1,745
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging technologies in adipose tissue research

ORCID Icon, , , &
Article: 2248673 | Received 11 Jun 2023, Accepted 07 Aug 2023, Published online: 20 Aug 2023

References

  • Deutsch A, Feng D, Pessin JE, et al. The impact of single-cell genomics on adipose tissue research. Int J Mol Sci. 2020;21(13):4773. doi: 10.3390/ijms21134773
  • Baheti S, Singh P, Zhang Y, et al. Adipose tissue DNA methylome changes in development of new-onset diabetes after kidney transplantation. Epigenomics. 2017;9(11):1423–11. doi: 10.2217/epi-2017-0050
  • Xie S, Choudhari S, Wu C-L, et al. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J. 2023;37(3):e22785. doi: 10.1096/fj.202201413R
  • Sardiu ME, Box AC, Haug JS, et al. Identification of stem cells from large cell populations with topological scoring. Mol Omi. 2021;17(1):59–65. doi: 10.1039/D0MO00039F
  • Liu L, Chen D, Wang J, et al. Advances of single-cell protein analysis. Cells. 2020;9(5):1271. doi: 10.3390/cells9051271
  • Botelho D, Wall MJ, Vieira DB, et al. Top-down and bottom-up proteomics of SDS-containing solutions following mass-based separation. J Proteome Res. 2010;9(6):2863–2870. doi: 10.1021/pr900949p
  • Kuljanin M, Dieters-Castator DZ, Hess DA, et al. Comparison of sample preparation techniques for large-scale proteomics. Proteomics. 2017;17(1–2):1600337. doi: 10.1002/pmic.201600337
  • Liu X, Yuan M, Xiang Q, et al. Single-cell RNA sequencing of subcutaneous adipose tissues identifies therapeutic targets for cancer-associated lymphedema. Cell Discov. 2022;8(1):58. doi: 10.1038/s41421-022-00402-5
  • Gu W, Nowak WN, Xie Y, et al. Single-cell RNA-Sequencing and metabolomics analyses reveal the contribution of perivascular adipose tissue stem cells to vascular remodeling. Arterioscler Thromb Vasc Biol. 2019;39(10):2049–2066. doi: 10.1161/ATVBAHA.119.312732
  • Omar A, Chatterjee TK, Tang Y, et al. Proinflammatory phenotype of perivascular adipocytes. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1631–1636. doi: 10.1161/ATVBAHA.114.303030
  • Gu W, Hong X, Potter C, et al. Mesenchymal stem cells and vascular regeneration. Microcirculation. 2017;24(1):e12324. doi: 10.1111/micc.12324
  • Brooks AE, Boss AL, Lehnert K, et al. Dissecting adipose tissue derived mesenchymal stromal cell heterogeneity using single cell RNA sequencing and multiparameter spectral flow cytometry. Cytotherapy. 2020;22(5):S70–1. doi: 10.1016/j.jcyt.2020.03.110
  • Eberwine J, Sul J-Y, Bartfai T, et al. The promise of single-cell sequencing. Nat Methods. 2014;11(1):25–27. doi: 10.1038/nmeth.2769
  • Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83. doi: 10.1186/s13059-017-1215-1
  • Niu L, Sulek K, Vasilopoulou CG, et al. Defining NASH from a Multi-omics systems biology Perspective. J Clin Med. 2021;10(20):4673. doi: 10.3390/jcm10204673
  • Sundekilde UK, Yde CC, Honore AH, et al. An integrated Multi-omics analysis defines key pathway alterations in a diet-induced obesity mouse model. Metabolites. 2020;10(3):80. doi: 10.3390/metabo10030080
  • Yang C, Zhang J, Wu T, et al. Multi-omics analysis to Examine gene expression and Metabolites from Multisite adipose-derived mesenchymal stem cells. Front Genet. 2021;12:627347. doi: 10.3389/fgene.2021.627347
  • Flenkenthaler F, Ländström E, Shashikadze B, et al. Differential effects of insulin-deficient diabetes mellitus on visceral vs. Subcutaneous adipose tissue-Multi-omics insights from the Munich MIDY Pig model. Front Med. 2021;8:751277. doi: 10.3389/fmed.2021.751277
  • Holowatyj AN, Haffa M, Lin T, et al. Multi-omics analysis reveals adipose-tumor crosstalk in patients with colorectal cancer. Cancer Prev Res (Phila). 2020;13(10):817–828. doi: 10.1158/1940-6207.CAPR-19-0538
