3,338
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Cancer

Toll-like receptor agonists as cancer vaccine adjuvants

, & ORCID Icon
Article: 2297453 | Received 04 Oct 2023, Accepted 16 Dec 2023, Published online: 28 Dec 2023

References

  • Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(12):87–18. doi:10.3747/co.27.5223.
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22. doi:10.1056/NEJMoa1001294.
  • Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol. 2020;17(1):1–12. doi:10.1038/s41423-019-0306-1.
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25(1):267–96. doi:10.1146/annurev.immunol.25.022106.141609.
  • Gajewski TF, Meng Y, Blank C, Brown I, Kacha A, Kline J, Harlin H. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45. doi:10.1111/j.1600-065X.2006.00442.x.
  • Puig-Saus C, Sennino B, Peng S, Wang CL, Pan Z, Yuen B, Purandare B, An D, Quach BB, Nguyen D, et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature. 2023;615(7953):697–704. doi:10.1038/s41586-023-05787-1.
  • Bobisse S, Foukas PG, Coukos G, Harari A. Neoantigen-based cancer immunotherapy. Ann Transl Med. 2016;4(14):262. doi:10.21037/atm.2016.06.17.
  • Zahm CD, Colluru VT, McNeel DG. Vaccination with high-affinity epitopes impairs antitumor efficacy by increasing PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2017;5(8):630–41. doi:10.1158/2326-6066.CIR-16-0374.
  • Rekoske BT, Olson BM, McNeel DG. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. Oncoimmunology. 2016;5(6):e1165377. doi:10.1080/2162402X.2016.1165377.
  • McNeel DG, Eickhoff JC, Wargowski E, Zahm C, Staab MJ, Straus J, Liu G. Concurrent, but not sequential, PD-1 blockade with a DNA vaccine elicits anti-tumor responses in patients with metastatic, castration-resistant prostate cancer. Oncotarget. 2018;9(39):25586–96. doi:10.18632/oncotarget.25387.
  • McNeel DG, Eickhoff JC, Wargowski E, Johnson LE, Kyriakopoulos CE, Emamekhoo H, Lang JM, Brennan MJ, Liu G. Phase 2 trial of T-cell activation using MVI-816 and pembrolizumab in patients with metastatic, castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 2022;10(3):10. doi:10.1136/jitc-2021-004198.
  • Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat Med. 2023;29:2379–80.
  • Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D. Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother. 2013;62(5):909–18. doi:10.1007/s00262-013-1396-8.
  • Brezar V, Godot V, Cheng L, Su L, Lévy Y, Seddiki N. T-Regulatory cells and vaccination “pay attention and do not neglect them”: lessons from HIV and cancer vaccine trials. Vaccines (Basel). 2016;4(3):30. doi:10.3390/vaccines4030030.
  • Llopiz D, Ruiz M, Silva L, Sarobe P. Enhancement of antitumor vaccination by targeting dendritic cell-related IL-10. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.01923.
  • Marciani DJ. Vaccine adjuvants: role and mechanisms of action in vaccine immunogenicity. Drug Discov Today. 2003;8(20):934–43. doi:10.1016/S1359-6446(03)02864-2.
  • Dubensky TW, Reed SG. Adjuvants for cancer vaccines. Semin Immunol. 2010;22(3):155–61. doi:10.1016/j.smim.2010.04.007.
  • Zindel J, Kubes P. DAMPs, PAMPs , and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020;15(1):493–518. doi:10.1146/annurev-pathmechdis-012419-032847.
  • Srikrishna G, Freeze HH. Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer. Neoplasia. 2009;11(7):615–28. doi:10.1593/neo.09284.
  • Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–6. doi:10.1016/0167-5699(92)90198-G.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–50. doi:10.1016/j.immuni.2011.05.006.
  • O’Neill LAJ, Golenbock D, Bowie AG. The history of toll-like receptors — redefining innate immunity. Nat Rev Immunol. 2013;13(6):453–60. doi:10.1038/nri3446.
  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to drosophila Toll. Proc Natl Acad Sci. 1998;95(2):588–93. doi:10.1073/pnas.95.2.588.
  • Takeda K, Akira S. Toll-like receptors. Curr Protoc Immunol. 2015;109(1): 14.2.1–.2.0. doi:10.1002/0471142735.im1412s109.
  • Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21(1):335–76. doi:10.1146/annurev.immunol.21.120601.141126.
  • Tomai MA, Vasilakos JP. TLR agonists as vaccine adjuvants. In: Baschieri S, editor. Innovation in vaccinology: from design, through to delivery and testing. Dordrecht: Springer; 2012. pp. 205–28.
  • Lou Y, Liu C, Lizée G, Peng W, Xu C, Ye Y, Rabinovich BA, Hailemichael Y, Gelbard A, Zhou D. et al. Antitumor activity mediated by CpG: the route of administration is critical. J Immunother. 2011;34(3):279–88. doi:10.1097/CJI.0b013e31820d2a05.
  • Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, Ghaemi A. Combination of the toll like receptor agonist and α-galactosylceramide as an efficient adjuvant for cancer vaccine. J Biomed Sci. 2016;23(1):16. doi:10.1186/s12929-016-0238-3.
  • Sajadian A, Tabarraei A, Soleimanjahi H, Fotouhi F, Gorji A, Ghaemi A. Comparing the effect of toll-like receptor agonist adjuvants on the efficiency of a DNA vaccine. Arch Virol. 2014;159(8):1951–60. doi:10.1007/s00705-014-2024-4.
  • Domingos-Pereira S, Decrausaz L, Derré L, Bobst M, Romero P, Schiller JT, Jichlinski P, Nardelli-Haefliger D. Intravaginal TLR agonists increase local vaccine-specific CD8 T cells and human papillomavirus-associated genital-tumor regression in mice. Mucosal Immunol. 2013;6(2):393–404. doi:10.1038/mi.2012.83.
