811
Views
0
CrossRef citations to date
0
Altmetric
Original Research

An oncogene regulating chromatin favors response to immunotherapy

Oncogene CHAF1A and immunotherapy outcomes

, , , , , , , , , , , , & ORCID Icon show all
Article: 2303195 | Received 10 Sep 2023, Accepted 02 Jan 2024, Published online: 09 Jan 2024

References

  • Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J. et al. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol. 2022;15(1):111. doi:10.1186/s13045-022-01325-0.
  • Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–14. doi:10.1016/S0140-6736(21)00797-2.
  • Zhao JJ, Yap D, Chan YH, Tan B, Teo CB, Syn NL, Smyth EC, Soon YY, Sundar R. Low programmed death-ligand 1–expressing subgroup outcomes of first-line immune checkpoint inhibitors in gastric or esophageal adenocarcinoma. J Clin Oncol. 2022;40(4):392–402. doi:10.1200/JCO.21.01862.
  • Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J. et al. Efficacy and safety of Pembrolizumab or Pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(10):1571–1580. doi:10.1001/jamaoncol.2020.3370.
  • Hagi T, Kurokawa Y, Kawabata R, Omori T, Matsuyama J, Fujitani K, Hirao M, Akamaru Y, Takahashi T, Yamasaki M. et al. Multicentre biomarker cohort study on the efficacy of nivolumab treatment for gastric cancer. Br J Cancer. 2020;123(6):965–972. doi:10.1038/s41416-020-0975-7.
  • Narita Y, Sasaki E, Masuishi T, Taniguchi H, Kadowaki S, Ito S, Yatabe Y, Muro K. PD-L1 immunohistochemistry comparison of 22C3 and 28-8 assays for gastric cancer. J Gastrointest Oncol. 2021;12(6):2696–2705. doi:10.21037/jgo-21-505.
  • Yamashita K, Iwatsuki M, Harada K, Koga Y, Kiyozumi Y, Eto K, Hiyoshi Y, Ishimoto T, Iwagami S, Baba Y. et al. Can PD-L1 expression evaluated by biopsy sample accurately reflect its expression in the whole tumour in gastric cancer? Br J Cancer. 2019;121(3):278–280. doi:10.1038/s41416-019-0515-5.
  • Dai X, Gao Y, Wei W. Post-translational regulations of PD-L1 and PD-1: mechanisms and opportunities for combined immunotherapy. Semin Cancer Biol. 2022;85:246–252. doi:10.1016/j.semcancer.2021.04.002.
  • Zhao P, Li L, Jiang X, Li Q. Mismatch repair deficiency/microsatellite instability-high as a predictor for anti-PD-1/PD-L1 immunotherapy efficacy. J Hematol Oncol. 2019;12(1):54. doi:10.1186/s13045-019-0738-1.
  • McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, Jonasch E, Khasraw M, Heimberger AB, Lim B. et al. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol. 2021;32(5):661–672. doi:10.1016/j.annonc.2021.02.006.
  • Sehgal P, Chaturvedi P. Chromatin and cancer: implications of disrupted chromatin organization in tumorigenesis and its diversification. Cancers Basel. 2023;15(2):466. doi:10.3390/cancers15020466.
  • Zhang FL, Li DQ. Targeting chromatin-remodeling factors in cancer cells: promising molecules in cancer therapy. Int J Mol Sci. 2022;23(21):12815. doi:10.3390/ijms232112815.
  • Mohammad A, Jha S. Epimutations and their effect on chromatin organization: exciting avenues for cancer treatment. Cancers Basel. 2022;15(1):215. doi:10.3390/cancers15010215.
  • Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE, Luoma AM, Tsoucas D, Qiu X, Lim K, Rao P. et al. A major chromatin regulator determines resistance of tumor cells to T cell–mediated killing. Sci. 2018;359(6377):770–775. doi:10.1126/science.aao1710.
