1,227
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Other

COT-TT vaccine attenuates cocaine-seeking and cocaine-conditioned place preference in rats

, , & ORCID Icon
Article: 2299068 | Received 04 Oct 2023, Accepted 21 Dec 2023, Published online: 16 Jan 2024

References

  • Schwartz EKC, Wolkowicz NR, De Aquino JP, MacLean RR, Sofuoglu M. Cocaine use disorder (CUD): current clinical perspectives. Subst Abuse Rehabil. 2022;13:25–12. doi:10.2147/SAR.S337338.
  • Li MJ, Shoptaw SJ. Clinical management of psychostimulant withdrawal: review of the evidence. Addiction. 2023;118(4):750–62. doi:10.1111/add.16093.
  • Poireau M, Milpied T, Maillard A, Delmaire C, Volle E, Bellivier F, Icick R, Azuar J, Marie-Claire C, Bloch V, et al. Biomarkers of relapse in cocaine use disorder: a narrative review. Brain Sci. 2022;12(8):1013. doi:10.3390/brainsci12081013.
  • Armoon B, Fleury MJ, Bayat AH, Bayani A, Mohammadi R, Griffiths MD. Quality of life and its correlated factors among patients with substance use disorders: a systematic review and meta-analysis. Arch Public Health. 2022;80(1):179. doi:10.1186/s13690-022-00940-0.
  • Stellern J, Xiao KB, Grennell E, Sanches M, Gowin JL, Sloan ME. Emotion regulation in substance use disorders: a systematic review and meta-analysis. Addiction. 2023;118(1):30–47. doi:10.1111/add.16001.
  • Liu MT. Pharmacotherapy treatment of stimulant use disorder. Ment Health Clin. 2021;11:347–57. doi:10.9740/mhc.2021.11.347.
  • Lassi DLS, Malbergier A, Negrão AB, Florio L, De Aquino JP, Castaldelli-Maia JM. Pharmacological treatments for cocaine craving: what is the way forward? A systematic review. Brain Sci. 2022;12(11):1546. doi:10.3390/brainsci12111546.
  • Jensen KL, Jensen SB, Madsen KL. A mechanistic overview of approaches for the treatment of psychostimulant dependence. Front Pharmacol. 2022;13:854176. doi:10.3389/fphar.2022.854176.
  • Vasiliu O. Current trends and perspectives in the immune therapy for substance use disorders. Front Psychiatry. 2022;13:882491. doi:10.3389/fpsyt.2022.882491.
  • Truong TT, Kosten TR. Current status of vaccines for substance use disorders: a brief review of human studies. J Neurol Sci. 2022;434:120098. doi:10.1016/j.jns.2021.120098.
  • Docherty JR, Alsufyani HA. Pharmacology of drugs used as stimulants. J Clin Pharmacol. 2021;61(Suppl 2):53–69. doi:10.1002/jcph.1918.
  • Scendoni R, Bury E, Ribeiro ILA, Cameriere R, Cingolani M. Vaccines as a preventive tool for substance use disorder: a systematic review including a meta-analysis on nicotine vaccines’ immunogenicity. Hum Vaccin Immunother. 2022;18(6):2140552. doi:10.1080/21645515.2022.2140552.
  • Celik M, Fuehrlein B. A review of immunotherapeutic approaches for substance use disorders: current status and future prospects. Immunotargets Ther. 2022;11:55–66. doi:10.2147/ITT.S370435.
  • Salazar-Juárez A, Barbosa-Méndez S, Jurado N, Antón B. Inmunoprotección activa contra la cocaína. Salud Ment. 2015;38:441–7. doi:10.17711/SM.0185-3325.2015.059.
  • Malik JA, Agrewala JN. Future perspectives of emerging novel drug targets and immunotherapies to control drug addiction. Int Immunopharmacol. 2023;119:110210. doi:10.1016/j.intimp.2023.110210.
  • Madge HYR, Alexander S, Azuar A, Zhang J, Koirala P, Burne TH, Toth I, Stephenson RJ. Synthetic anti-cocaine nanoaccine successfully prevents cocaine-induced hyperlocomotion. J Med Chem. 2023;66(17):12407–12419. doi:10.1021/acs.jmedchem.3c00889.