  • Dunne A, Marshall NA, Mills KH. TLR based therapeutics. Curr Opin Pharmacol. 2011;11(4):404–11. doi:10.1016/j.coph.2011.03.004.
  • Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: advances and challenges. Front Immunol. 2022;13:1049340. doi:10.3389/fimmu.2022.1049340.
  • Flo TH, Halaas O, Torp S, Ryan L, Lien E, Dybdahl B, Sundan A, Espevik T. Differential expression of toll-like receptor 2 in human cells. J Leukoc Biol. 2001;69(3):474–81. doi:10.1189/jlb.69.3.474.
  • Brzezińska-Błaszczyk E, Wierzbicki M. Mast cell toll-like receptors (TLRs). Postepy Hig Med Dosw (Online). 2010;64:11–21.
  • Farhat K, Riekenberg S, Heine H, Debarry J, Lang R, Mages J, Buwitt-Beckmann U, Röschmann K, Jung G, Wiesmüller K-H. et al. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol. 2007;83(3):692–701. doi:10.1189/jlb.0807586.
  • de Oliviera Nascimento L, Massari P, Wetzler L. The role of TLR2 in infection and immunity. Front Immunol. 2012;3:3. doi:10.3389/fimmu.2012.00079.
  • Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev Immunol. 2006;24(1):353–89. doi:10.1146/annurev.immunol.24.021605.090552.
  • Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L. Structural basis for signal transduction by the toll/interleukin-1 receptor domains. Nature. 2000;408(6808):111–15. doi:10.1038/35040600.
  • Won K, Kim SM, Lee SA, Rhim BY, Eo SK, Kim K. Multiple signaling molecules are involved in expression of CCL2 and IL-1β in response to FSL-1, a toll-like receptor 6 agonist, in macrophages. Korean J Physiol Pharmacol. 2012;16(6):447–53. doi:10.4196/kjpp.2012.16.6.447.
  • De Buck M, Berghmans N, Pörtner N, Vanbrabant L, Cockx M, Struyf S, Opdenakker G, Proost P, Van Damme J, Gouwy M. et al. Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol. 2015;98(6):1049–60. doi:10.1189/jlb.3A0315-085R.
  • Need AC, Goldstein DB. Next generation disparities in human genomics: concerns and remedies. Trends Genet. 2009;25(11):489–94. doi:10.1016/j.tig.2009.09.012.
  • Chang YL, Chen TH, Wu YH, Chen GA, Weng TH, Tseng PH, Hsieh SL, Fu SL, Lin CH, Chen CJt et al. A novel TLR2-triggered signalling crosstalk synergistically intensifies TNF-mediated IL-6 induction. J Cell Mol Med. 2014;18(7):1344–57. doi:10.1111/jcmm.12294.
  • Flynn CM, Garbers Y, Lokau J, Wesch D, Schulte DM, Laudes M, Lieb W, Aparicio-Siegmund S, Garbers C. Activation of toll-like receptor 2 (TLR2) induces interleukin-6 trans-signaling. Sci Rep. 2019;9(1):7306. doi:10.1038/s41598-019-43617-5.
  • Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 agonistic small molecules: detailed structure–activity relationship, applications, and future prospects. J Med Chem. 2021;64(1):233–78. doi:10.1021/acs.jmedchem.0c01627.
  • Knapp S, von Aulock S, Leendertse M, Haslinger I, Draing C, Golenbock DT, van der Poll T. Lipoteichoic acid-induced lung inflammation depends on TLR2 and the concerted action of TLR4 and the platelet-activating factor receptor. J Immunol. 2008;180(5):3478–84. doi:10.4049/jimmunol.180.5.3478.
  • Müller-Anstett MA, Müller P, Albrecht T, Nega M, Wagener J, Gao Q, Kaesler S, Schaller M, Biedermann T, Götz Fp et al. Staphylococcal peptidoglycan co-localizes with Nod2 and TLR2 and activates innate immune response via both receptors in primary murine keratinocytes. PLOS ONE. 2010;5(10):e13153. doi:10.1371/journal.pone.0013153.
  • Frasnelli ME, Tarussio D, Chobaz-Péclat V, Busso N, So A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res Ther. 2005;7(2):R370. doi:10.1186/ar1494.
  • Campos MAS, Almeida IC, Takeuchi O, Akira S, Valente EP, Procópio DO, Travassos LR, Smith JA, Golenbock DT, Gazzinelli RT, et al. Activation of toll-like receptor-2 by Glycosylphosphatidylinositol anchors from a protozoan Parasite1. J Immunol. 2001;167(1):416–23. doi:10.4049/jimmunol.167.1.416.
  • Tapping RI, Tobias PS. Mycobacterial lipoarabinomannan mediates physical interactions between TLR1 and TLR2 to induce signaling. J Endotoxin Res. 2003;9(4):264–8. doi:10.1177/09680519030090040801.
  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by toll-like receptor 3. Nature. 2001;413(6857):732–8. doi:10.1038/35099560.
  • Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F, Liu Y-J. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med. 2001;194(6):863–9. doi:10.1084/jem.194.6.863.
  • Tabiasco J, Devêvre E, Rufer N, Salaun B, Cerottini JC, Speiser D, Romero P. Human effector CD8+ T lymphocytes express TLR3 as a functional coreceptor. J Immunol. 2006;177(12):8708–13. doi:10.4049/jimmunol.177.12.8708.
  • Schmidt KN, Leung B, Kwong M, Zarember KA, Satyal S, Navas TA, Wang F, Godowski PJ. APC-independent activation of NK cells by the Toll-like receptor 3 agonist double-stranded RNA. J Immunol. 2004;172(1):138–43. doi:10.4049/jimmunol.172.1.138.
