718
Views
0
CrossRef citations to date
0
Altmetric
Brief report

Matrix density regulates adipocyte phenotype

, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2268261 | Received 22 Aug 2023, Accepted 29 Sep 2023, Published online: 10 Oct 2023

References

  • Carruthers NJ, Strieder-Barboza C, Caruso JA, et al. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity. Sci Rep. 2021;11(1):17394. PMID: 34462518. doi: 10.1038/s41598-021-96995-0
  • Gómez-Serrano M, Camafeita E, López JA, et al. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol. 2017;11:415–12. doi: 10.1016/j.redox.2016.12.013
  • Murri M, Insenser M, Bernal-Lopez MR, et al. Proteomic analysis of visceral adipose tissue in pre-obese patients with type 2 diabetes. Mol Cell Endocrinol. 2013;376(1–2):99–106. PMID: 23791845. doi: 10.1016/j.mce.2013.06.010
  • Gupta P, Lanca C, Gan ATL, et al. The Association between body composition using dual energy X-ray absorptiometry and type-2 diabetes: a systematic review and meta-analysis of observational studies. Sci Rep. 2019;9(1):12634. PMID: 31477766. doi: 10.1038/s41598-019-49162-5
  • Kahn D, Macias E, Zarini S, et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: implications for metabolic disease. Endocrinology. 2022;163(11):bqac140. PMID: 36036084. doi: 10.1210/endocr/bqac140
  • Michaud A, Tordjman J, Pelletier M, et al. Relevance of omental pericellular adipose tissue collagen in the pathophysiology of human abdominal obesity and related cardiometabolic risk. Int J Obes (Lond). 2016;40(12):1823–1831. PMID: 27698346. doi: 10.1038/ijo.2016.173
  • Pafili K, Kahl S, Mastrototaro L, et al. Mitochondrial respiration is decreased in visceral but not subcutaneous adipose tissue in obese individuals with fatty liver disease. J Hepatol. 2022;77(6):1504–1514. PMID: 35988689. doi: 10.1016/j.jhep.2022.08.010
  • Porter SA, Massaro JM, Hoffmann U, et al. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care. 2009;32(6):1068–1075. PMID: 19244087. doi: 10.2337/dc08-2280
  • Preis SR, Massaro JM, Robins SJ, et al. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring). 2010;18(11):2191–2198. PMID: 20339361. doi: 10.1038/oby.2010.59
  • Raajendiran A, Krisp C, Souza DP, et al. Proteome analysis of human adipocytes identifies depot-specific heterogeneity at metabolic control points. Am J Physiol Endocrinol Metab. 2021;320(6):E1068–E1084. PMID: 33843278. doi: 10.1152/ajpendo.00473.2020.
  • Divoux A, Tordjman J, Lacasa D, et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes. 2010;59(11):2817–2825. PMID: 20713683. doi: 10.2337/db10-0585
  • Henegar C, Tordjman J, Achard V, et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 2008;9(1):R14. PMID: 18208606. doi: 10.1186/gb-2008-9-1-r14.
  • Lackey DE, Burk DH, Ali MR, et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am J Physiol Endocrinol Metab. 2014;306(3):E233–46. doi: 10.1152/ajpendo.00476.2013
  • Muir LA, Neeley CK, Meyer KA, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity (Silver Spring). 2016;24(3):597–605. PMID: 26916240. doi: 10.1002/oby.21377
  • Baker NA, Muir LA, Washabaugh AR, et al. Diabetes-specific regulation of adipocyte metabolism by the adipose tissue extracellular matrix. J Clin Endo Metab. 2017;102(3): 1–12. PMID: 28359093.