  • da Silva Neto L, da Silva Maia AF, Godin AM, de Almeida Augusto PS, Pereira RLG, Caligiorne SM, Alves RB, Fernandes SOA, Cardoso VN, Goulart GAC, et al. Calix[n]arene-based immunogens: a new non-proteic strategy for anti-cocaine vaccine. J Adv Res. 2021;38:285–98. doi:10.1016/j.jare.2021.09.003.
  • Kimishima A, Olson ME, Janda KD. Investigations into the efficacy of multi-component cocaine vaccines. Bioorg Med Chem Lett. 2018;28(16):2779–2783. doi:10.1016/j.bmcl.2017.12.043.
  • Rudra JS, Ding Y, Neelakantan H, Ding C, Appavu R, Stutz S, Snook JD, Chen H, Cunningham KA, Zhou J. Suppression of cocaine-evoked hyperactivity by self-adjuvanting and multivalent peptide nanofiber vaccines. ACS Chem Neurosci. 2016;7(5):546–52. doi:10.1021/acschemneuro.5b00345.
  • Cai X, Whitfield T, Hixon MS, Grant Y, Koob GF, Janda KD. Probing active cocaine vaccination performance through catalytic and noncatalytic hapten design. J Med Chem. 2013;56(9):3701–9. doi:10.1021/jm400228w.
  • Hicks MJ, De BP, Rosenberg JB, Davidson JT, Moreno AY, Janda KD, Wee S, Koob GF, Hackett NR, Kaminsky SM, et al. Cocaine analog coupled to disrupted adenovirus: a vaccine strategy to evoke high-titer immunity against addictive drugs. Mol Ther. 2011;19(3):612–9. doi:10.1038/mt.2010.280.
  • Kosten TR, Rosen M, Bond J, Settles M, Roberts JS, Shields J, Jack L, Fox B. Human therapeutic cocaine vaccine: safety and immunogenicity. Vaccine. 2002;20(7–8):1196–204. doi:10.1016/S0264-410X(01)00425-X.
  • Ettinger RH, Ettinger WF, Harless WE. Active immunization with cocaine-protein conjugate attenuates cocaine effects. Pharmacol Biochem Behav. 1997;58:215–20. doi:10.1016/S0091-3057(97)00005-1.
  • Fox BS, Kantak KM, Edwards MA, Black KM, Bollinger BK, Botka AJ, French TL, Thompson TL, Schad VC, Greenstein JL, et al. Efficacy of a therapeutic cocaine vaccine in rodent models. Nat Med. 1996;2(10):1129–32. doi:10.1038/nm1096-1129.
  • Carrera MR, Ashley JA, Parsons LH, Wirsching P, Koob GF, Janda KD. Suppression of psychoactive effects of cocaine by active immunization. Nature. 1995;378(6558):727–30. doi:10.1038/378727a0.
  • Bagasra O, Forman LJ, Howeedy A, Whittle P. A potential vaccine for cocaine abuse prophylaxis. Immunopharmacology. 1992;23(3):173–9. doi:10.1016/0162-3109(92)90023-6.
  • Fox BS. Development of a therapeutic vaccine for the treatment of cocaine addiction. Drug Alcohol Depend. 1997;48:153–8. doi:10.1016/S0376-8716(97)00121-X.
  • Carrera MR, Ashley JA, Zhou B, Wirsching P, Koob GF, Janda KD. Cocaine vaccines: antibody protection against relapse in a rat model. Proc Natl Acad Sci USA. 2000;97(11):6202–6. doi:10.1073/pnas.97.11.6202.
  • Wee S, Hicks MJ, De BP, Rosenberg JB, Moreno AY, Kaminsky SM, Janda KD, Crystal RG, Koob GF. Novel cocaine vaccine linked to a disrupted adenovirus gene transfer vector blocks cocaine psychostimulant and reinforcing effects. Neuropsychopharmacology. 2012;37(5):1083–91. doi:10.1038/npp.2011.200.
  • De BP, Pagovich OE, Hicks MJ, Rosenberg JB, Moreno AY, Janda KD, Koob GF, Worgall S, Kaminsky SM, Sondhi D, Crystal RG. Disrupted adenovirus-based 638 vaccines against small addictive molecules circumvent anti-adenovirus immunity. Hum Gene Ther. 2013;24(1):58–66. doi:10.1089/hum.2012.163.