  • Cario E, Podolsky DK, Clements JD. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun. 2000;68(12):7010–7. doi:10.1128/IAI.68.12.7010-7017.2000.
  • Fang F, Ooka K, Sun X, Shah R, Bhattacharyya S, Wei J, Varga J. A synthetic TLR3 ligand mitigates profibrotic fibroblast responses by inducing autocrine IFN signaling. J Immunol. 2013;191(6):2956–66. doi:10.4049/jimmunol.1300376.
  • Matsumoto M, Funami K, Tanabe M, Oshiumi H, Shingai M, Seto Y, Yamamoto A, Seya T. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol. 2003;171(6):3154–62. doi:10.4049/jimmunol.171.6.3154.
  • Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-κB and IRF3 diverges at toll-IL-1 receptor domain-containing adapter inducing IFN-β. Proc Natl Acad Sci USA. 2004;101(10):3533–8. doi:10.1073/pnas.0308496101.
  • Schulz O, Diebold SS, Chen M, Näslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljeström P, Reis e Sousa C. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005;433(7028):887–92. doi:10.1038/nature03326.
  • Lebre MC, Antons JC, Kalinski P, Schuitemaker JH, van Capel TM, Kapsenberg ML, de Jong EC. Double-stranded RNA-Exposed human keratinocytes promote Th1 responses by inducing a type-1 Polarized Phenotype in dendritic cells: role of Keratinocyte-derived tumor Necrosis factor α, type I interferons, and interleukin-18. J Invest Dermatol. 2003;120(6):990–7. doi:10.1046/j.1523-1747.2003.12245.x.
  • Jiang Z, Zamanian-Daryoush M, Nie H, Silva AM, Williams BR, Li X. Poly(dI·dC)-induced toll-like receptor 3 (TLR3)-mediated activation of NFκB and MAP kinase is through an Interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem. 2003;278(19):16713–19. doi:10.1074/jbc.M300562200.
  • Padalko E, Nuyens D, De Palma A, Verbeken E, Aerts JL, De Clercq E, Carmeliet P, Neyts J. The interferon inducer ampligen [poly(I)-poly(C12U)] markedly protects mice against coxsackie B3 virus-induced myocarditis. Antimicrob Agents Chemother. 2004;48(1):267–74. doi:10.1128/AAC.48.1.267-274.2004.
  • Levy HB, Baer G, Baron S, Buckler CE, Gibbs CJ, Iadarola MJ, London WT, Rice J. A modified polyriboinosinic-polyribocytidylic acid complex that induces interferon in primates. J Infect Dis. 1975;132(4):434–9. doi:10.1093/infdis/132.4.434.
  • Levy HB, Riley FL, Lvovsky E, Stephen EE. Interferon induction in primates by stabilized polyriboinosinic acid-polyribocytidylic acid: effect of component size. Infect Immun. 1981;34(2):416–21. doi:10.1128/iai.34.2.416-421.1981.
  • Matsumoto M, Tatematsu M, Nishikawa F, Azuma M, Ishii N, Morii-Sakai A, Shime H, Seya T. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat Commun. 2015;6(1):6280. doi:10.1038/ncomms7280.
  • Jelinek I, Leonard JN, Price GE, Brown KN, Meyer-Manlapat A, Goldsmith PK, Wang Y, Venzon D, Epstein SL, Segal DM. et al. TLR3-Specific double-stranded RNA Oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J Immunol. 2011;186(4):2422–9. doi:10.4049/jimmunol.1002845.
  • Conte MR, Conn GL, Brown T, Lane AN. Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG) 2: comparison with the DNA analogue d(CGCAAATTTGCG) 2. Nucleic Acids Res. 1997;25(13):2627–34. doi:10.1093/nar/25.13.2627.
  • Elmén J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Ørum H, Koch T. et al, Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 2005;33(1):439–47. doi:10.1093/nar/gki193.
  • Shetab Boushehri MA, Lamprecht A. TLR4-based Immunotherapeutics in cancer: a review of the achievements and shortcomings. Mol Pharm. 2018;15(11):4777–800. doi:10.1021/acs.molpharmaceut.8b00691.
  • Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Møller K. Human endotoxemia as a model of systemic inflammation. Curr Med Chem. 2008;15(17):1697–705. doi:10.2174/092986708784872393.
  • Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine. 2008;42(2):145–51. doi:10.1016/j.cyto.2008.01.006.
  • Pereira M, Durso DF, Bryant CE, Kurt-Jones EA, Silverman N, Golenbock DT, Gazzinelli RT. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. Cell Rep. 2022;40(7):111225. doi:10.1016/j.celrep.2022.111225.
  • Ling GS, Bennett J, Woollard KJ, Szajna M, Fossati-Jimack L, Taylor PR, Scott D, Franzoso G, Cook HT, Botto M. et al. Integrin CD11b positively regulates TLR4-induced signalling pathways in dendritic cells but not in macrophages. Nat Commun. 2014;5(1):3039. doi:10.1038/ncomms4039.
  • Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR, Yang SH. The role of tumor necrosis factor alpha (TNF-α) in Autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 2021;22(5):22. doi:10.3390/ijms22052719.
  • Raetz CRH, Whitfield C. Lipopolysaccharide Endotoxins. Annu Rev Biochem. 2002;71(1):635–700. doi:10.1146/annurev.biochem.71.110601.135414.
  • Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin Immunol. 2007;19(1):3–10. doi:10.1016/j.smim.2006.12.002.
  • Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M. MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J Exp Med. 1999;189(11):1777–82. doi:10.1084/jem.189.11.1777.