  • Wang D, Wang J, Zhou D, Wu Z, Liu W, Chen Y, Chen G, Zhang J. SWI/SNF complex genomic alterations as a predictive biomarker for response to immune checkpoint inhibitors in multiple cancers. Cancer Immunol Res. 2023;11(5):646–656. doi:10.1158/2326-6066.CIR-22-0813.
  • Zheng L, Liang X, Li S, Li T, Shang W, Ma L, Jia X, Shao W, Sun P, Chen C. et al. CHAF1A interacts with TCF4 to promote gastric carcinogenesis via upregulation of c-MYC and CCND1 expression. EBioMedicine. 2018;38:69–78. doi:10.1016/j.ebiom.2018.11.009.
  • Wang D, Wang N, Li X, Chen X, Shen B, Zhu D, Zhu L, Xu Y, Yu Y, Shu Y. et al. Tumor mutation burden as a biomarker in resected gastric cancer via its association with immune infiltration and hypoxia. Gastric Cancer. 2021;24(4):823–834. doi:10.1007/s10120-021-01175-8.
  • Duan R, Li X, Zeng D, Chen X, Shen B, Zhu D, Zhu L, Yu Y, Wang D. Tumor microenvironment status predicts the efficacy of postoperative chemotherapy or radiochemotherapy in resected gastric cancer. Front Immunol. 2021;11:609337. doi:10.3389/fimmu.2020.609337.
  • Wang D, Chen X, Du Y, Li X, Ying L, Lu Y, Shen B, Gao X, Yi X, Xia X. et al. Associations of HER2 mutation with immune-related features and immunotherapy outcomes in solid tumors. Front Immunol. 2022;13:799988. doi:10.3389/fimmu.2022.799988.
  • Lu Y, Li D, Cao Y, Ying L, Tao Q, Xiong F, Hu Z, Yang Y, Qiao X, Peng C. et al. A genomic signature reflecting fibroblast infiltration into gastric cancer is associated with prognosis and treatment outcomes of immune checkpoint inhibitors. Front Cell Dev Biol. 2022;10:862294. doi:10.3389/fcell.2022.862294.
  • Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, Liu XQ, Sher X, Jung H, Lee M. et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24(9):1449–1458. doi:10.1038/s41591-018-0101-z.
  • Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, Kadel III EE, Koeppen H, Astarita JL, Cubas R. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544–548. doi:10.1038/nature25501.
  • Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA. et al. The immune landscape of cancer. Immunity. 2018;48(4):812–830.e14. doi:10.1016/j.immuni.2018.03.023.
  • Wang D, Li X, Shen B, Chen X, Shu Y. Histone chaperone CHAF1A impacts the outcome of fluoropyrimidines-based adjuvant therapy in gastric cancer by regulating the expression of thymidylate synthetase. Gene. 2019;716:144034. doi:10.1016/j.gene.2019.144034.
  • Li JC, Yang XR, Sun HX, Xu Y, Zhou J, Qiu SJ, Ke A, Cui Y, Wang Z, Wang W. et al. Up-regulation of Krüppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology. 2010;139(6):2146–2157.e12. doi:10.1053/j.gastro.2010.08.004.
  • Wang Y, Huang W, Wang N, Ouyang D, Xiao L, Zhang S, Ou X, He T, Yu R, Song L. et al. Development of arteannuin B sustained-release microspheres for anti-tumor therapy by integrated experimental and molecular modeling approaches. Pharmaceutics. 2021;13(8):1236. doi:10.3390/pharmaceutics13081236.
  • Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220. doi:10.1186/s13059-017-1349-1.
  • Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4(1):2612. doi:10.1038/ncomms3612.
  • Wu Z, Cui F, Yu F, Peng X, Jiang T, Chen D, Lu S, Tang H, Peng Z. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer. Biochem Biophys Res Commun. 2014;449(2):208–215. doi:10.1016/j.bbrc.2014.05.006.
  • Tao L, Moreno-Smith M, Ibarra-García-Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B. et al. CHAF1A blocks neuronal differentiation and promotes neuroblastoma oncogenesis via metabolic reprogramming. Adv Sci (Weinh). 2021;8(19):e2005047. doi:10.1002/advs.202005047.
