1,346
Views
0
CrossRef citations to date
0
Altmetric
News

Trial watch: dexmedetomidine in cancer therapy

, , & ORCID Icon
Article: 2327143 | Received 30 Jan 2024, Accepted 01 Mar 2024, Published online: 11 Mar 2024

References

  • DrugBank. Dexmedetomidine. 2024: https://go.drugbank.com/drugs/DB00633.
  • Virtanen R, Savola JM, Saano V, Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur J Pharmacol. 1988;150(1–2):9–17. doi: 10.1016/0014-2999(88)90744-3.
  • Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology. 1992;76(6):948–952. doi: 10.1097/00000542-199206000-00013.
  • Nelson LE, Lu J, Guo T, Saper CB, Franks NP, Maze M. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003;98(2):428–436. doi: 10.1097/00000542-200302000-00024.
  • Panzer O, Moitra V, Sladen RN. Pharmacology of sedative-analgesic agents: dexmedetomidine, remifentanil, ketamine, volatile anesthetics, and the role of peripheral mu antagonists. Crit Care Clin. 2009;25(3):451–69. doi:10.1016/j.ccc.2009.04.004. vii.
  • Lee HG, Choi JI, Kim YO, Yoon MH. The role of alpha-2 adrenoceptor subtype in the antiallodynic effect of intraplantar dexmedetomidine in a rat spinal nerve ligation model. Neurosci Lett. 2013;557 (Pt B):118–122. doi:10.1016/j.neulet.2013.10.002.
  • Li R, Qi F, Zhang J, Ji Y, Zhang D, Shen Z, Lei W. Antinociceptive effects of dexmedetomidine via spinal substance P and CGRP. Transl Neurosci. 2015;6(1):259–64. doi:10.1515/tnsci-2015-0028.
  • Kimura M, Saito S, Obata H. Dexmedetomidine decreases hyperalgesia in neuropathic pain by increasing acetylcholine in the spinal cord. Neurosci Lett. 2012;529(1):70–4. doi:10.1016/j.neulet.2012.08.008.
  • Zhu YJ, Peng K, Meng XW, Ji FH. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Res. 2016;1644:1–8. doi:10.1016/j.brainres.2016.04.074.
  • Xiang H, Hu B, Li Z, Li J. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation. 2014;37(5):1763–70. doi:10.1007/s10753-014-9906-1.
  • Huang DY, Li Q, Shi CY, Hou CQ, Miao Y, Shen HB. Dexmedetomidine attenuates inflammation and pancreatic injury in a rat model of experimental severe acute pancreatitis via cholinergic anti-inflammatory pathway. Chin Med J. 2020;133(9):1073–9. doi:10.1097/CM9.0000000000000766.
  • Zhao Y, He J, Yu N, Jia C, Wang S. Mechanisms of dexmedetomidine in neuropathic pain. Front Neurosci. 2020;14:330. doi:10.3389/fnins.2020.00330.
  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science. 1996;273(5276):801–803. doi: 10.1126/science.273.5276.801.
  • Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93(2):382–94. doi:10.1097/00000542-200008000-00016.
  • Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913. doi:10.1007/s40262-017-0507-7.
  • Tang C, Xia Z. Dexmedetomidine in perioperative acute pain management: a non-opioid adjuvant analgesic. J Pain Res. 2017;10:1899–904. doi:10.2147/JPR.S139387.
  • Abd-Elshafy SK, Abdallal F, Kamel EZ, Edwar H, Allah EA, Maghraby HHM, Sayed JA, Ali MS, Elkhayat H, Mahran GSK. Paravertebral dexmedetomidine in video-assisted thoracic surgeries for acute and chronic pain prevention. Pain Physician. 2019;22(3):271–280. doi: 10.36076/ppj/2019.22.271.
  • Xia M, Ji NN, Duan ML, Tong JH, Xu JG, Zhang YM, Wang SH. Dexmedetomidine regulate the malignancy of breast cancer cells by activating α2-adrenoceptor/ERK signaling pathway. Eur Rev Med Pharmacol Sci. 2016;20:3500–3506.