  • Schülke S, Flaczyk A, Vogel L, Gaudenzio N, Angers I, Löschner B, Wolfheimer S, Spreitzer I, Qureshi S, Tsai M. et al. MPLA shows attenuated pro-inflammatory properties and diminished capacity to activate mast cells in comparison with LPS. Allergy. 2015;70(10):1259–68. doi:10.1111/all.12675.
  • Arias MA, Van Roey GA, Tregoning JS, Moutaftsi M, Coler RN, Windish HP, Reed SG, Carter D, Shattock RJ. Glucopyranosyl lipid adjuvant (GLA), a synthetic TLR4 Agonist, promotes potent systemic and mucosal responses to intranasal immunization with HIVgp140. PLoS ONE. 2012;7(7):e41144. doi:10.1371/journal.pone.0041144.
  • Kuramitsu Y, Nishibe M, Ohiro Y, Matsushita K, Yuan L, Obara M, Kobayashi M, Hosokawa M. A new synthetic lipid a analog, ONO-4007, stimulates the production of tumor necrosis factor-α in tumor tissues, resulting in the rejection of transplanted rat hepatoma cells. Anticancer Drugs. 1997;8(5):500–8. doi:10.1097/00001813-199706000-00013.
  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103. doi:10.1038/35074106.
  • Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72(17):3343–53. doi:10.1007/s00018-015-1931-1.
  • Hamonic G, Pasternak JA, Wilson HL. Recognizing conserved non-canonical localization patterns of toll-like receptors in tissues and across species. Cell Tissue Res. 2018;372(1):1–11. doi:10.1007/s00441-017-2767-9.
  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–66. doi:10.1016/j.cell.2020.02.041.
  • McDermott PF, Ciacci-Woolwine F, Snipes JA, Mizel SB, Moore RN. High-affinity interaction between gram-negative flagellin and a cell surface polypeptide results in human monocyte activation. Infect Immun. 2000;68(10):5525–9. doi:10.1128/IAI.68.10.5525-5529.2000.
  • Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells. J Immunol. 2003;170(10):5165–75. doi:10.4049/jimmunol.170.10.5165.
  • Cui B, Liu X, Fang Y, Zhou P, Zhang Y, Wang Y. Flagellin as a vaccine adjuvant. Expert Rev Vaccines. 2018;17(4):335–49. doi:10.1080/14760584.2018.1457443.
  • Rhee JH, Khim K, Puth S, Choi Y, Lee SE. Deimmunization of flagellin adjuvant for clinical application. Curr Opin Virol. 2023;60:101330. doi:10.1016/j.coviro.2023.101330.
  • Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics – recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J. 2021;19:315–29. doi:10.1016/j.csbj.2020.12.024.
  • S-I Y, Kurnasov O, Natarajan V, Hong M, Gudkov AV, Osterman AL, Wilson IA. Structural basis of TLR5-flagellin recognition and signaling. Sci. 2012;335(6070):859–64. doi:10.1126/science.1215584.
  • Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SL, Cookson BT, Aderem A. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat Immunol. 2003;4(12):1247–53. doi:10.1038/ni1011.
  • Khim K, Bang YJ, Puth S, Choi Y, Lee YS, Jeong K, Lee SE, Rhee JH. Deimmunization of flagellin for repeated administration as a vaccine adjuvant. NPJ Vaccines. 2021;6(1):116. doi:10.1038/s41541-021-00379-4.
  • Du X, Poltorak A, Wei Y, Beutler B. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw. 2000;11:362–71.
  • Lee J, Chuang TH, Redecke V, She L, Pitha PM, Carson DA, Raz E, Cottam HB. Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7. Proc Natl Acad Sci. 2003;100(11):6646–51. doi:10.1073/pnas.0631696100.
  • Cervantes JL, Weinerman B, Basole C, Salazar JC. TLR8: the forgotten relative revindicated. Cell Mol Immunol. 2012;9(6):434–8. doi:10.1038/cmi.2012.38.
  • Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines. 2013;12(7):809–19. doi:10.1586/14760584.2013.811208.
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Sci. 2004;303:1529–31. doi:10.1126/science.1093616.
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nat Immunol. 2002;3(2):196–200. doi:10.1038/ni758.
  • Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW, Iwasaki A, Flavell RA. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci. 2004;101(15):5598–603. doi:10.1073/pnas.0400937101.
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Sci. 2004;303(5663):1526–9. doi:10.1126/science.1093620.
  • Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15. doi:10.1016/j.immuni.2010.03.012.
  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol. 2002;3(6):499. doi:10.1038/ni0602-499.
  • Bhagchandani S, Johnson JA, Irvine DJ. Evolution of Toll-like receptor 7/8 agonist therapeutics and their delivery approaches: from antiviral formulations to vaccine adjuvants. Adv Drug Deliv Rev. 2021;175:113803. doi:10.1016/j.addr.2021.05.013.
  • Philbin VJ, Dowling DJ, Gallington LC, Cortés G, Tan Z, Suter EE, Chi KW, Shuckett A, Stoler-Barak L, Tomai M. et al. Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1–dependent pathways. J Allergy Clin Immunol. 2012;130(1):195–204. e9 doi:10.1016/j.jaci.2012.02.042.
  • Levy O, Suter EE, Miller RL, Wessels MR. Unique efficacy of Toll-like receptor 8 agonists in activating human neonatal antigen-presenting cells. Blood. 2006;108(4):1284–90. doi:10.1182/blood-2005-12-4821.
  • Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR. Selective impairment of TLR-mediated innate immunity in human newborns: neonatal blood plasma reduces monocyte TNF-α induction by bacterial lipopeptides, lipopolysaccharide, and Imiquimod, but preserves the response to R-848. J Immunol. 2004;173(7):4627–34. doi:10.4049/jimmunol.173.7.4627.
  • Kaushik D, Kaur A, Petrovsky N, Salunke DB. Structural evolution of toll-like receptor 7/8 agonists from imidazoquinolines to imidazoles. RSC Med Chem. 2021;12(7):1065–120. doi:10.1039/D1MD00031D.