  • Kantak KM, Collins SL, Lipman EG, Bond J, Giovanoni K, Fox BS. Evaluation of anti-cocaine antibodies and a cocaine vaccine in a rat self-administration model. Psychopharmacol (Berl). 2000;148(3):251–62. doi:10.1007/s002130050049.
  • Kantak KM, Collins SL, Bond J, Fox BS. Time course of changes in cocaine self-administration behavior in rats during immunization with the cocaine vaccine IPC-1010. Psychopharmacol (Berl). 2001;153(3):334–40. doi:10.1007/s002130000555.
  • Koob G, Hicks MJ, Wee S, Rosenberg JB, De BP, Kaminsky SM, Moreno A, Janda KD, Crystal RG. Anti-cocaine vaccine based on coupling a cocaine analog to a disrupted adenovirus. CNS Neurol Disord Drug Targets. 2011;10:899–904. doi:10.2174/187152711799219334.
  • Evans SM, Foltin RW, Hicks MJ, Rosenberg JB, De BP, Janda KD, Kaminsky SM, Crystal RG. Efficacy of an adenovirus-based anti-cocaine vaccine to reduce cocaine self-administration and acquisition using a choice procedure in rhesus macaques. Pharmacol Biochem Behav. 2016;150–151:76–86. doi:10.1016/j.pbb.2016.09.008.
  • Lowell JA, Dikici E, Joshi PM, Landgraf R, Lemmon VP, Daunert S, Izenwasser S, Daftarian P. Vaccination against cocaine using a modifiable dendrimer nanoparticle platform. Vaccine. 2020;38(50):7989–7997. doi:10.1016/j.vaccine.2020.10.041.
  • Carrera MR, Ashley JA, Wirsching P, Koob GF, Janda KD. A second-generation vaccine protects against the psychoactive effects of cocaine. Proc Natl Acad Sci USA. 2001;98(4):1988–92. doi:10.1073/pnas.98.4.1988.
  • Cai X, Whitfield T, Moreno AY, Grant Y, Hixon MS, Koob GF, Janda KD. Probing the effects of hapten stability on cocaine vaccine immunogenicity. Mol Pharm. 2013;10(11):4176–84. doi:10.1021/mp400214w.
  • Kosten TA, Shen XY, Kinsey BM, Kosten TR, Orson FM. Attenuation of cocaine-induced locomotor activity in male and female mice by active immunization. Am J Addict. 2014;23(6):604–7. doi:10.1111/j.1521-0391.2014.12152.x.
  • St John AL, Choi HW, Walker QD, Blough B, Kuhn CM, Abraham SN, Staats HF. Novel mucosal adjuvant, mastoparan-7, improves cocaine vaccine efficacy. NPJ Vaccines. 2020;5(1):12. doi:10.1038/s41541-020-0161-1.
  • Lin M, Marin A, Ellis B, Eubanks LM, Andrianov AK, Janda KD. Polyphosphazene: a new adjuvant platform for cocaine vaccine development. Mol Pharm. 2022;19:3358–66. doi:10.1021/acs.molpharmaceut.2c00489.
  • Kosten TR, Domingo CB, Shorter D, Orson F, Green C, Somoza E, Sekerka R, Levin FR, Mariani JJ, Stitzer M, et al. Vaccine for cocaine dependence: a randomized double-blind placebo-controlled efficacy trial. Drug Alcohol Depend. 2014;140:42–7. doi:10.1016/j.drugalcdep.2014.04.003.
  • Kosten TR, Haile CN, Domingo CB, Norton EB. Anti-cocaine IgA rather than IgG mediates vaccine protection from cocaine use. Pharmaceutics. 2022;14(11):2368. doi:10.3390/pharmaceutics14112368.
  • Martell BA, Orson FM, Poling J, Mitchell E, Rossen RD, Gardner T, Kosten TR. Cocaine vaccine for the treatment of cocaine dependence in methadone-maintained patients: a randomized, double-blind, placebo-controlled efficacy trial. Arch Gen Psychiatry. 2009;66:1116–23. doi:10.1001/archgenpsychiatry.2009.128.