  • Wang C, Datoo T, Zhao H, Wu L, Date A, Jiang C, Sanders RD, Wang G, Bevan C, Ma D. Midazolam and dexmedetomidine affect neuroglioma and lung carcinoma cell biology in vitro and in vivo. Anesthesiology. 2018;129(5):1000–14. doi:10.1097/ALN.0000000000002401.
  • Zhang F, Ding T, Yu L, Zhong Y, Dai H, Yan M. Dexmedetomidine protects against oxygen-glucose deprivation-induced injury through the I2 imidazoline receptor-PI3K/AKT pathway in rat C6 glioma cells. J Pharm Pharmacol. 2012;64(1):120–127. doi: 10.1111/j.2042-7158.2011.01382.x.
  • Chen HY, Li GH, Tan GC, Liang H, Lai XH, Huang Q, Zhong JY. Dexmedetomidine enhances hypoxia-induced cancer cell progression. Exp Ther Med. 2019;18(6):4820–4828. doi: 10.3892/etm.2019.8136.
  • Fang T, Lin L, Ye ZJ, Fang L, Shi S, Yu KD, Miao HH, Li TZ. Dexmedetomidine promotes angiogenesis and vasculogenic mimicry in human hepatocellular carcinoma through alpha (2)-AR/HIF-1alpha/VEGFA pathway. Biomed Environ Sci. 2022;35(10):931–942. doi: 10.3967/bes2022.120.
  • Chi M, Shi X, Huo X, Wu X, Zhang P, Wang G. Dexmedetomidine promotes breast cancer cell migration through Rab11-mediated secretion of exosomal TMPRSS2. Ann Transl Med. 2020;8(8):531. doi: 10.21037/atm.2020.04.28.
  • Chen P, Luo X, Dai G, Jiang Y, Luo Y, Peng S, Wang H, Xie P, Qu C, Lin W. et al. Dexmedetomidine promotes the progression of hepatocellular carcinoma through hepatic stellate cell activation. Exp Mol Med. 2020;52(7):1062–74. doi:10.1038/s12276-020-0461-6.
  • Lavon H, Matzner P, Benbenishty A, Sorski L, Rossene E, Haldar R, Elbaz E, Cata JP, Gottumukkala V, Ben-Eliyahu S. Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers. Br J Anaesth. 2018;120(1):188–96. doi:10.1016/j.bja.2017.11.004.
  • Su X, Fan Y, Yang L, Huang J, Qiao F, Fang Y, Wang J. Dexmedetomidine expands monocytic myeloid-derived suppressor cells and promotes tumour metastasis after lung cancer surgery. J Transl Med. 2018;16(1):347. doi: 10.1186/s12967-018-1727-9.
  • Tian H, Hou L, Xiong Y, Cheng Q, Huang J. Effect of dexmedetomidine-mediated insulin-like growth factor 2 (IGF2) signal pathway on immune function and invasion and migration of cancer cells in rats with ovarian cancer. Med Sci Monit. 2019;25:4655–64. doi:10.12659/MSM.915503.
  • Zhang P, He H, Bai Y, Liu W, Huang L. Dexmedetomidine suppresses the progression of esophageal cancer via miR-143-3p/epidermal growth factor receptor pathway substrate 8 axis. Anticancer Drugs. 2020;31(7):693–701. doi:10.1097/CAD.0000000000000934.
  • Yang H, Chen Y, Yan H, Wu H. Effects of dexmedetomidine on glioma cells in the presence or absence of cisplatin. J Cell Biochem. 2020;121(1):723–34. doi:10.1002/jcb.29318.
  • Xu B, Qian Y, Hu C, Wang Y, Gao H, Yang J. Dexmedetomidine upregulates the expression of miR-493-5p, inhibiting growth and inducing the apoptosis of lung adenocarcinoma cells by targeting RASL11B. Biochem Cell Biol. 2021;99(4):457–464. doi: 10.1139/bcb-2020-0267.
