1,477
Views
0
CrossRef citations to date
0
Altmetric
Novel Vaccines

Formulation development of a stable influenza recombinant neuraminidase vaccine candidate

, , , , , , , , , , ORCID Icon & show all
Article: 2304393 | Received 25 Oct 2023, Accepted 09 Jan 2024, Published online: 18 Mar 2024

References

  • Furlong E, Kotecha RS. Lessons learnt from influenza vaccination in immunocompromised children undergoing treatment for cancer. Lancet Child Ado Health. 2023;7(3):199–11. doi:10.1016/S2352-4642(22)00315-7.
  • Al-Jabri M, Rosero C, Saade EA. Vaccine-preventable diseases in older adults. Infect Dis Clin NA. 2023;37(1):103–21. doi:10.1016/j.idc.2022.11.005.
  • Arunachalam AB, Post P, Rudin D. Unique features of a recombinant haemagglutinin influenza vaccine that influence vaccine performance. NPJ Vaccines. 2021;6(144). doi:10.1038/s41541-021-00403-7.
  • Berche P. The spanish flu. La Presse Médicale. 2022;51(3):104127. doi:10.1016/j.lpm.2022.104127.
  • Creytens S, Pascha MN, Ballegeer M, Saelens X. Influenza neuraminidase characteristics and potential as a vaccine target. Front Immunol. 2021;12:12. doi:10.3389/fimmu.2021.786617.
  • Wang H, Dou D, Ostbye H, Revol R, Daniels R. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification. Nat Microbio. 2019;4(12):2565–77. doi:10.1038/s41564-019-0537-z.
  • Varghese J, Laver W, Coleman P. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983;303(5912):35–40. doi:10.1038/303035a0.
  • McAuley JL, Gilbertson BP, Trifkovic S, Brown LE. Influenza virus neuraminidase structure and functions. Front Microbio. 2019;10. doi:10.3389/fmicb.2019.00039.
  • Harris A, Cardone G, Winkler DC, Steven AC. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci USA. 2006;103(50):19123–7. doi:10.1073/pnas.0607614103.
  • Casalino L, Seitz C, Lederhofer J, Tsybovsky Y, Wilson IA, Kanekiyo M, Amaro RE. Breathing and tilting: mesoscale simulations illuminate influenza glycoprotein vulnerabilities. ACS Cent Sci. 2022;8(12):1646–63. doi:10.1021/acscentsci.2c00981.
  • McMahon M, Strohmeier S, Rajendran M, Capuano C, Ellebedy AH, Wilson PC, Krammer F. Correctly folded - but not necessarily functional - influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine. 2020;38(45):7129–7137. doi:10.1016/j.vaccine.2020.08.067.
  • Ustyugova IV, Pougatcheva S, Farrell T, Strugnell T, Ganesh V, Zeldovich KB, Chivukula S, Goncalvez AP, Barro M. AF03 adjuvant improves anti-hemagglutinin and anti-neuraminidase immune responses induced by licensed seasonal quadrivalent influenza vaccines in mice. Vaccine. 2023;41(12):2022–34. doi:10.1016/j.vaccine.2023.02.034.
  • Memoli MJ, Shaw PA, Han A, Czajkowski L, Reed S, Athota R, Bristol T, Fargis S, Risos K, Powers JH, et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza A/H1N1 virus healthy human challenge model. ASM. 2016;7(2). doi:10.1128/mbio.00417-16.
  • Monto AS, Petrie JG, Cross RT, Johnson E, Liu M, Zhong W, Levine M, Katz JM, Ohmit SE. Antibody to influenza virus neuraminidase: an independent correlate of protection. J Infect Dis. 2015;212(8):1191–9. doi:10.1093/infdis/jiv195.
  • Memoli MJ, Shaw PA, Han A, Czajkowski L, Reed S, Athota R, Bristol T, Fargis S, Risos K, Powers JH, et al. Evaluation of antihemagglutinin and antineuraminidase antibodies as correlates of protection in an influenza a/H1N1 virus healthy human challenge model. mBio. 2016;7(2):e00417–00416. doi:10.1128/mBio.00417-16.