  • Stitzer ML, Polk T, Bowles S, Kosten T. Drug users’ adherence to a 6-month vaccination protocol: effects of motivational incentives. Drug Alcohol Depend. 2010;107:76–9. doi:10.1016/j.drugalcdep.2009.09.006.
  • Haney M, Gunderson EW, Jiang H, Collins ED, Foltin RW. Cocaine-specific antibodies blunt the subjective effects of smoked cocaine in humans. Biol Psychiatry. 2010;67(1):59–65. doi:10.1016/j.biopsych.2009.08.031.
  • Orson FM, Rossen RD, Shen X, Lopez AY, Wu Y, Kosten TR. Spontaneous development of IgM anti-cocaine antibodies in habitual cocaine users: effect on IgG antibody responses to a cocaine cholera toxin B conjugate vaccine. Am J Addict. 2013;22(2):169–74. doi:10.1111/j.1521-0391.2013.00314.x.
  • Salazar-Juárez A, Barbosa-Méndez S, Feregrino-Alonso MI, Hernández-Miramontes R, Ramos-Ochoa E, Bonilla-Reyes E, Jacinto-Gutierrez S, Pentel P, Antón B. Nuevas vacunas contra la morfina/heroína. Salud Ment. 2013;36:219–27. doi:10.17711/SM.0185-3325.2013.028.
  • Kimishima A, Wenthur CJ, Eubanks LM, Sato S, Janda KD. Cocaine vaccine development: evaluation of carrier and adjuvant combinations that activate multiple toll-like receptors. Mol Pharm. 2016;13(11):3884–3890. doi:10.1021/acs.molpharmaceut.6b00682.
  • Lockner JW, Eubanks LM, Choi JL, Lively JM, Schlosburg JE, Collins KC, Globisch D, Rosenfeld-Gunn RJ, Wilson IA, Janda KD. Flagellin as carrier and adjuvant in cocaine vaccine development. Mol Pharm. 2015;12(2):653–62. doi:10.1021/mp500520r.
  • Cai X, Tsuchikama K, Janda KD. Modulating cocaine vaccine potency through hapten fluorination. J Am Chem Soc. 2013;135(8):2971–4. doi:10.1021/ja400356g.
  • Anton B, Leff P. A novel bivalent morphine/heroin vaccine that prevents relapse to heroin addiction in rodents. Vaccine. 2006;24(16):3232–40. doi:10.1016/j.vaccine.2006.01.047.
  • Anton B, Salazar A, Flores A, Matus M, Marin R, Hernandez JA, Leff P. Vaccines against morphine/heroin and its use as effective medication for preventing relapse to opiate addictive behaviors. Hum Vaccine. 2009;5:214–29. doi:10.4161/hv.5.4.7556.
  • Barbosa-Méndez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. Effect of the morphine/heroin vaccine on opioid and non-opioid drug-induced antinociception in mice. Eur J Pharmacol. 2021;891:173718. doi:10.1016/j.ejphar.2020.173718.
  • Barbosa-Méndez S, Matus-Ortega M, Hernández-Miramontes R, Salazar-Juárez A. The morphine/heroin vaccine decreased the heroin-induced antinociceptive and reinforcing effects in three inbred strains mouse. Int Immunopharmacol. 2021;98:107887. doi:10.1016/j.intimp.2021.107887.
  • Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. The M3-TT vaccine decreases the antinociceptive effects of morphine and heroin in mice. Int J Ment Health & Addict. 2021;21:783–802. doi:10.1007/s11469-021-00621-z.
  • Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. Synergistic immune and antinociceptive effects induced from the combination of two different vaccines against morphine/heroin in mouse. Hum Vaccin Immunother. 2021;17(10):3515–3528. doi:10.1080/21645515.2021.1935171.
  • Barbosa-Mendez S, Matus-Ortega M, Hernandez-Miramontes R, Salazar-Juárez A. The effect of chronic stress on the immunogenicity and immunoprotection of the M6-TT vaccine in female mice. Physiol & Behav. 2023;271:114345. doi:10.1016/j.physbeh.2023.114345.
  • Barbosa-Méndez S, Leff P, Arías-Caballero A, Hernández-Miramontes R, Heinze G, Salazar-Juárez A. Mirtazapine attenuates cocaine seeking in rats. J Psychiatr Res. 2017;92:38–46. doi:10.1016/j.jpsychires.2017.03.021.