  • Liu Y, Gu X, Liu Y. The effect of dexmedetomidine on biological behavior of osteosarcoma cells through miR-1307 expression. Am J Transl Res. 2021;13:4876–83.
  • Tian H, Hou L, Xiong Y, Cheng Q. Dexmedetomidine upregulates microRNA-185 to suppress ovarian cancer growth via inhibiting the SOX9/Wnt/beta-catenin signaling pathway. Cell Cycle. 2021;20(8):765–780. doi: 10.1080/15384101.2021.1897270.
  • Yan R, Jin S, Liu H, Le C, Gao J, Cheng J, Chen L, Li N. Dexmedetomidine inhibits cell malignancy in osteosarcoma cells via miR-520a-3p-YOD1 interactome. Biochem Bioph Res Co. 2021;543:56–64. doi:10.1016/j.bbrc.2021.01.045.
  • Hu Y, Qiu LL, Zhao ZF, Long YX, Yang T. Dexmedetomidine represses proliferation and promotes apoptosis of esophageal cancer cells by regulating C-Myc gene expression via the ERK signaling pathway. Eur Rev Med Pharmacol Sci. 2021;25(2):950–6. doi: 10.26355/eurrev_202101_24664.
  • Che J, Liu M, Lv H. Dexmedetomidine disrupts esophagus cancer tumorigenesis by modulating circ_0003340/miR-198/HMGA2 axis. Anticancer Drugs. 2022;33(5):448–58. doi:10.1097/CAD.0000000000001284.
  • Zhang W, Zhang L, Cai XJ, Li D, Cao FJ, Zuo ZG, Song Y, Yu XJ, Liu S. Dexmedetomidine inhibits the growth and metastasis of esophageal cancer cells by down-regulation of lncRNA MALAT1. Kaohsiung J Med Sci. 2022;38(6):585–93. doi: 10.1002/kjm2.12506.
  • Jun JH, Shim JK, Oh JE, Kim KS, Kwak YL, Soh S. Effects of dexmedetomidine on A549 non-small cell lung cancer growth in a clinically relevant surgical xenograft model. Sci Rep. 2023;13(1):12471. doi: 10.1038/s41598-023-39704-3.
  • Gao X, Wang XL. Dexmedetomidine promotes ferroptotic cell death in gastric cancer via hsa_circ_0008035/miR-302a/E2F7 axis. Kaohsiung J Med Sci. 2023;39(4):390–403. doi: 10.1002/kjm2.12650.
  • Chen W, Qi Z, Fan P, Zhang N, Qian L, Chen C, Huang Y, Jin S. Dexmedetomidine provides type-specific tumour suppression without tumour-enhancing effects in syngeneic murine models. Br J Anaesth. 2023;130(2):142–53. doi:10.1016/j.bja.2022.10.036.
  • Liu J, Li J, Kang R, Tang D. Cell type-specific induction of ferroptosis to boost antitumor immunity. Oncoimmunology. 2023;12(1):2282252. doi:10.1080/2162402X.2023.2282252.
  • Demuynck R, Efimova I, Catanzaro E, Krysko DV. Ferroptosis: friend or foe in cancer immunotherapy? Oncoimmunology. 2023;12(1):2182992. doi:10.1080/2162402X.2023.2182992.
  • Kepp O, Kroemer G. Is ferroptosis immunogenic? The devil is in the details! Oncoimmunology. 2022;11(1):2127273. doi:10.1080/2162402X.2022.2127273.
  • Suo L, Wang M. Dexmedetomidine attenuates oxygen-glucose deprivation/reperfusion-induced inflammation through the miR-17-5p/TLR4/NF-kappaB axis. BMC Anesthesiol. 2022;22(1):126. doi: 10.1186/s12871-022-01661-1.
  • Shin S, Kim KJ, Hwang HJ, Noh S, Oh JE, Yoo YC. Immunomodulatory effects of perioperative dexmedetomidine in ovarian cancer: an in vitro and xenograft mouse model study. Front Oncol. 2021;11:722743. doi:10.3389/fonc.2021.722743.