  • Si H, Gao T, Yang J, et al. Multi-omics reveals hypertrophy of adipose tissue and lipid metabolism disorder via mitochondria in young mice under real-ambient exposure to air pollution. Front Pharmacol. 2023;14:14. doi: 10.3389/fphar.2023.1122615
  • Li Z, Wang S, Liu S, et al. New insights into aging-associated characteristics of female subcutaneous adipose tissue through integrative analysis of multi-omics data. Bioengineered. 2022;13(2):2044–2057. doi: 10.1080/21655979.2021.2020467
  • Marx V. Method of the year: spatially resolved transcriptomics. Nat Methods. 2021;18(1):9–14. doi: 10.1038/s41592-020-01033-y
  • Williams CG, Lee HJ, Asatsuma T, et al. An introduction to spatial transcriptomics for biomedical research. Genome Med. 2022;14(1):68. doi: 10.1186/s13073-022-01075-1
  • Chen KH, Boettiger AN, Moffitt JR, et al. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348(6233):aaa6090. doi: 10.1126/science.aaa6090
  • Maynard KR, Collado-Torres L, Weber LM, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci. 2021;24(3):425–436. doi: 10.1038/s41593-020-00787-0
  • Lee JH, Daugharthy ER, Scheiman J, et al. Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc. 2015;10(3):442–458. doi: 10.1038/nprot.2014.191
  • Alon S, Goodwin DR, Sinha A, et al. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems. Science. 2021;371(6528): doi: 10.1126/science.aax2656
  • Chen J, Suo S, Tam PP, et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017;12(3):566–580. doi: 10.1038/nprot.2017.003
  • Vickovic S, Eraslan G, Salmén F, et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat Methods. 2019;16(10):987–990. doi: 10.1038/s41592-019-0548-y
  • Stickels RR, Murray E, Kumar P, et al. Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol. 2021;39(3):313–319. doi: 10.1038/s41587-020-0739-1
  • Bäckdahl J, Franzén L, Massier L, et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 2021;33(9):1869–1882.e6. doi: 10.1016/j.cmet.2021.07.018
  • Langin D. Adipocyte heterogeneity revealed by spatial transcriptomics of human adipose tissue: Painting and more. Cell Metab. 2021;33(9):1721–1722. doi: 10.1016/j.cmet.2021.08.011
  • Massier L, Jalkanen J, Elmastas M, et al. An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat Commun. 2023;14(1):1438. doi: 10.1038/s41467-023-36983-2
  • Andersson A, Bergenstråhle J, Asp M, et al. Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. Commun Biol. 2020;3(1):565. doi: 10.1038/s42003-020-01247-y
  • Hung V, Zou P, Rhee H-W, et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell. 2014;55(2):332–341. doi: 10.1016/j.molcel.2014.06.003
  • Mou M, Pan Z, Lu M, et al. Application of machine learning in spatial proteomics. J Chem Inf Model. 2022 Dec 12;62(23):5875–5895. doi: 10.1021/acs.jcim.2c01161
  • Azorín-Ortuño M, Yáñez-Gascón MJ, Vallejo F, et al. Metabolites and tissue distribution of resveratrol in the pig. Mol Nutr Food Res. 2011;55(8):1154–1168. doi: 10.1002/mnfr.201100140
  • Fan L, Tong Q, Dong W, et al. Tissue distribution, excretion, and metabolic profile of dihydromyricetin, a flavonoid from vine tea (Ampelopsis grossedentata) after oral administration in rats. J Agric Food Chem. 2017;65(23):4597–4604. doi: 10.1021/acs.jafc.7b01155
  • Nishimura S, Manabe I, Nagasaki M, et al. In vivo imaging in mice reveals local cell dynamics and inflammation in obese adipose tissue. J Clin Invest. 2008;118(2):710–721. doi: 10.1172/JCI33328
  • Brooks PT, Munthe-Fog L, Rieneck K, et al. Application of a deep learning-based image analysis and live-cell imaging system for quantifying adipogenic differentiation kinetics of adipose-derived stem/stromal cells. Adipocyte. 2021;10(1):621–630. doi: 10.1080/21623945.2021.2000696
  • Ferrara MA, Filograna A, Ranjan R, et al. Three-dimensional label-free imaging throughout adipocyte differentiation by stimulated Raman microscopy. PLoS One. 2019;14(5):e0216811. doi: 10.1371/journal.pone.0216811