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K. et al. A Toll-like receptor recognizes bacterial DNA. Nature. 2000;408(6813):740–5. doi:10.1038/35047123.
  • Kumagai Y, Takeuchi O, Akira S. TLR9 as a key receptor for the recognition of DNA. Adv Drug Deliv Rev. 2008;60(7):795–804. doi:10.1016/j.addr.2007.12.004.
  • Babenko VN, Chadaeva IV, Orlov YL. Genomic landscape of CpG rich elements in human. BMC Evol Biol. 2017;17:19. doi:10.1186/s12862-016-0864-0.
  • Wagner H. The sweetness of the DNA backbone drives Toll-like receptor 9. Curr Opin Immunol. 2008;20(4):396–400. doi:10.1016/j.coi.2008.06.013.
  • Coch C, Busch N, Wimmenauer V, Hartmann E, Janke M, Abdel-Mottaleb MM, Lamprecht A, Ludwig J, Barchet W, Schlee M. et al. Higher activation of TLR9 in plasmacytoid dendritic cells by microbial DNA compared with self-DNA based on CpG-specific recognition of phosphodiester DNA. J Leukoc Biol. 2009;86(3):663–70. doi:10.1189/jlb.0509314.
  • Lamphier MS, Sirois CM, Verma A, Golenbock DT, Latz E. TLR9 and the recognition of self and non-self nucleic acids. Ann N Y Acad Sci. 2006;1082(1):31–43. doi:10.1196/annals.1348.005.
  • Casanova JL, Abel L, Quintana-Murci L. Human TLRs and IL-1Rs in host defense: natural insights from evolutionary, epidemiological, and clinical genetics. Annu Rev Immunol. 2011;29(1):447–91. doi:10.1146/annurev-immunol-030409-101335.
  • Schneberger D, Caldwell S, Kanthan R, Singh B. Expression of Toll-like receptor 9 in mouse and human lungs. J Anat. 2013;222(5):495–503. doi:10.1111/joa.12039.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84. doi:10.1038/ni.1863.
  • Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee K-D, Coffman RL, Barrat FJ. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. J Exp Med. 2006;203(8):1999–2008. doi:10.1084/jem.20060401.
  • Vollmer J, Weeratna R, Payette P, Jurk M, Schetter C, Laucht M, Wader T, Tluk S, Liu M, Davis H. et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol. 2004;34(1):251–62. doi:10.1002/eji.200324032.
  • Jiang W, Lederman MM, Harding CV, Rodriguez B, Mohner RJ, Sieg SF. TLR9 stimulation drives naïve B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol. 2007;37(8):2205–13. doi:10.1002/eji.200636984.
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov. 2006;5(6):471–84. doi:10.1038/nrd2059.
  • Donhauser N, Helm M, Pritschet K, Schuster P, Ries M, Korn K, Vollmer J, Schmidt B. Differential effects of P-class versus other CpG oligodeoxynucleotide classes on the impaired innate immunity of plasmacytoid dendritic cells in HIV type 1 infection. AIDS Res Hum Retroviruses. 2010;26(2):161–71. doi:10.1089/aid.2008.0278.
  • Wittig B, Schmidt M, Scheithauer W, Schmoll HJ. MGN1703, an immunomodulator and toll-like receptor 9 (TLR-9) agonist: from bench to bedside. Crit Rev Oncol Hematol. 2015;94(1):31–44. doi:10.1016/j.critrevonc.2014.12.002.
  • Holtick U, Scheulen ME, von Bergwelt-Baildon MS, Weihrauch MR. Toll-like receptor 9 agonists as cancer therapeutics. Expert Opin Investig Drugs. 2011;20(3):361–72. doi:10.1517/13543784.2011.553187.
  • Yu D, Putta MR, Bhagat L, Dai M, Wang D, Trombino AF, Sullivan T, Kandimalla ER, Agrawal S. Impact of secondary structure of toll-like receptor 9 agonists on interferon alpha induction. Antimicrob Agents Chemother. 2008;52(12):4320–5. doi:10.1128/AAC.00701-08.
  • Agrawal S, Kandimalla ER. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans. 2007;35(6):1461–7. doi:10.1042/BST0351461.
  • Wang D, Zhu F, DiMuzio J, Agrawal S. Abstract B196: intratumoral administration of IMO-2125, a novel TLR9 agonist, modulates tumor microenvironment and potentiates antitumor activity of anti-PD-1 mAb in a murine colon carcinoma model. Mol Cancer Ther. 2015;14(12_Supplement_2):B196–B. doi:10.1158/1535-7163.TARG-15-B196.
  • Schmidt M, Hagner N, Marco A, König-Merediz SA, Schroff M, Wittig B. Design and structural requirements of the potent and safe TLR-9 agonistic immunomodulator MGN1703. Nucleic Acid Ther. 2015;25(3):130–40. doi:10.1089/nat.2015.0533.
  • Chuang TH, Ulevitch RJ. Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells. Biochimica Et Biophysica Acta (BBA) - Gene Struct And Expression. 2001;1518(1–2):157–61. doi:10.1016/S0167-4781(00)00289-X.
  • Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdörfer B, Giese T, Endres S, Hartmann G. Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG Oligodeoxynucleotides. J Immunol. 2002;168(9):4531–7. doi:10.4049/jimmunol.168.9.4531.
  • Govindaraj RG, Manavalan B, Lee G, Choi S, Selvarajoo K. Molecular modeling-based evaluation of hTLR10 and identification of potential ligands in Toll-like receptor signaling. PLOS ONE. 2010;5(9):e12713. doi:10.1371/journal.pone.0012713.