  • Kepp O, Liu P, Zitvogel L, Kroemer G. Tumor-infiltrating lymphocytes for melanoma immunotherapy. Oncoimmunology. 2023;12(1):2175506. doi:10.1080/2162402X.2023.2175506.
  • Barnestein R, Galland L, Kalfeist L, Ghiringhelli F, Ladoire S, Limagne E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology. 2022;11(1):2120676. doi:10.1080/2162402X.2022.2120676.
  • Liu Y, Sun J, Wu T, Lu X, Du Y, Duan H, Yu W, Su D, Lu J, Tian J. Effects of serum from breast cancer surgery patients receiving perioperative dexmedetomidine on breast cancer cell malignancy: a prospective randomized controlled trial. Cancer Med. 2019;8(18):7603–12. doi:10.1002/cam4.2654.
  • Yang XH, Bai Q, Lv MM, Fu HG, Dong TL, Zhou Z. Effect of dexmedetomidine on immune function of patients undergoing radical mastectomy: a double blind and placebo control study. Eur Rev Med Pharmacol Sci. 2017;21:1112–6.
  • Cata JP, Singh V, Lee BM, Villarreal J, Mehran JR, Yu J, Gottumukkala V, Lavon H, Ben-Eliyahu S. Intraoperative use of dexmedetomidine is associated with decreased overall survival after lung cancer surgery. J Anaesthesiol Clin Pharmacol. 2017;33(3):317–23. doi: 10.4103/joacp.JOACP_299_16.
  • Cata JP, Nguyen LT, Ifeanyi-Pillette IC, Van Meter A, Dangler LA, Feng L, Owusu-Agyemang P. An assessment of the survival impact of multimodal anesthesia/analgesia technique in adults undergoing cytoreductive surgery with hyperthermic intraperitoneal chemotherapy: a propensity score matched analysis. Int J Hyperthermia. 2019;36(1):368–374. doi: 10.1080/02656736.2019.1574985.
  • Rangel FP, Auler JOC Jr., Carmona MJC, Cordeiro MD, Nahas WC, Coelho RF, Simoes CM. Opioids and premature biochemical recurrence of prostate cancer: a randomised prospective clinical trial. Br J Anaesth. 2021;126(5):931–9. doi:10.1016/j.bja.2021.01.031.
  • Cho JS, Seon K, Kim MY, Kim SW, Yoo YC. Effects of perioperative dexmedetomidine on immunomodulation in uterine cancer surgery: a randomized, controlled trial. Front Oncol. 2021;11:749003. doi:10.3389/fonc.2021.749003.
  • Kim JA, Ahn HJ, Yang M, Lee SH, Jeong H, Seong BG. Utilisation peropératoire de la dexmédétomidine pour la prévention de l’agitation au réveil et du delirium postopératoire en chirurgie thoracique: essai randomisé contrôlé. Can J Anesth/J Can Anesth. 2019;66(4):371–379. doi: 10.1007/s12630-019-01299-7.
  • Zhou Y, Dong X, Zhang L. Dexmedetomidine can reduce the level of oxidative stress and serum miR-10a in patients with lung cancer after surgery. Thorac Cardiovasc Surg. 2023;71(3):197–205. doi: 10.1055/s-0041-1740558.
  • Mao Y, Sun X, Si L, Chen L, Liu X, Zhang Z, Gu E. Perioperative dexmedetomidine fails to improve postoperative analgesic consumption and postoperative recovery in patients undergoing lateral thoracotomy for thoracic esophageal cancer: a randomized, double-blind, placebo-controlled trial. Pain Res Manag. 2020;2020:1–12. doi:10.1155/2020/4145893.
  • Wang Y, Xu X, Liu H, Ji F. Effects of dexmedetomidine on patients undergoing radical gastrectomy. J Surg Res. 2015;194(1):147–53. doi: 10.1016/j.jss.2014.10.008.