  • Barbosa-Méndez S, Salazar-Juárez A. Mirtazapine attenuates nicotine-seeking behavior in rats. J Psychopharmacol. 2018;32(9):1010–1017. doi:10.1177/0269881118764991.
  • Barbosa-Méndez S, Matus-Ortega M, Jacinto-Gutiérrez S, Salazar-Juárez A. Mirtazapine impairs acquisition and reinstatement of cocaine-induced place preference in rats. Eur J Pharmacol. 2018;820:183–190. doi:10.1016/j.ejphar.2017.12.033.
  • Barbosa-Méndez S, Pérez-Sánchez G, Becerril-Villanueva E, Salazar-Juárez A. Melatonin decreases cocaine-induced locomotor sensitization and cocaine-conditioned place preference in rats. J Psychiatr Res. 2021;132:97–110. doi:10.1016/j.jpsychires.2020.09.027.
  • Hicks MJ, Kaminsky SM, De BP, Rosenberg JB, Evans SM, Foltin RW, Andrenyak DM, Moody DE, Koob GF, Janda KD, et al. Fate of systemically administered cocaine in nonhuman primates treated with the dAd5GNE anticocaine vaccine. Hum Gene Ther Clin Dev. 2014;25(1):40–9. doi:10.1089/humc.2013.231.
  • Sabato B, Augusto PSA, Lima Gonçalves Pereira R, Coutinho Batista Esteves F, Caligiorne SM, Rodrigues Dias Assis B, Apolo Correia Marcelino S, Pires Do Espírito Santo L, Dias Dos Reis K, Da Silva Neto L, et al. Safety and immunogenicity of the anti-cocaine vaccine UFMG-VAC-V4N2 in a non-human primate model. Vaccine. 2023;41:2127–36. doi:10.1016/j.vaccine.2023.02.031.
  • Bayart C, Mularoni A, Hemmani N, Kerachni S, Jose J, Gouet P, Paladino J, Le Borgne M. Tetanus toxin fragment C: structure, drug discovery research and production. Pharm (Basel). 2022;15(6):756. doi:10.3390/ph15060756.
  • Oliver JL, Pashmi G, Barnett P, Mettens P, Biemans R, Monteyne P, Palmantier R, Gallagher T, Ramaya S, Wonnacott S. Development of an anti-cotinine vaccine to potentiate nicotine-based smoking cessation strategies. Vaccine. 2007;25(42):7354–62. doi:10.1016/j.vaccine.2007.08.019.
  • Tonstad S, Heggen E, Giljam H, Lagerbäck PÅ, Tønnesen P, Wikingsson LD, Lindblom N, de Villiers S, Svensson TH, Fagerström KO. Niccine®, a nicotine vaccine, for relapse prevention: a phase II, randomized, placebo-controlled, multicenter clinical trial. Nicotine Tob Res. 2013;15:1492–501. doi:10.1093/ntr/ntt003.
  • Haile CN, Kosten TA, Shen XY, O’Malley PW, Winoske KJ, Kinsey BM, Wu Y, Huang Z, Lykissa ED, Naidu N, et al. Altered methamphetamine place conditioning in mice vaccinated with a succinyl-methamphetamine-tetanus-toxoid vaccine. Am J Addict. 2015;24(8):748–55. doi:10.1111/ajad.12307.
  • Arora R, Haile CN, Kosten TA, Wu Y, Ramakrishnan M, Hawkins LD, Orson FM, Kosten TR. Preclinical efficacy of an anti-methamphetamine vaccine using E6020 adjuvant. Am J Addict. 2019;28(2):119–126. doi:10.1111/ajad.12867.
  • Barrientos RC, Whalen C, Torres OB, Sulima A, Bow EW, Komla E, Beck Z, Jacobson AE, Rice KC, Matyas GR. Bivalent conjugate vaccine induces dual immunogenic response that attenuates heroin and fentanyl effects in mice. Bioconjug Chem. 2021;32(11):2295–2306. doi:10.1021/acs.bioconjchem.1c00179.
  • Barrientos RC, Bow EW, Whalen C, Torres OB, Sulima A, Beck Z, Jacobson AE, Rice KC, Matyas GR. Novel vaccine that blunts fentanyl effects and sequesters ultrapotent fentanyl analogues. Mol Pharm. 2020;17(9):3447–3460. doi:10.1021/acs.molpharmaceut.0c00497.