  • Sindhu S, Akhter N, Kochumon S, Thomas R, Wilson A, Shenouda S, Tuomilehto J, Ahmad R. Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: association with ROS-mediated oxidative stress. Cell Physiol Biochem. 2018;45(2):572–90. doi:10.1159/000487034.
  • Oosting M, Cheng SC, Bolscher JM, Vestering-Stenger R, Plantinga TS, Verschueren IC, Arts P, Garritsen A, van Eenennaam H, Sturm P. et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci. 2014;111(42):E4478–E84. doi:10.1073/pnas.1410293111.
  • Lauw FN, Caffrey DR, Golenbock DT. Of mice and man: TLR11 (finally) finds profilin. Trends Immunol. 2005;26(10):509–11. doi:10.1016/j.it.2005.08.006.
  • Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, Hayden M, Akira S, Sher A, Ghosh S. et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013;38(1):119–30. doi:10.1016/j.immuni.2012.09.016.
  • Shi Z, Cai Z, Sanchez A, Zhang T, Wen S, Wang J, Yang J, Fu S, Zhang D. A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem. 2011;286(6):4517–24. doi:10.1074/jbc.M110.159590.
  • Raetz M, Kibardin A, Sturge CR, Pifer R, Li H, Burstein E, Ozato K, Larin S, Yarovinsky F. Cooperation of TLR12 and TLR11 in the IRF8-dependent IL-12 response to Toxoplasma gondii profilin. J Immunol. 2013;191(9):4818–27. doi:10.4049/jimmunol.1301301.
  • Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S, Blader IJ. Toll-like receptor 11 (TLR11) interacts with Flagellin and profilin through disparate mechanisms. PLoS ONE. 2016;11(2):e0148987. doi:10.1371/journal.pone.0148987.
  • Hochrein H, Kirschning CJ. Bacteria evade immune recognition via TLR13 and binding of their 23S rRNA by MLS antibiotics by the same mechanisms. Oncoimmunology. 2013;2(3):e23141. doi:10.4161/onci.23141.
  • Yarovinsky F, Hieny S, Sher A. Recognition of Toxoplasma gondii by TLR11 prevents parasite-induced immunopathology. J Immunol. 2008;181(12):8478–84. doi:10.4049/jimmunol.181.12.8478.
  • Hidmark A, von Saint Paul A, Dalpke AH. Cutting edge: TLR13 is a receptor for bacterial RNA. J Immunol. 2012;189(6):2717–21. doi:10.4049/jimmunol.1200898.
  • Zhang Y, Luo F, Li A, Qian J, Yao Z, Feng X, Chu Y. Systemic injection of TLR1/2 agonist improves adoptive antigen-specific T cell therapy in glioma-bearing mice. Clin Immunol. 2014;154(1):26–36. doi:10.1016/j.clim.2014.06.004.
  • Zahm CD, Colluru VT, McIlwain SJ, Ong IM, McNeel DG. TLR stimulation during T-cell activation lowers PD-1 expression on CD8(+) T cells. Cancer Immunol Res. 2018;6(11):1364–74. doi:10.1158/2326-6066.CIR-18-0243.
  • Renaudet O, Dasgupta G, Bettahi I, Shi A, Nesburn AB, Dumy P, BenMohamed L. Linear and branched Glyco-Lipopeptide vaccines follow distinct cross-presentation pathways and generate different magnitudes of antitumor immunity. PLOS ONE. 2010;5(6):e11216. doi:10.1371/journal.pone.0011216.
  • Shi W, Tong Z, Chen S, Qiu Q, Zhou J, Qian H. Development of novel self-assembled vaccines based on tumour-specific antigenic peptide and TLR2 agonist for effective breast cancer immunotherapy via activating CD8+ T cells and enhancing their function. Immunology. 2023;169(4):454–66. doi:10.1111/imm.13643.
  • Adams M, Navabi H, Jasani B, Man S, Fiander A, Evans AS, Donninger C, Mason M. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]: poly [C12U] (Ampligen®). Vaccine. 2003;21(7–8):787–90. doi:10.1016/S0264-410X(02)00599-6.
  • Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM. et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med. 2007;5(1):10. doi:10.1186/1479-5876-5-10.
  • Takeda Y, Yoshida S, Takashima K, Ishii-Mugikura N, Shime H, Seya T, Matsumoto M. Vaccine immunotherapy with ARNAX induces tumor-specific memory T cells and durable anti-tumor immunity in mouse models. Cancer Sci. 2018;109(7):2119–29. doi:10.1111/cas.13649.
  • Song H, Huang P, Niu J, Shi G, Zhang C, Kong D, Wang W. Injectable polypeptide hydrogel for dual-delivery of antigen and TLR3 agonist to modulate dendritic cells in vivo and enhance potent cytotoxic T-lymphocyte response against melanoma. Biomaterials. 2018;159:119–29. doi:10.1016/j.biomaterials.2018.01.004.
  • Wang C, Zhuang Y, Zhang Y, Luo Z, Gao N, Li P, Pan H, Cai L, Ma Y. Toll-like receptor 3 agonist complexed with cationic liposome augments vaccine-elicited antitumor immunity by enhancing TLR3–IRF3 signaling and type I interferons in dendritic cells. Vaccine. 2012;30(32):4790–9. doi:10.1016/j.vaccine.2012.05.027.
  • Vindevogel E, Baert T, Hoylandt AV, Verbist G, Velde GV, Garg AD, Agostinis P, Vergote I, Coosemans AN. The use of toll-like receptor 4 agonist to reshape the immune signature in ovarian cancer. Anticancer Res. 2016;36(11):5781–92. doi:10.21873/anticanres.11162.