  • Zheng W, Tian X, Fan J, Jiang X, He W. Application of dexmedetomidine in surgical anesthesia for Gastric cancer and its effects on IL-1beta, IL-6, TNF-alpha and CRP. Cell Mol Biol. 2023;69(3):177–181. doi: 10.14715/cmb/2023.69.3.26.
  • Liu M, Yi Y, Zhao M. Effect of dexmedetomidine anesthesia on perioperative levels of TNF-alpha and IL-6 in patients with ovarian cancer. Oncol Lett. 2019;17(6):5517–5522. doi: 10.3892/ol.2019.10247.
  • Xu W, Zheng Y, Suo Z, Fei K, Wang Y, Liu C, Li S, Zhang M, Zhang Y, Zheng Z. et al. Effect of dexmedetomidine on postoperative systemic inflammation and recovery in patients undergoing digest tract cancer surgery: a meta-analysis of randomized controlled trials. Front Oncol. 2022;12:970557. doi:10.3389/fonc.2022.970557.
  • Xu Y, Zhou Y, Maloney JD, Shan G. Effects of dexmedetomidine on inflammation and pulmonary function after thoracoscopic surgery for lung cancer: a systematic review and meta-analysis. J Thorac Dis. 2023;15(6):3397–408. doi: 10.21037/jtd-23-651.
  • Wang K, Li C. Effects of dexmedetomidine on inflammatory factors, T lymphocyte subsets and expression of NF-kappaB in peripheral blood mononuclear cells in patients receiving radical surgery of colon carcinoma. Oncol Lett. 2018;15(5):7153–7157. doi: 10.3892/ol.2018.8205.
  • Zhang J, Liu G, Zhang F, Fang H, Zhang D, Liu S, Chen B, Xiao H. Analysis of postoperative cognitive dysfunction and influencing factors of dexmedetomidine anesthesia in elderly patients with colorectal cancer. Oncol Lett. 2019;18(3):3058–64. doi: 10.3892/ol.2019.10611.
  • Dong W, Chen MH, Yang YH, Zhang X, Huang MJ, Yang XJ, Wang HZ. The effect of dexmedetomidine on expressions of inflammatory factors in patients with radical resection of gastric cancer. Eur Rev Med Pharmacol Sci. 2017;21:3510–5.
  • Ma XF, Lv SJ, Wei SQ, Mao BR, Zhao XX, Jiang XQ, Zeng F, Du XK. Influences of dexmedetomidine on stress responses and postoperative cognitive and coagulation functions in patients undergoing radical gastrectomy under general anesthesia. World J Gastrointest Surg. 2023;15(6):1169–77. doi: 10.4240/wjgs.v15.i6.1169.
  • Xie Y, Jiang W, Zhao L, Wu Y, Xie H. Effect of dexmedetomidine on perioperative inflammation and lung protection in elderly patients undergoing radical resection of lung cancer. Int J Clin Exp Pathol. 2020;13:2544–53.
  • Lai Y, Chen Q, Xiang C, Li G, Wei K. Comparison of the effects of dexmedetomidine and lidocaine on stress response and postoperative delirium of older patients undergoing thoracoscopic surgery: a randomized controlled trial. Clin Interv Aging. 2023;18:1275–83. doi:10.2147/CIA.S419835.
  • Yin H, Cao L, Zhao H, Yang Y. Effects of dexmedetomide, propofol and remifentanil on perioperative inflammatory response and lung function during lung cancer surgery. Am J Transl Res. 2021;13:2537–45.
  • Ding J, Zhu M, Lv H, Zhang J, Chen W, Jan N. Application effect of dexmedetomidine and dezocine in patients undergoing lung cancer surgery under General Anesthesia and analysis of their roles in recovery time and cognitive function. Comput Math Method M. 2022;2022:1–8. doi:10.1155/2022/9889534.
  • Meng J, Lv Q, Yao J, Wang S, Yang K, Chen L. Effect of dexmedetomidine on postoperative lung injury during One-lung Ventilation in thoracoscopic surgery. Biomed Res Int. 2020;2020:1–8. doi:10.1155/2020/4976205.