  • Strieder-Barboza C, Baker NA, Flesher CG, et al. Depot-specific adipocyte-extracellular matrix metabolic crosstalk in murine obesity. Adipocyte. 2020;9(1):89–96. PMID: 32272860. doi: 10.1080/21623945.2020.1749500
  • Abdennour M, Reggio S, Le Naour G, et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab. 2014;99(3):898–907. PMID: 24423338. doi: 10.1210/jc.2013-3253
  • Liu Y, Aron-Wisnewsky J, Marcelin G, et al. Accumulation and changes in composition of Collagens in subcutaneous adipose tissue after bariatric Surgery. J Clin Endocrinol Metab. 2016;101(1):293–304. PMID: 26583585. doi: 10.1210/jc.2015-3348
  • Juliar BA, Strieder-Barboza C, Karmakar M, et al. Viscoelastic characterization of diabetic and non-diabetic human adipose tissue. Biorheology. 2020;57(1):15–26. PMID: 32083565. doi: 10.3233/BIR-190234
  • Wenderott JK, Flesher CG, Baker NA, et al. Elucidating nanoscale mechanical properties of diabetic human adipose tissue using atomic force microscopy. Sci Rep. 2020;10(1):20423. PMID: 33235234. doi: 10.1038/s41598-020-77498-w
  • Pellegrinelli V, Heuvingh J, du Roure O, et al. Human adipocyte function is impacted by mechanical cues. J Pathol. 2014;233(2):183–195. PMID: 24623048. doi: 10.1002/path.4347
  • Beamish JA, Juliar BA, Cleveland DS, et al. Deciphering the relative roles of matrix metalloproteinase- and plasmin-mediated matrix degradation during capillary morphogenesis using engineered hydrogels. J Biomed Mater Res B Appl Biomater. 2019;107(8):2507–2516. doi: 10.1002/jbm.b.34341
  • Cruz-Acuña R, García AJ. Synthetic hydrogels mimicking basement membrane matrices to promote cell-matrix interactions. Matrix Biol. 2017;57-58:324–333. PMID: 27283894. doi: 10.1016/j.matbio.2016.06.002.
  • Juliar BA, Beamish JA, Busch ME, et al. Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels. Biomaterials. 2020;230:119634. doi: 10.1016/j.biomaterials.2019.119634
  • Hogrebe NJ, Gooch KJ. Direct influence of culture dimensionality on human mesenchymal stem cell differentiation at various matrix stiffnesses using a fibrous self-assembling peptide hydrogel. J Biomed Mater Res A. 2016;104(9):2356–2368. doi: 10.1002/jbm.a.35755
  • Guo Y, Qiao Y, Quan S, et al. Relationship of matrix stiffness and cell morphology in regulation of osteogenesis and adipogenesis of BMSCs. Mol Biol Rep. 2022;49(4):2677–2685. doi: 10.1007/s11033-021-07075-5
  • Xie J, Zhang D, Zhou C, et al. Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through β-catenin transduction. Acta Biomater. 2018;79:83–95. doi: 10.1016/j.actbio.2018.08.018
  • Young DA, Choi YS, Engler AJ, et al. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials. 2013;34(34):8581–8588. doi: 10.1016/j.biomaterials.2013.07.103
  • Zohora FT, Aldebs AI, Nosoudi N, et al. Gene expression profiling of human adipose tissue stem cells during 2D versus 3D adipogenesis. Cells Tissues Organs. 2019;208(3–4):113–133. doi: 10.1159/000507187
  • Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–183. doi: 10.1038/nature10137
  • Lee J, Abdeen AA, Tang X, et al. Matrix directed adipogenesis and neurogenesis of mesenchymal stem cells derived from adipose tissue and bone marrow. Acta Biomater. 2016;42:46–55. doi: 10.1016/j.actbio.2016.06.037
  • Piroli ME, Jabbarzadeh E. Matrix stiffness modulates mesenchymal stem cell sensitivity to geometric asymmetry signals. Ann Biomed Eng. 2018;46(6):888–898. doi: 10.1007/s10439-018-2008-8
  • Zhang T, Lin S, Shao X, et al. Regulating osteogenesis and adipogenesis in adipose-derived stem cells by controlling underlying substrate stiffness. J Cell Physiol. 2018;233(4):3418–3428. doi: 10.1002/jcp.26193
  • Baker NA, Muir LA, Lumeng CN, et al. Differentiation and Metabolic Interrogation of Human Adipocytes. Methods Mol Biol. 2017;1566:61–76. PMID: 28244041; PMCID: PMC5762179. doi: 10.1007/978-1-4939-6820-6
  • Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–682. doi: 10.1038/nmeth.2019
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111. doi: 10.1093/bioinformatics/btp120
  • Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36
  • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–515. PMID: 20436464. doi: 10.1038/nbt.1621
  • Durinck S, Spellman PT, Birney E, et al. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc. 2009;4(8):1184–1191. doi: 10.1038/nprot.2009.97
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):15545–15550. PMID: 16199517. doi: 10.1073/pnas.0506580102
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8
  • Korotkevich G, Sukhov V, Budin N, et al. Fast gene set enrichment analysis. bioRxiv. Published online February 1, 2021:060012. doi:10.1101/060012
  • Huber B, Borchers K, Tovar G, et al. Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. J Biomat App. 2016;30(6):699–710. doi: 10.1177/0885328215587450
  • Kochar A, Wu I, Mohan R, et al. A comparison of the rheologic properties of an adipose-derived extracellular matrix Biomaterial, lipoaspirate, calcium hydroxyapatite, and cross-linked Hyaluronic acid. JAMA Facial Plast Surg. 2014;16(6):405–409. doi: 10.1001/jamafacial.2014.480
  • Guimarães CF, Gasperini L, Marques AP, et al. The stiffness of living tissues and its implications for tissue engineering. Nat Rev Mater. 2020;5(5):351–370. doi: 10.1038/s41578-019-0169-1
  • Feig V, Tran H, Lee M, et al. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat Commun. 2018;9(2740). doi: 10.1038/s41467-018-05222-4
  • Borzacchiello A, Mayol L, Ramires PA, et al. Structural and rheological characterization of hyaluronic acid-based scaffolds for adipose tissue engineering. Biomaterials. 2007;28(30):4399–4408. doi: 10.1016/j.biomaterials.2007.06.007
  • Comley K, Fleck NA. A micromechanical model for the young’s modulus of adipose tissue. Int J Solids Struct. 2010;47(21):2982–2990. doi: 10.1016/j.ijsolstr.2010.07.001
  • Liberzon A, Birger C, Thorvaldsdóttir H, et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–425. doi: 10.1016/j.cels.2015.12.004
  • The Gene Ontology Consortium, Aleksander SA, Balhoff J, et al. The gene Ontology knowledgebase in 2023. Genetics. 2023;224(1):iyad031.
  • Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–689. doi: 10.1016/j.cell.2006.06.044
  • Morgan FLC, Fernández-Pérez J, Moroni L, et al. Tuning hydrogels by mixing dynamic cross-linkers: enabling cell-instructive hydrogels and Advanced bioinks. Adv Healthc Mater. 2022;11(1):e2101576. PMID: 34614297. doi: 10.1002/adhm.202101576
  • Ghajar CM, Chen X, Harris JW, et al. The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J. 2008;94(5):1930–1941. PMID: 17993494. doi: 10.1529/biophysj.107.120774.
  • Khetan S, Guvendiren M, Legant WR, et al. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat Mater. 2013;12(5):458–465. doi: 10.1038/nmat3586
  • Kilian KA, Bugarija B, Lahn BT, et al. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci, USA. 2010;107(11):4872–4877. PMID: 20194780. doi: 10.1073/pnas.0903269107
  • Hunt NC, Smith AM, Gbureck U, et al. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation. Acta Biomater. 2010;6(9):3649–3656. doi: 10.1016/j.actbio.2010.03.026
  • Kesselman D, Kossover O, Mironi-Harpaz I, et al. Time-dependent cellular morphogenesis and matrix stiffening in proteolytically responsive hydrogels. Acta Biomater. 2013;9(8):7630–7639. PMID: 23624218. doi: 10.1016/j.actbio.2013.04.030
  • Friend NE, McCoy AJ, Stegemann JP, et al. A combination of matrix stiffness and degradability dictate microvascular network assembly and remodeling in cell-laden poly(ethylene glycol) hydrogels. Biomaterials PMID: 36812843. 2023;295:122050. doi: 10.1016/j.biomaterials.2023.122050
  • Unamuno X, Gómez-Ambrosi J, Ramírez B, et al. Dermatopontin, a novel adipokine promoting adipose tissue extracellular matrix remodelling and inflammation in obesity. J Clin Med. 2020;9(4):1069. PMID: 32283761. doi: 10.3390/jcm9041069
  • Jääskeläinen I, Petäistö T, Mirzarazi Dahagi E, et al. Collagens regulating adipose tissue formation and functions. Biomedicines. 2023;11(5):1412. PMID: 37239083. doi: 10.3390/biomedicines11051412