  • Tenney RD, Blake S, Bremer PT, Zhou B, Hwang CS, Poklis JL, Janda KD, Banks ML. Vaccine blunts fentanyl potency in male rhesus monkeys. Neuropharmacology. 2019;158:107730. doi:10.1016/j.neuropharm.2019.107730.
  • Townsend EA, Blake S, Faunce KE, Hwang CS, Natori Y, Zhou B, Bremer PT, Janda KD, Banks ML. Conjugate vaccine produces long-lasting attenuation of fentanyl vs. food choice and blocks expression of opioid withdrawal-induced increases in fentanyl choice in rats. Neuropsychopharmacology. 2019;44:1681–9. doi:10.1038/s41386-019-0385-9.
  • Havlicek DF, Rosenberg JB, De BP, Hicks MJ, Sondhi D, Kaminsky SM, Crystal RG, Kremer EJ. Cocaine vaccine dAd5gne protects against moderate daily and high-dose “binge” cocaine use. PLoS One. 2020;15(11):e0239780. doi:10.1371/journal.pone.0239780.
  • Kalivas PW, Duffy P. Effect of acute and daily cocaine treatment on extracellular dopamine in the nucleus accumbens. Synapse. 1990;5(1):48–58. doi:10.1002/syn.890050104.
  • Moghaddam B, Bunney BS. Differential effect of cocaine on extracellular dopamine levels in rat medial prefrontal cortex and nucleus accumbens: comparison to amphetamine. Synapse. 1989;4(2):156–61. doi:10.1002/syn.890040209.
  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev. 1998;78(1):189–225. doi:10.1152/physrev.1998.78.1.189.
  • Hope B, Kosofsky B, Hyman SE, Nestler EJ. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc Natl Acad Sci USA. 1992;89(13):5764–8. doi:10.1073/pnas.89.13.5764.
  • Robertson GS, Jian M. D1 and D2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain. Neuroscience. 1995;64(4):1019–34. doi:10.1016/0306-4522(94)00426-6.
  • Young ST, Porrino LJ, Iadarola MJ. Cocaine induces striatal c-fos-immunoreactive proteins via dopaminergic D1 receptors. Proc Natl Acad Sci USA. 1991;88:1291–5. doi:10.1073/pnas.88.4.1291.
  • Zhang D, Zhang L, Tang Y, Zhang Q, Lou D, Sharp FR. Gene expression changes induced by repeated cocaine administration through the dopamine D1 receptors. Neuropsychopharmacology. 2005;30:1443–54. doi:10.1038/sj.npp.1300680.
  • Zhang J, Zhang L, Jiao H, Zhang Q, Zhang D, Lou D, Katz JL, Xu M. c-Fos facilitates the acquisition and extinction of cocaine-induced persistent changes. J Neurosci. 2006;26(51):13287–96. doi:10.1523/JNEUROSCI.3795-06.2006.
  • Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci. 1991;14(1):421–51. doi:10.1146/annurev.ne.14.030191.002225.
  • Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. Brain Res Brain Res Rev. 1998;28(3):370–490. doi:10.1016/S0165-0173(98)00018-6.
  • Lucibello FC, Lowag C, Neuberg M, Müller R. Trans-repression of the mouse c-fos promoter: a novel mechanism of fos-mediated trans-regulation. Cell. 1989;59(6):999–1007. doi:10.1016/0092-8674(89)90756-3.
  • Maoz A, Hicks MJ, Vallabhjosula S, Synan M, Kothari PJ, Dyke JP, Ballon DJ, Kaminsky SM, De BP, Rosenberg JB, et al. Adenovirus capsid-based anti-cocaine vaccine prevents cocaine from binding to the nonhuman primate CNS dopamine transporter. Neuropsychopharmacology. 2013;38(11):2170–8. doi:10.1038/npp.2013.114.
  • Koetzner L, Deng S, Sumpter TL, Weisslitz M, Abner RT, Landry DW, Woods JH. Titer-dependent antagonism of cocaine following active immunization in rhesus monkeys. J Pharmacol Exp Ther. 2001;296:789–96.