  • Zheng L, Zhao J, Zheng L, Jing S, Wang X. Effect of dexmedetomidine on perioperative stress response and immune function in patients with tumors. Technol Cancer Res Treat. 2020;19:1533033820977542. doi:10.1177/1533033820977542.
  • Du D, Qiao Q, Guan Z, Gao YF, Wang Q. Combined sevoflurane-dexmedetomidine and nerve blockade on post-surgical serum oxidative stress biomarker levels in thyroid cancer patients. World J Clin Cases. 2022;10(10):3027–34. doi: 10.12998/wjcc.v10.i10.3027.
  • Ren B, Cheng M, Liu C, Zheng H, Zhang J, Chen W, Song J, Zhuang J, Liu T, Wang R. et al. Perioperative lidocaine and dexmedetomidine intravenous infusion reduce the serum levels of NETs and biomarkers of tumor metastasis in lung cancer patients: a prospective, single-center, double-blinded, randomized clinical trial. Front Oncol. 2023;13:1101449. doi:10.3389/fonc.2023.1101449.
  • Cedervall J, Herre M, Dragomir A, Rabelo-Melo F, Svensson A, Thalin C, Rosell A, Hjalmar V, Wallen H, Lindman H. et al. Neutrophil extracellular traps promote cancer-associated inflammation and myocardial stress. Oncoimmunology. 2022;11(1):2049487. doi:10.1080/2162402X.2022.2049487.
  • Jiang ZZ, Peng ZP, Liu XC, Guo HF, Zhou MM, Jiang D, Ning WR, Huang YF, Zheng L, Wu Y. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells. Oncoimmunology. 2022;11(1):2052418. doi:10.1080/2162402X.2022.2052418.
  • Huang L, Qin C, Wang L, Zhang T, Li J. Effects of dexmedetomidine on immune response in patients undergoing radical and reconstructive surgery for oral cancer. Oncol Lett. 2021;21(2):106. doi: 10.3892/ol.2020.12367.
  • Tang Y, Zhou C, Li Q, Cheng X, Huang T, Li F, He L, Zhang B, Tu S. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers. Oncoimmunology. 2022;11(1):2131084. doi:10.1080/2162402X.2022.2131084.
  • Kato T, Fukushima H, Furusawa A, Okada R, Wakiyama H, Furumoto H, Okuyama S, Takao S, Choyke PL, Kobayashi H. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. Oncoimmunology. 2022;11(1):2152248. doi:10.1080/2162402X.2022.2152248.
  • Wu L, Lv H, Luo W, Jin S, Hang Y. Effects of dexmedetomidine on cellular immunity of perioperative period in children with brain neoplasms. Int J Clin Exp Med. 2015;8:2748–53.
  • Zhao L, Li Y. Application of dexmedetomidine combined with sufentanil in colon cancer resection and its effect on immune and coagulation function of patients. Oncol Lett. 2020;20(2):1288–94. doi: 10.3892/ol.2020.11643.
  • Mohamed SA, Sayed DM, El Sherif FA, Abd El-Rahman AM. Effect of local wound infiltration with ketamine versus dexmedetomidine on postoperative pain and stress after abdominal hysterectomy, a randomized trial. Eur J Pain. 2018;22(5):951–60. doi:10.1002/ejp.1181.
  • Russo M, Panini N, Fabbrizio P, Formenti L, Becchetti R, Matteo C, Meroni M, Nastasi C, Cappelleri A, Frapolli R. et al. Chemotherapy-induced neutropenia elicits metastasis formation in mice by promoting proliferation of disseminated tumor cells. Oncoimmunology. 2023;12(1):2239035. doi:10.1080/2162402X.2023.2239035.
  • Bezu L, Wu Chuang A, Sauvat A, Humeau J, Xie W, Cerrato G, Liu P, Zhao L, Zhang S, Le Naour J. et al. Local anesthetics elicit immune-dependent anticancer effects. J Immunother Cancer. 2022;10(4):e004151. doi:10.1136/jitc-2021-004151.
  • Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: beta-blockers in cancer therapy. Oncoimmunology. 2023;12(1):2284486. doi:10.1080/2162402X.2023.2284486.
  • Bezu L, Kepp O, Kroemer G. Immunogenic stress induced by local anesthetics injected into neoplastic lesions. Oncoimmunology. 2022;11(1):2077897. doi:10.1080/2162402X.2022.2077897.
  • Wick G, Hu Y, Schwarz S, Kroemer G. Immunoendocrine communication via the hypothalamo-pituitary-adrenal axis in autoimmune diseases. Endocr Rev. 1993;14(5):539–63. doi: 10.1210/edrv-14-5-539.
  • Ma Y, Kroemer G. The cancer-immune dialogue in the context of stress. Nat Rev Immunol. 2023. doi:10.1038/s41577-023-00949-8.
  • Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M. et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44. doi:10.1038/nm1447.
  • Sacerdote P, Manfredi B, Bianchi M, Panerai AE. Intermittent but not continuous inescapable footshock stress affects immune responses and immunocyte beta-endorphin concentrations in the rat. Brain Behav Immun. 1994;8(3):251–60. doi:10.1006/brbi.1994.1023.
  • Page GG, Ben-Eliyahu S, Yirmiya R, Liebeskind JC. Morphine attenuates surgery-induced enhancement of metastatic colonization in rats. Pain. 1993;54(1):21–8. doi:10.1016/0304-3959(93)90095-7.
  • Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F. Beta-endorphin and adrenocorticotropin are selected concomitantly by the pituitary gland. Science. 1977;197(4311):1367–1369. doi: 10.1126/science.197601.
  • Baker GH, Irani MS, Byrom NA, Nagvekar NM, Wood RJ, Hobbs JR, Brewerton DA. Stress, cortisol concentrations, and lymphocyte subpopulations. BMJ. 1985;290(6479):1393. doi: 10.1136/bmj.290.6479.1393.
  • Yang H, Xia L, Chen J, Zhang S, Martin V, Li Q, Lin S, Chen J, Calmette J, Lu M. et al. Stress-glucocorticoid-TSC22D3 axis compromises therapy-induced antitumor immunity. Nat Med. 2019;25(9):1428–1441. doi:10.1038/s41591-019-0566-4.
  • Brownlie D, von Kries A, Valenzano G, Wild N, Yilmaz E, Safholm J, Al-Ameri M, Alici E, Ljunggren HG, Schliemann I. et al. Accumulation of tissue-resident natural killer cells, innate lymphoid cells, and CD8(+) T cells towards the center of human lung tumors. Oncoimmunology. 2023;12(1):2233402. doi:10.1080/2162402X.2023.2233402.
  • Poinot H, Dupuychaffray E, Arnoux G, Alvarez M, Tachet J, Ezzar O, Moore J, Bejuy O, Olesti E, Visconti G. et al. Activation of endogenous glucocorticoids by HSD11B1 inhibits the antitumor immune response in renal cancer. Oncoimmunology. 2024;13(1):2286820. doi:10.1080/2162402X.2023.2286820.
  • Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet AG, Fahrner JE, Lahmar I, Ueda K. et al. Cancer induces a stress ileopathy depending on beta-adrenergic receptors and promoting dysbiosis that contributes to carcinogenesis. Cancer Discov. 2022;12(4):1128–1151. doi:10.1158/2159-8290.CD-21-0999.
  • Yuki K. The immunomodulatory mechanism of dexmedetomidine. Int Immunopharmacol. 2021;97:107709. doi:10.1016/j.intimp.2021.107709.
  • Chen R, Sun Y, Lv J, Dou X, Dai M, Sun S, Lin Y. Effects of dexmedetomidine on immune cells: a narrative review. Front Pharmacol. 2022;13:829951. doi:10.3389/fphar.2022.829951.
