: 10.1210/endo.137.2.8593794
  • Rosell M, Kaforou M, Frontini A, et al. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice. Am J Physiol Endocrinol Metab. 2014;306(8):E945–64. doi: 10.1152/ajpendo.00473.2013
  • Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab. 2015;308(12):E1043–55. doi: 10.1152/ajpendo.00570.2014
  • Whittle AJ, Carobbio S, Martins L, et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 2012;149(4):871–885. doi: 10.1016/j.cell.2012.02.066
  • Svensson KJ, Long JZ, Jedrychowski MP, et al. A secreted slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab. 2016;23(3):454–466. doi: 10.1016/j.cmet.2016.01.008
  • Seale P. Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes. 2015;64(7):2369–2375. doi: 10.2337/db15-0203
  • Whitehead A, Krause FN, Moran A, et al. Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat Commun. 2021;12(1):1905. doi: 10.1038/s41467-021-22272-3
  • Qiu Y, Sun L, Hu X, et al. Compromised browning plasticity of primary subcutaneous adipocytes derived from overweight chinese adults. Diabetol Metab Syndr. 2020;12(1):91. doi: 10.1186/s13098-020-00599-z
  • Berry DC, Jiang Y, Arpke RW, et al. Cellular aging contributes to failure of cold-induced beige adipocyte formation in old mice and humans. Cell Metab. 2017;25(1):166–181. Cell metabolism 2017. doi: 10.1016/j.cmet.2016.10.023
  • Chen KY, Brychta RJ, Linderman JD, et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J Clin Endocrinol Metab. 2013;98(7):E1218–23. doi: 10.1210/jc.2012-4213
  • Alessio N, Squillaro T, Monda V, et al. Circulating factors present in the sera of naturally skinny people may influence cell commitment and adipocyte differentiation of mesenchymal stromal cells. World J Stem Cells. 2019;11:180–195. doi: 10.4252/wjsc.v11.i3.180
  • Valle A, Santandreu FM, García-Palmer FJ, et al. The serum levels of 17β-estradiol, progesterone and triiodothyronine correlate with brown adipose tissue thermogenic parameters during aging. Cell Physiol Biochem. 2008;22:337–346. doi: 10.1159/000149812
  • Valle A, García-Palmer FJ, Oliver J, et al. Sex differences in brown adipose tissue thermogenic features during caloric restriction. Cell Physiol Biochem. 2007;19:195–204. doi: 10.1159/000099207
  • Herz CT, Kulterer OC, Prager M, et al. Sex differences in brown adipose tissue activity and cold-induced thermogenesis. Mol Cell Endocrinol. 2021;534:111365. doi: 10.1016/j.mce.2021.111365
  • Matsen ME, Thaler JP, Wisse BE, et al. In uncontrolled diabetes, thyroid hormone and sympathetic activators induce thermogenesis without increasing glucose uptake in brown adipose tissue. Am J Physiol Endocrinol Metab. 2013;304(7):E734–46. doi: 10.1152/ajpendo.00488.2012
  • Tsoli M, Moore M, Burg D, et al. Activation of thermogenesis in brown adipose tissue and dysregulated lipid metabolism associated with cancer cachexia in mice. Cancer Res. 2012;72(17):4372–4382. doi: 10.1158/0008-5472.CAN-11-3536
  • Nintou E, Karligiotou E, Vliora M, et al. Effects of in vitro muscle contraction on thermogenic protein levels in co-cultured adipocytes. Life. 2021;11(11):1227. doi: 10.3390/life11111227
  • Khalafi M, Mohebbi H, Symonds ME, et al. The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients. 2020;12(4):12. doi: 10.3390/nu12040925
  • Tanimura R, Kobayashi L, Shirai T, et al. Effects of exercise intensity on white adipose tissue browning and its regulatory signals in mice. Physiological Reports. 2022;10(5):e15205. doi: 10.14814/phy2.15205
  • Xu X, Ying Z, Cai M, et al. Exercise ameliorates high-fat diet-induced metabolic and vascular dysfunction, and increases adipocyte progenitor cell population in brown adipose tissue. Am J Physiol Regulatory Integr Comp Physiol. 2011;300(5):R1115–25. doi: 10.1152/ajpregu.00806.2010
  • Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–468. doi: 10.1038/nature10777
  • Fu P, Zhu R, Jia J, et al. Aerobic exercise promotes the functions of brown adipose tissue in obese mice via a mechanism involving COX2 in the VEGF signaling pathway. Nutr Metab (Lond). 2021;18(1):56. metabolism 2021. doi: 10.1186/s12986-021-00581-0
  • Zhu Y, Qi Z, Ding S. Exercise-induced adipose tissue thermogenesis and browning: how to explain the conflicting findings? Int J Mol Sci. 2022;23(21):23. doi: 10.3390/ijms232113142
  • Otero-Díaz B, Rodríguez-Flores M, Sánchez-Muñoz V, et al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front Physiol. 2018;9:1781. doi: 10.3389/fphys.2018.01781
  • Tanaka R, Fuse S, Kuroiwa M, et al. Vigorous-intensity physical activities are associated with high brown adipose tissue density in humans. Int J Environ Res Public Health. 2020;17(8):17. doi: 10.3390/ijerph17082796
  • Martinez-Tellez B, Sanchez-Delgado G, Acosta FM, et al. No evidence of brown adipose tissue activation after 24 weeks of supervised exercise training in young sedentary adults in the ACTIBATE randomized controlled trial. Nat Commun. 2022;13(1):5259. doi: 10.1038/s41467-022-32502-x
  • Van Nguyen TT, Vu VV, Pham PV. Transcriptional factors of thermogenic adipocyte development and generation of brown and beige adipocytes from stem cells. Stem Cell Rev and Rep. 2020;16:876–892. doi: 10.1007/s12015-020-10013-w
  • Kulterer OC, Herz CT, Prager M, et al. Brown adipose tissue prevalence is lower in obesity but its metabolic activity is intact. Front Endocrinol. 2022;13:858417. doi: 10.3389/fendo.2022.858417
  • Gavini CK, Jones WC 2nd, Novak CM. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. Journal Of Physiology. 2016;594(18):5285–5301. doi: 10.1113/JP272352
  • Falchi M, El-Sayed Moustafa JS, Takousis P, et al. Low copy number of the salivary amylase gene predisposes to obesity. Nature Genet. 2014;46(5):492–497. doi: 10.1038/ng.2939
  • Gómez-García I, Trepiana J, Fernández-Quintela A, et al. Sexual dimorphism in brown adipose tissue activation and white adipose tissue browning. Int J Mol Sci. 2022;23(15):23. doi: 10.3390/ijms23158250
  • Martínez de Morentin PB, González-García I, Martins L, et al. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab. 2014;20:41–53. doi: 10.1016/j.cmet.2014.03.031
  • Fuller-Jackson JP, Dordevic AL, Clarke IJ, et al. Effect of sex and sex steroids on brown adipose tissue heat production in humans. Eur J Endocrinol. 2020;183(3):343–355. doi: 10.1530/EJE-20-0184
  • Lettieri Barbato D, Tatulli G, Vegliante R, et al. Dietary fat overload reprograms brown fat mitochondria. Front Physiol. 2015;6:272. doi: 10.3389/fphys.2015.00272
  • Boon MR, van den Berg SA, Wang Y, et al. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. Plos One. 2013;8:e74083. doi: 10.1371/journal.pone.0074083
  • Garcia-Martin R, Alexaki VI, Qin N, et al. Adipocyte-specific hypoxia-inducible factor 2alpha deficiency exacerbates obesity-induced brown adipose tissue dysfunction and metabolic dysregulation. Mol Cell Biol. 2016;36:376–393. doi: 10.1128/MCB.00430-15
  • Bernardo B, Lu M, Bandyopadhyay G, et al. FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep. 2015;5(1):11382. doi: 10.1038/srep11382
  • Lee YH, Kim SN, Kwon HJ, et al. Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep. 2017;7(1):39794. doi: 10.1038/srep39794
  • Nisoli E, Briscini L, Giordano A, et al. Tumor necrosis factor α mediates apoptosis of brown adipocytes and defective brown adipocyte function in obesity. Proc Natl Acad Sci, USA. 2000;97:8033–8038. doi: 10.1073/pnas.97.14.8033
  • Seki T, Yang Y, Sun X, et al. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature. 2022;608(7922):421–428. doi: 10.1038/s41586-022-05030-3