  • Van Valen DA, Kudo T, Lane KM, et al. Deep learning automates the quantitative analysis of Individual cells in live-cell imaging experiments. PLoS Comput Biol. 2016;12(11):e1005177. doi: 10.1371/journal.pcbi.1005177
  • Krieg L, Didt K, Karkossa I, et al. Multiomics reveal unique signatures of human epiploic adipose tissue related to systemic insulin resistance. Gut. 2022;71(11):2179–2193. doi: 10.1136/gutjnl-2021-324603
  • Gupta N, Liu JR, Patel B, et al. Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioeng Transl Med. 2016;1(1):63–81. doi: 10.1002/btm2.10013
  • Dufau J, Shen JX, Couchet M, et al. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol. 2021;320(5):C822–41. doi: 10.1152/ajpcell.00519.2020
  • Gibler P, Gimble J, Hamel K, et al. Human adipose-derived stromal/stem cell culture and analysis methods for adipose tissue Modeling in vitro: A Systematic review. Cells. 2021;10(6):1378. doi: 10.3390/cells10061378
  • Murphy CS, Liaw L, Reagan MR. In vitro tissue-engineered adipose constructs for modeling disease. BMC Biomed Eng. 2019;1(1):1. doi: 10.1186/s42490-019-0027-7
  • Shen JX, Couchet M, Dufau J, et al. 3D adipose tissue culture Links the Organotypic microenvironment to improved adipogenesis. Adv Sci. 2021;8(16):e2100106. (Weinheim, Baden-Wurttemberg, Ger. doi: 10.1002/advs.202100106
  • Lee SY, Park SB, Kim YE, et al. iTRAQ-Based Quantitative proteomic Comparison of 2D and 3D adipocyte cell models co-cultured with macrophages using Online 2D-nanoLC-ESI-MS/MS. Sci Rep. 2019;9(1):16746. doi: 10.1038/s41598-019-53196-0
  • Horder H, Guaza Lasheras M, Grummel N, et al. Bioprinting and differentiation of adipose-derived stromal cell Spheroids for a 3D Breast cancer-adipose tissue model. Cells. 2021;10(4):803. doi: 10.3390/cells10040803
  • Xue W, Yu S-Y, Kuss M, et al. 3D bioprinted white adipose model forin vitrostudy of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication. 2022;14(3):034106. doi: 10.1088/1758-5090/ac6c4b
  • Paek J, Park SE, Lu Q, et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano. 2019;13(7):7627–7643. doi: 10.1021/acsnano.9b00686
  • Lau FH, Vogel K, Luckett JP, et al. Sandwiched white adipose tissue: a microphysiological system of Primary human adipose tissue. Tissue Eng Part C Methods. 2018;24(3):135–145. doi: 10.1089/ten.tec.2017.0339
  • Yang F, Carmona A, Stojkova K, et al. A 3D human adipose tissue model within a microfluidic device. Lab Chip. 2021;21(2):435–446. doi: 10.1039/D0LC00981D
  • Compera N, Atwell S, Wirth J, et al. Adipose microtissue-on-chip: a 3D cell culture platform for differentiation, stimulation, and proteomic analysis of human adipocytes. Lab Chip. 2022;22(17):3172–3186. doi: 10.1039/D2LC00245K
  • Klingelhutz AJ, Gourronc FA, Chaly A, et al. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci Rep. 2018;8(1):523. doi: 10.1038/s41598-017-19024-z
  • Abbott RD, Raja WK, Wang RY, et al. Long term perfusion system supporting adipogenesis. Methods. 2015;84:84–89. doi: 10.1016/j.ymeth.2015.03.022
  • Ley RE, Bäckhed F, Turnbaugh P, et al. Obesity alters gut microbial ecology. Proc Natl Acad Sci, USA. 2005;102(31):11070–11075. doi: 10.1073/pnas.0504978102
  • Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci, USA. 2004;101(44):15718–15723. doi: 10.1073/pnas.0407076101
  • Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–1031. doi: 10.1038/nature05414
  • Luck H, Tsai S, Chung J, et al. Regulation of obesity-related insulin resistance with gut anti-inflammatory agents. Cell Metab. 2015;21(4):527–542. doi: 10.1016/j.cmet.2015.03.001
  • Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–1772. doi: 10.2337/db06-1491
  • Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–352. doi: 10.1038/nri.2016.42
  • Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, et al. Metabolism and metabolic disorders and the microbiome: The intestinal microbiota associated with obesity, lipid metabolism, and metabolic health—Pathophysiology and therapeutic strategies. Gastroenterology. 2021;160(2):573–599. doi: 10.1053/j.gastro.2020.10.057
  • Narmaki E, Borazjani M, Ataie-Jafari A, et al. The combined effects of probiotics and restricted calorie diet on the anthropometric indices, eating behavior, and hormone levels of obese women with food addiction: a randomized clinical trial. Nutr Neurosci. 2022;25(5):963–975. doi: 10.1080/1028415X.2020.1826763
  • Yao H, Fan C, Lu Y, et al. Alteration of gut microbiota affects expression of adiponectin and resistin through modifying DNA methylation in high-fat diet-induced obese mice. Genes Nutr. 2020;15(1):12. doi: 10.1186/s12263-020-00671-3
  • Tremlett H, Bauer KC, Appel-Cresswell S, et al. The gut microbiome in human neurological disease: a review. Ann Neurol. 2017;81(3):369–382. doi: 10.1002/ana.24901
  • Zhang X, Chen W, Ning Z, et al. Deep metaproteomics approach for the study of human microbiomes. Anal Chem. 2017;89(17):9407–9415. doi: 10.1021/acs.analchem.7b02224
  • Lawson CE, Harcombe WR, Hatzenpichler R, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol. 2019;17(12):725–741. doi: 10.1038/s41579-019-0255-9
  • Zhang X, Li L, Butcher J, et al. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1):154. doi: 10.1186/s40168-019-0767-6
  • Greco F, Mallio C, Cirimele V, et al. Subcutaneous adipose tissue as a biomarker of pancreatic cancer: a pilot study in male patients. Clin Cancer Investig J. 2019;8(3):114. doi: 10.4103/ccij.ccij_36_19
  • Prado CMM, Heymsfield SB. Lean tissue imaging. J Parenter Enter Nutr. 2014;38(8):940–953. doi: 10.1177/0148607114550189
  • Jo G, Kim EJ, Song J, et al. Molecular tuning of IR-786 for improved brown adipose tissue imaging. Int J Mol Sci. 2022;23(22):13756. doi: 10.3390/ijms232213756
  • Chan XHD, Balasundaram G, Attia ABE, et al. Multimodal imaging approach to monitor browning of adipose tissue in vivo. J Lipid Res. 2018;59(6):1071–1078. doi: 10.1194/jlr.D083410
  • Marzola P, Boschi F, Moneta F, et al. Preclinical in vivo imaging for fat tissue identification, quantification, and functional characterization. Front Pharmacol. 2016;7:336. doi: 10.3389/fphar.2016.00336
  • Sasso M, Liu Y, Aron-Wisnewsky J, et al. AdipoScan: a novel transient elastography-based tool used to non-Invasively assess subcutaneous adipose tissue shear wave speed in obesity. Ultrasound Med Biol. 2016;42(10):2401–2413. doi: 10.1016/j.ultrasmedbio.2016.06.016
  • Cordes C, Dieckmeyer M, Ott B, et al. MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. 2015;42(5):1272–1280. doi: 10.1002/jmri.24908
  • Honecker J, Ruschke S, Seeliger C, et al. Transcriptome and fatty-acid signatures of adipocyte hypertrophy and its non-invasive MR-based characterization in human adipose tissue. EBioMedicine. 2022;79:104020. doi: 10.1016/j.ebiom.2022.104020
  • Peterson P, Månsson S. Simultaneous quantification of fat content and fatty acid composition using MR imaging. Magn Reson Med. 2013;69(3):688–697. doi: 10.1002/mrm.24297
  • Sarma MK, Saucedo A, Darwin CH, et al. Noninvasive assessment of abdominal adipose tissues and quantification of hepatic and pancreatic fat fractions in type 2 diabetes mellitus. Magn Reson Imaging. 2020;72:95–102. doi: 10.1016/j.mri.2020.07.001
  • Hamilton G, Schlein AN, Middleton MS, et al. In vivo triglyceride composition of abdominal adipose tissue measured by 1 H MRS at 3T. J Magn Reson Imaging. 2017;45(5):1455–1463. doi: 10.1002/jmri.25453
  • Borga M, Virtanen KA, Romu T, et al. Brown adipose tissue in humans: detection and functional analysis using PET (positron emission tomography), MRI (magnetic resonance imaging), and DECT (dual energy computed tomography). Methods Enzymol. 2014;537:141–159.