  • Wang K, Wu M, Xu J, Wu C, Zhang B, Wang G, Ma D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: systematic review and meta-analysis. Br J Anaesth. 2019;123(6):777–94. doi:10.1016/j.bja.2019.07.027.
  • Kim MH, Lee KY, Bae SJ, Jo M, Cho JS. Intraoperative dexmedetomidine attenuates stress responses in patients undergoing major spine surgery. Minerva Anestesiol. 2019;85(5):468–77. doi:10.23736/S0375-9393.18.12992-0.
  • Kang R, Jeong JS, Ko JS, Lee SY, Lee JH, Choi SJ, Cha S, Lee JJ. Intraoperative dexmedetomidine attenuates norepinephrine levels in patients undergoing transsphenoidal surgery: a randomized, placebo-controlled trial. BMC Anesthesiol. 2020;20(1):100. doi:10.1186/s12871-020-01025-7.
  • Perez Pinero C, Bruzzone A, Sarappa MG, Castillo LF, Luthy IA. Involvement of alpha2- and beta2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol. 2012;166(2):721–736. doi: 10.1111/j.1476-5381.2011.01791.x.
  • Castillo LF, Rivero EM, Goffin V, Luthy IA. Alpha(2)-adrenoceptor agonists trigger prolactin signaling in breast cancer cells. Cell Signal. 2017;34:76–85. doi:10.1016/j.cellsig.2017.03.003.
  • Moretti S, Massi D, Farini V, Baroni G, Parri M, Innocenti S, Cecchi R, Chiarugi P. Beta-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest. 2013;93(3):279–290. doi: 10.1038/labinvest.2012.175.
  • Huang XY, Wang HC, Yuan Z, Huang J, Zheng Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via beta-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepato-Gastroenterology. 2012;59(115):889–893. doi: 10.5754/hge11476.
  • Liang M, Chen X, Wang L, Qin L, Wang H, Sun Z, Zhao W, Geng B. Cancer-derived exosomal TRIM59 regulates macrophage NLRP3 inflammasome activation to promote lung cancer progression. J Exp Clin Cancer Res. 2020;39(1):176. doi: 10.1186/s13046-020-01688-7.
  • Lasithiotaki I, Tsitoura E, Samara KD, Trachalaki A, Charalambous I, Tzanakis N, Antoniou KM, Ahmad A. NLRP3/Caspase-1 inflammasome activation is decreased in alveolar macrophages in patients with lung cancer. PloS One. 2018;13(10):e0205242. doi: 10.1371/journal.pone.0205242.
  • Chow MT, Sceneay J, Paget C, Wong CS, Duret H, Tschopp J, Moller A, Smyth MJ. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72(22):5721–5732. doi: 10.1158/0008-5472.CAN-12-0509.
  • Huang CQ, Min Y, Wang SY, Yang XJ, Liu Y, Xiong B, Yonemura Y, Li Y. Cytoreductive surgery plus hyperthermic intraperitoneal chemotherapy improves survival for peritoneal carcinomatosis from colorectal cancer: a systematic review and meta-analysis of current evidence. Oncotarget. 2017;8(33):55657–83. doi:10.18632/oncotarget.17497.
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology. 2013;2(12):e26621. doi:10.4161/onci.26621.
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: cardiac glycosides and cancer therapy. Oncoimmunology. 2013;2(2):e23082. doi:10.4161/onci.23082.
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G. et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2(10):e25771. doi:10.4161/onci.25771.
  • Penetra M, Arnaut LG, Gomes-da-Silva LC. Trial watch: an update of clinical advances in photodynamic therapy and its immunoadjuvant properties for cancer treatment. Oncoimmunology. 2023;12(1):2226535. doi:10.1080/2162402X.2023.2226535.
  • Laureano RS, Sprooten J, Vanmeerbeerk I, Borras DM, Govaerts J, Naulaerts S, Berneman ZN, Beuselinck B, Bol KF, Borst J. et al. Trial watch: dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology. 2022;11(1):2096363. doi:10.1080/2162402X.2022.2096363.