2,201
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Cancer

Establishment of a novel tumor neoantigen prediction tool for personalized vaccine design

, , , , &
Article: 2300881 | Received 06 Sep 2023, Accepted 28 Dec 2023, Published online: 12 Jan 2024

References

  • Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–10. doi:10.1038/nature22991.
  • Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–226. doi:10.1038/nature23003.
  • Kha QH, Le V-H, Hung TNK, Nguyen NTK, Le NQK. Development and validation of an explainable machine learning-based prediction model for drug–food interactions from chemical structures. Sensors (Basel). 2023;23(8):3962. doi:10.3390/s23083962.
  • Le NQ, Nguyen TT, Ou YY. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties. J Mol Graph Model. 2017;73:166–178. doi:10.1016/j.jmgm.2017.01.003.
  • Yewdell JW, Bennink JR. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol. 1999;17:51–88. doi:10.1146/annurev.immunol.17.1.51.
  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber W-J, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature. 2014;515(7528):577–581. doi:10.1038/nature13988.
  • Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility. Genome Med. 2019;11(1):56. doi:10.1186/s13073-019-0666-2.
  • Hundal J, Carreno BM, Petti AA, Linette GP, Griffith OL, Mardis ER, Griffith M. pVAC-Seq: a genome-guided in silico approach to identifying tumor neoantigens. Genome Med. 2016;8(1):11. doi:10.1186/s13073-016-0264-5.
  • Bais P, Namburi S, Gatti DM, Zhang X, Chuang JH. CloudNeo: a cloud pipeline for identifying patient-specific tumor neoantigens. Bioinformatics. 2017;33(19):3110–3112. doi:10.1093/bioinformatics/btx375.
  • Tappeiner E, Finotello F, Charoentong P, Mayer C, Rieder D, Trajanoski Z. TIminer: NGS data mining pipeline for cancer immunology and immunotherapy. Bioinformatics. 2017;33(19):3140–3141. doi:10.1093/bioinformatics/btx377.
  • Zhou Z, Lyu X, Wu J, Yang X, Wu S, Zhou J, Gu X, Su Z, Chen S. TSNAD: an integrated software for cancer somatic mutation and tumour-specific neoantigen detection. R Soc Open Sci. 2017;4(4):170050. doi:10.1098/rsos.170050.
  • Jurtz V, Paul S, Andreatta M, Marcatili P, Peters B, Nielsen M. NetMHCpan-4.0: improved peptide–MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol. 2017;199(9):3360–3368. doi:10.4049/jimmunol.1700893.
  • Bulik-Sullivan B, Busby J, Palmer CD, Davis MJ, Murphy T, Clark A, Busby M, Duke F, Yang A, Young L, et al. Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification. Nat Biotechnol. 2018;37:55–63. doi:10.1038/nbt.4313.
  • O’Donnell TJ, Rubinsteyn A, Laserson U. MHCflurry 2.0: improved pan-allele prediction of MHC class I-presented peptides by incorporating antigen processing. Cell Syst. 2020;11(4):418–419. doi:10.1016/j.cels.2020.09.001.
  • Zhao W, Sher X, Peters B. Systematically benchmarking peptide-MHC binding predictors: from synthetic to naturally processed epitopes. PLoS Comput Biol. 2018;14(11):e1006457. doi:10.1371/journal.pcbi.1006457.
  • Vitiello A, Zanetti M. Neoantigen prediction and the need for validation. Nat Biotechnol. 2017;35(9):815–817. doi:10.1038/nbt.3932.
  • Diao K, Chen J, Wu T, Wang X, Wang G, Sun X, Zhao X, Wu C, Wang J, Yao H, et al. Seq2Neo: a comprehensive pipeline for cancer neoantigen immunogenicity prediction. IJMS. 2022;23(19):11624. doi:10.3390/ijms231911624.
  • Wu J, Wang W, Zhang J, Zhou B, Zhao W, Su Z, Gu X, Wu J, Zhou Z, Chen S, et al. DeepHLApan: a deep learning approach for neoantigen prediction considering both HLA-Peptide binding and immunogenicity. Front Immunol. 2019;10:2559. doi:10.3389/fimmu.2019.02559.
  • Calis JJ, Maybeno M, Greenbaum JA, Weiskopf D, De Silva AD, Sette A, Keşmir C, Peters B. Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Comput Biol. 2013;9(10):e1003266. doi:10.1371/journal.pcbi.1003266.
  • Li G, Iyer B, Prasath VBS, Ni Y, Salomonis N. DeepImmuno: deep learning-empowered prediction and generation of immunogenic peptides for T-cell immunity. Brief Bioinform. 2021;22(6):bbab160. doi:10.1093/bib/bbab160.
  • Noh SH, Park SR, Yang H-K, Chung HC, Chung I-J, Kim S-W, Kim H-H, Choi J-H, Kim H-K, Yu W, et al. Adjuvant capecitabine plus oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): 5-year follow-up of an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(12):1389–1396. doi:10.1016/S1470-2045(14)70473-5.
  • Liu Q, Chu Y, Shao J, Qian H, Yang J, Sha H, Cen L, Tian M, Xu Q, Chen F, et al. Benefits of an immunogenic personalized neoantigen nanovaccine in patients with high-risk Gastric/gastroesophageal junction cancer. Adv Sci (Weinh). 2022;10(1):e2203298. doi:10.1002/advs.202203298.
  • Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, Lamb A, Ward JP, Sidney J, Blazquez AB, et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183(3):818–34.e13. doi:10.1016/j.cell.2020.09.015.
  • Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, et al. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013;19(6):747–752. doi:10.1038/nm.3161.
  • Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin Investig Drugs. 2021;30(5):529–41. doi:10.1080/13543784.2021.1896702.
  • Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4):215–229. doi:10.1038/s41571-020-00460-2.
  • Chabanon RM, Pedrero M, Lefebvre C, Marabelle A, Soria J-C, Postel-Vinay S. Mutational landscape and sensitivity to immune checkpoint blockers. Clin Cancer Res. 2016;22(17):4309–4321. doi:10.1158/1078-0432.CCR-16-0903.
  • Gfeller D, Guillaume P, Michaux J, Pak H-S, Daniel RT, Racle J, Coukos G, Bassani-Sternberg M. The length distribution and multiple specificity of naturally presented HLA-I ligands. J Immunol. 2018;201(12):3705–3716. doi:10.4049/jimmunol.1800914.
  • Bassani-Sternberg M, Chong C, Guillaume P, Solleder M, Pak H, Gannon PO, Kandalaft LE, Coukos G, Gfeller D. Deciphering HLA-I motifs across HLA peptidomes improves neo-antigen predictions and identifies allostery regulating HLA specificity. PLoS Comput Biol. 2017;13(8):e1005725. doi:10.1371/journal.pcbi.1005725.
  • Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, Buus S. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol. 2016;197(4):1517–1524. doi:10.4049/jimmunol.1600582.
  • Kriegeskorte N, Golan T. Neural network models and deep learning. Curr Biol. 2019;29(7):R231–R236. doi:10.1016/j.cub.2019.02.034.
  • Nelde A, Rammensee HG, Walz JS. The peptide vaccine of the future. Mol Cell Proteom. 2021;20:100022. doi:10.1074/mcp.R120.002309.
  • Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: current progress and future challenges. Chem Rev. 2020;120(6):3210–3229. doi:10.1021/acs.chemrev.9b00472.