  • Reber J, Willershäuser M, Karlas A, et al. Non-invasive measurement of brown fat metabolism based on optoacoustic imaging of hemoglobin gradients. Cell Metab. 2018;27(3):689–701.e4. doi: 10.1016/j.cmet.2018.02.002
  • Chondronikola M, Beeman SC, Wahl RL. Non-invasive methods for the assessment of brown adipose tissue in humans. J Physiol. 2018;596(3):363–378. doi: 10.1113/JP274255
  • Ron A, Deán-Ben XL, Reber J, et al. Characterization of brown adipose tissue in a diabetic mouse model with spiral volumetric optoacoustic tomography. Mol Imaging Biol. 2019;21(4):620–625. doi: 10.1007/s11307-018-1291-y
  • Maliszewska K, Adamska-Patruno E, Miniewska K, et al. PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep. 2022;12(1):4112. doi: 10.1038/s41598-022-08125-z
  • Bos SA, Gill CM, Martinez-Salazar EL, et al. Preliminary investigation of brown adipose tissue assessed by PET/CT and cancer activity. Skeletal Radiol. 2019;48(3):413–419. doi: 10.1007/s00256-018-3046-x
  • Steinhoff KG, Hankir M, Krause K, et al. Interaction of thyroid hormone with brown adipose tissue. Lessons learned from PET-CT. Nuklearmedizin. 2015;54(3):82–87. doi: 10.1055/s-0037-1616608
  • Greco F, Mallio CA. Artificial intelligence and abdominal adipose tissue analysis: a literature review. Quant Imaging Med Surg. 2021;11(10):4461–4474. doi: 10.21037/qims-21-370
  • Greco F, Salgado R, Van Hecke W, et al. Epicardial and pericardial fat analysis on CT images and artificial intelligence: a literature review. Quant Imaging Med Surg. 2022;12(3):2075–2089. doi: 10.21037/qims-21-945
  • Miotto R, Wang F, Wang S, et al. Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform. 2018;19(6):1236–1246. doi: 10.1093/bib/bbx044
  • Tran T, Kavuluru R. Distant supervision for treatment relation extraction by leveraging MeSH subheadings. Artif Intell Med. 2019;98:18–26. doi: 10.1016/j.artmed.2019.06.002
  • Obermeyer Z, Emanuel EJ. Predicting the future — Big data, machine learning, and clinical Medicine. N Engl J Med. 2016;375(13):1216–1219. doi: 10.1056/NEJMp1606181
  • Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6(1):26094. doi: 10.1038/srep26094
  • Yu K, Wang Y, Zheng Y, et al. qPTM: an updated database for PTM dynamics in human, mouse, rat and yeast. Nucleic Acids Res. 2023;51(D1):D479–87. doi: 10.1093/nar/gkac820
  • Ross KE, Zhang G, Akcora C, et al. Network models of protein phosphorylation, acetylation, and ubiquitination connect metabolic and cell signaling pathways in lung cancer. PLoS Comput Biol. 2023;19(3):e1010690. doi: 10.1371/journal.pcbi.1010690
  • Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–243. doi: 10.1136/svn-2017-000101