  • Davis MB, Vasquez-Dunddel D, Fu J, Albesiano E, Pardoll D, Kim YJ. Intratumoral administration of TLR4 agonist absorbed into a cellular vector improves antitumor responses. Clin Cancer Res. 2011;17(12):3984–92. doi:10.1158/1078-0432.CCR-10-3262.
  • Shi HS, Gong CY, Zhang Hl, Wang YS, Zhang J, Luo ZC, Qian ZY, Wei YQ, Yang L. Novel vaccine adjuvant LPS-Hydrogel for truncated basic fibroblast growth factor to induce antitumor immunity. Carbohyd Polym. 2012;89(4):1101–9. doi:10.1016/j.carbpol.2012.03.073.
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine. 2008;26(39):5046–57. doi:10.1016/j.vaccine.2008.07.035.
  • Cheng R, Fontana F, Xiao J, Liu Z, Figueiredo P, Shahbazi MA, Wang S, Jin J, Torrieri G, Hirvonen JT. et al. Recombination monophosphoryl lipid A-derived vacosome for the development of preventive cancer vaccines. ACS Appl Mater Interfaces. 2020;12(40):44554–62. doi:10.1021/acsami.0c15057.
  • Bubna AK. Imiquimod - Its role in the treatment of cutaneous malignancies. Indian J Pharmacol. 2015;47(4):354–9. doi:10.4103/0253-7613.161249.
  • Ma F, Zhang J, Zhang J, Zhang C. The TLR7 agonists imiquimod and gardiquimod improve DC-based immunotherapy for melanoma in mice. Cell Mol Immunol. 2010;7(5):381–8. doi:10.1038/cmi.2010.30.
  • Stickdorn J, Stein L, Arnold-Schild D, Hahlbrock J, Medina-Montano C, Bartneck J, Ziß T, Montermann E, Kappel C, Hobernik D. et al. Systemically administered TLR7/8 agonist and antigen-conjugated nanogels govern immune responses against tumors. Acs Nano. 2022;16(3):4426–43. doi:10.1021/acsnano.1c10709.
  • Chi H, Hao Y, Wang X, Tang L, Deng Y, Chen X, Gao F, Sha O, Jin G. A therapeutic whole-tumor-cell vaccine covalently conjugated with a TLR7 agonist. Cells. 2022;11(13):1986. doi:10.3390/cells11131986.
  • Song H, Su Q, Shi W, Huang P, Zhang C, Zhang C, Zhang C, Liu Q, Wang W. Antigen epitope-TLR7/8a conjugate as self-assembled carrier-free nanovaccine for personalized immunotherapy. Acta Biomater. 2022;141:398–407. doi:10.1016/j.actbio.2022.01.004.
  • Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y, Zaidi N. et al. Peptide–TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol. 2020;38(3):320–32. doi:10.1038/s41587-019-0390-x.
  • Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3-KLH conjugate cancer vaccines. Vaccine. 1999;18(7–8):597–603. doi:10.1016/S0264-410X(99)00316-3.
  • Sin JI, Kim H, Ahn E, Jeon YH, Park WS, Lee S-Y, Kwon B. Combined stimulation of TLR9 and 4.1BB augments Trp2 peptide vaccine-mediated melanoma rejection by increasing Ag-specific CTL activity and infiltration into tumor sites. Cancer Lett. 2013;330(2):190–9. doi:10.1016/j.canlet.2012.11.045.
  • Shi X, Song H, Wang C, Zhang C, Huang P, Kong D, Zhang J, Wang W. Co-assembled and self-delivered epitope/CpG nanocomplex vaccine augments peptide immunogenicity for cancer immunotherapy. Chem Eng J. 2020;399:125854. doi:10.1016/j.cej.2020.125854.
  • Chen T, Liu K, Xu J, Zhan T, Liu M, Li L, Yang Z, Yuan S, Zou W, Lin G. et al. Synthetic and immunological studies on the OCT4 immunodominant motif antigen-based anti-cancer vaccine. Cancer Biol Med. 2020;17(1):132–41. doi:10.20892/j.issn.2095-3941.2019.0224.
  • Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S. Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic Liposomes1. J Immunol. 2006;176(12):7335–45. doi:10.4049/jimmunol.176.12.7335.
  • Jeon D, McNeel DG. Toll-like receptor agonist combinations augment mouse T-cell anti-tumor immunity via IL-12- and interferon ß-mediated suppression of immune checkpoint receptor expression. Oncoimmunology. 2022;11(1):2054758. doi:10.1080/2162402X.2022.2054758.
  • Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15. doi:10.1158/1078-0432.CCR-10-2563.
  • Tsuji T, Sabbatini P, Jungbluth AA, Ritter E, Pan L, Ritter G, Ferran L, Spriggs D, Salazar AM, Gnjatic S. et al. Effect of Montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase I overlapping long peptide vaccine trial. Cancer Immunol Res. 2013;1(5):340–50. doi:10.1158/2326-6066.CIR-13-0089.
  • Pavlick A, Blazquez AB, Meseck M, Lattanzi M, Ott PA, Marron TU, Holman RM, Mandeli J, Salazar AM, McClain CB. et al. Combined vaccination with NY-ESO-1 protein, poly-ICLC, and montanide improves humoral and cellular immune responses in patients with high-risk melanoma. Cancer Immunol Res. 2020;8(1):70–80. doi:10.1158/2326-6066.CIR-19-0545.
  • Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ, Brenin CM. et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. 2017;5(1):92. doi:10.1186/s40425-017-0295-5.
  • Melssen MM, Petroni GR, Chianese-Bullock KA, Wages NA, Grosh WW, Varhegyi N, Smolkin ME, Smith KT, Galeassi NV, Deacon DH. et al. A multipeptide vaccine plus toll-like receptor agonists LPS or polyICLC in combination with incomplete Freund’s adjuvant in melanoma patients. J Immunother Cancer. 2019;7(1):163. doi:10.1186/s40425-019-0625-x.