  • Tauriello D, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, Sevillano M, Ibiza S, Cañellas A, Hernando-Momblona X. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554(7693):538–543. doi:10.1038/nature25492.
  • Lin Y, Jing X, Chen Z, Pan X, Xu D, Yu X, Zhong F, Zhao L, Yang C, Wang B. et al. Histone deacetylase-mediated tumor microenvironment characteristics and synergistic immunotherapy in gastric cancer. Theranostics. 2023;13(13):4574–4600. doi:10.7150/thno.86928.
  • Shen C, Li M, Duan Y, Jiang X, Hou X, Xue F, Zhang Y, Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front Immunol. 2023;14:1170207. doi:10.3389/fimmu.2023.1170207.
  • Hoek M, Stillman B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A. 2003;100(21):12183–12188. doi:10.1073/pnas.1635158100.
  • Sauer PV, Gu Y, Liu WH, Mattiroli F, Panne D, Luger K, Churchill ME. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 2018;46(19):9907–9917. doi:10.1093/nar/gky823.
  • Sykaras AG, Pergaris A, Theocharis S. Challenging, accurate and feasible: CAF-1 as a tumour proliferation marker of diagnostic and prognostic value. Cancers Basel. 2021;13(11):2575. doi:10.3390/cancers13112575.
  • Ayoub J, Buonanno M, Di Fiore A, De Simone G, Monti SM. Biochemical and structural insights into the Winged Helix Domain of P150, the largest subunit of the Chromatin Assembly Factor 1. Int J Mol Sci. 2022;23(4):2160. doi:10.3390/ijms23042160.
  • Sun X, Ma Q, Cheng Y, Huang H, Qin J, Zhang M, Qu S. Overexpression of CHAF1A is associated with poor prognosis, tumor immunosuppressive microenvironment and treatment resistance. Front Genet. 2023;14:1108004. doi:10.3389/fgene.2023.1108004.
  • Sun R, Xie HY, Qian JX, Huang YN, Yang F, Zhang FL, Shao Z-M, Li D-Q. FBXO22 possesses both protumorigenic and antimetastatic roles in breast cancer progression. Cancer Res. 2018;78(18):5274–5286. doi:10.1158/0008-5472.CAN-17-3647.
  • Paltoglou S, Das R, Townley SL, Hickey TE, Tarulli GA, Coutinho I, Fernandes R, Hanson AR, Denis I, Carroll JS. et al. Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer. Cancer Res. 2017;77(13):3417–3430. doi:10.1158/0008-5472.CAN-16-1616.
  • Yuan F, Sun Q, Zhang S, Ye L, Xu Y, Deng G, Xu Z, Zhang S, Liu B, Chen Q. et al. The dual role of p62 in ferroptosis of glioblastoma according to p53 status. Cell & Bioscience. 2022;12(1):20. doi:10.1186/s13578-022-00764-z.
  • Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V. et al. Dual role of p73 in cancer microenvironment and DNA damage response. Cells. 2021;10(12):3516. doi:10.3390/cells10123516.
  • Jiang M, Jia K, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, He Y, Zhou C. et al. Alterations of DNA damage response pathway: biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B. 2021;11(10):2983–2994. doi:10.1016/j.apsb.2021.01.003.
  • Saxena S, Zou L. Hallmarks of DNA replication stress. Mol Cell. 2022;82(12):2298–2314. doi:10.1016/j.molcel.2022.05.004.
  • Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, Li Z, Traugh N, Bu X, Li B. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med. 2018;24(10):1550–1558. doi:10.1038/s41591-018-0136-1.
  • Zeng X, Zhou J, Xiong Z, Sun H, Yang W, Mok MTS, Wang J, Li J, Liu M, Tang W. et al. Cell cycle-related kinase reprograms the liver immune microenvironment to promote cancer metastasis. Cell Mol Immunol. 2021;18(4):1005–1015. doi:10.1038/s41423-020-00534-2.