  • Mahipal A, Odunsi K, Gnjatic S, Kim-Schulze S, Kenney RT, Ejadi S. A first-in-human phase 1 dose-escalating trial of G305 in patients with solid tumors expressing NY-ESO-1. J Clin Oncol. 2015;33(15_suppl):3073–. doi:10.1200/jco.2015.33.15_suppl.3073.
  • Neidhart J, Allen KO, Barlow DL, Carpenter M, Shaw DR, Triozzi PL, Conry RM. Immunization of colorectal cancer patients with recombinant baculovirus-derived KSA (Ep-CAM) formulated with monophosphoryl lipid a in liposomal emulsion, with and without granulocyte-macrophage colony-stimulating factor. Vaccine. 2004;22(5–6):773–80. doi:10.1016/j.vaccine.2003.08.021.
  • Grewal EP, Erskine CL, Nevala WK, Allred JB, Strand CA, Kottschade LA, McWilliams RR, Dronca RS, Yakovich AJ, Markovic SN. et al. Peptide vaccine with glucopyranosyl lipid A–stable oil-in-water emulsion for patients with resected melanoma. Immunotherapy. 2020;12(13):983–95. doi:10.2217/imt-2020-0085.
  • Shackleton M, Davis ID, Hopkins W, Jackson H, Dimopoulos N, Tai T, Chen Q, Parente P, Jefford M, Masterman KA. et al. The impact of imiquimod, a Toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun. 2004;4:9.
  • Adams S, O’Neill DW, Nonaka D, Hardin E, Chiriboga L, Siu K, Cruz CM, Angiulli A, Angiulli F, Ritter E. et al. Immunization of malignant melanoma patients with full-length NY-ESO-1 protein using TLR7 agonist imiquimod as vaccine adjuvant. J Immunol. 2008;181(1):776–84. doi:10.4049/jimmunol.181.1.776.
  • Mauldin IS, Wages NA, Stowman AM, Wang E, Smolkin ME, Olson WC, Deacon DH, Smith KT, Galeassi N, Teague JE. et al. Pilot clinical trials testing the safety and effects on the metastatic melanoma microenvironment of intratumoral interferon-gamma or imiquimod, plus a multipeptide melanoma vaccine. J Immuno Ther Cancer. 2015;3:139. doi:10.1186/2051-1426-3-S2-P139.
  • Sabado RL, Pavlick AC, Gnjatic S, Cruz CM, Vengco I, Hasan F, Darvishian F, Chiriboga L, Holman RM, Escalon J. et al. Phase I/II study of resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with melanoma. J Clin Oncol. 2014;32:9086–. doi:10.1200/jco.2014.32.15_suppl.9086.
  • Royal RE, Vence LM, Wray T, Cormier JN, Lee JE, Gershenwald JE, Ross MI, Wargo JA, Amaria RN, Davies MA. et al. A toll-like receptor agonist to drive melanoma regression as a vaccination adjuvant or by direct tumor application. J Clin Oncol. 2017;35:9582–. doi:10.1200/JCO.2017.35.15_suppl.9582.
  • Speiser DE, Liénard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, Krieg AM, Cerottini J-C, Romero P. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 2005;115(3):739–46. doi:10.1172/JCI23373.
  • Iwahashi M, Katsuda M, Nakamori M, Nakamura M, Naka T, Ojima T, Iida T, Yamaue H. Vaccination with peptides derived from cancer-testis antigens in combination with CpG-7909 elicits strong specific CD8+ T cell response in patients with metastatic esophageal squamous cell carcinoma. Cancer Sci. 2010;101(12):2510–7. doi:10.1111/j.1349-7006.2010.01732.x.
  • Mahipal A, Ejadi S, Gnjatic S, Kim-Schulze S, Lu H, Ter Meulen JH, Kenney R, Odunsi K. First-in-human phase 1 dose-escalating trial of G305 in patients with advanced solid tumors expressing NY-ESO-1. Cancer Immunol Immunother. 2019;68(7):1211–22. doi:10.1007/s00262-019-02331-x.
  • Sabado RL, Pavlick A, Gnjatic S, Cruz CM, Vengco I, Hasan F, Spadaccia M, Darvishian F, Chiriboga L, Holman RM. et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Immunol Res. 2015;3(3):278–87. doi:10.1158/2326-6066.CIR-14-0202.
  • Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, Jungbluth AA, Ritter G, Aghajanian C, Bell-McGuinn K. et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–508. doi:10.1158/1078-0432.CCR-12-2189.
  • Mauldin IS, Wages NA, Stowman AM, Wang E, Olson WC, Deacon DH, Smith KT, Galeassi N, Teague JE, Smolkin ME. et al. Topical treatment of melanoma metastases with imiquimod, plus administration of a cancer vaccine, promotes immune signatures in the metastases. Cancer Immunol Immunother. 2016;65(10):1201–12. doi:10.1007/s00262-016-1880-z.
  • Noguchi M, Arai G, Egawa S, Ohyama C, Naito S, Matsumoto K, Uemura H, Nakagawa M, Nasu Y, Eto M. et al. Mixed 20-peptide cancer vaccine in combination with docetaxel and dexamethasone for castration-resistant prostate cancer: a randomized phase II trial. Cancer Immunol Immunother. 2020;69(5):847–57. doi:10.1007/s00262-020-02498-8.
  • Clifton GT, Peoples GE, Mittendorf EA. The development and use of the E75 (HER2 369–377) peptide vaccine. Future Oncol. 2016;12(11):1321–9. doi:10.2217/fon-2015-0054.
  • Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat Med. 2023;29(10):2379–2380. doi:10.1038/d41591-023-00072-0.
  • Pascolo S. Vaccination with messenger RNA. Methods Mol Med. 2006;127:23–40.