  • Dunning AJ, DiazGranados CA, Voloshen T, Hu B, Landolfi VA, Talbot HK. Correlates of protection against influenza in the elderly: results from an influenza vaccine efficacy trial. Clin Vaccine Immunol. 2016;23(3):228–35. doi:10.1128/CVI.00604-15.
  • Mettelman RC, Souquette A, Van de Velde LA, Vegesana K, Allen EK, Kackos CM, Trifkovic S, DeBeauchamp J, Wilson TL, St James DG, et al. Baseline innate and T cell populations are correlates of protection against symptomatic influenza virus infection independent of serology. Nat Immunol. 2023;24(9):1511–1526. doi:10.1038/s41590-023-01590-2.
  • Couzens L, Gao J, Westgeest K, Sandbulte M, Lugovtsev V, Fouchier R, Eichelberger M. An optimized enzyme-linked lectin assay to measure influenza A virus neuraminidase inhibition antibody titers in human sera. J Virol Methods. 2014;210:7–14. doi:10.1016/j.jviromet.2014.09.003.
  • Job ER, Ysenbaert T, Smet A, Christopoulou I, Strugnell T, Oloo EO, Oomen RP, Kleanthous H, Vogel TU, Saelens X, et al. Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. NPJ Vaccines. 2018;3(1). doi:10.1038/s41541-018-0093-1.
  • Rosu ME, Kok A, Bestebroer TM, de Meulder D, Verveer EP, Pronk MR, Dekker LJM, Luider TM, Richard M, van den Brand JMA, et al. Contribution of neuraminidase to the efficacy of seasonal split influenza vaccines in the ferret model. J Virol. 2022;96(6):e0195921. doi:10.1128/jvi.01959-21.
  • Rockman S, Brown LE, Barr IG, Gilbertson B, Lowther S, Kachurin A, Kachurina O, Klippel J, Bodle J, Pearse M, et al. Neuraminidase-inhibiting antibody is a correlate of cross-protection against lethal H5N1 influenza virus in ferrets immunized with seasonal influenza vaccine. J Virol. 2013;87(6):3053–3061. doi:10.1128/JVI.02434-12.
  • Ausar SF, Chan J, Hoque W, James O, Jayasundara K, Harper K. Application of extrinsic fluorescence spectroscopy for the high throughput formulation screening of aluminum-adjuvanted vaccines. J Pharma Sci. 2011;100(2):431–40. doi:10.1002/jps.22282.
  • Evers A, Clenet D, Pfeiffer-Marek S. Long-term stability prediction for developability assessment of biopharmaceutics using advanced kinetic modeling. Nat Lib Med. 2022;14(2):375. doi:10.3390/pharmaceutics14020375.
  • Clenet D, Imbert F, Probeck P, Rahman N, Ausar SF. Advanced kinetic analysis as a tool for formulation development and prediction of vaccine stability. J Pharma Sci. 2014;103(10):3055–64. doi:10.1002/jps.24117.
  • Campa C, Pronce T, Paludi M, Weusten J, Conway L, Savery J, Richards C, Clénet D. Use of stability modeling to support accelerated vaccine development and supply. Vaccines. 2021;9(10):1114. doi:10.3390/vaccines9101114.
  • Zhu S, Liuni P, Ettorre L, Chen T, Szeto J, Carpick B, James DA, Wilson DJ. Hydrogen–deuterium exchange epitope mapping reveals distinct neutralizing mechanisms for two monoclonal antibodies against diphtheria toxin. Biochem (Moscow). 2019;58(6):646–56. doi:10.1021/acs.biochem.8b01123.
  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Prtcls. 2015;10(6):845–58. doi:10.1038/nprot.2015.053.
  • Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ. PDB entry - 2HTY. WW PDB. 2006. doi:10.1038/nature05114.
  • Office of Laboratory Animal Welfare. PHS policy on humane care and use of laboratory animals. Nat Instit Health. 2015. https://olaw.nih.gov/policies-laws/phs-policy.htm.
  • Committee for the Update of the Guide for the Care And use of Laboratory Animals. Guide for the care and use of laboratory animals. NRC Nat Academ. 2011. doi:10.2210/pdb2hty/pdb.
  • Cox MM, Izikson R, Post P, Dunkle L. Safety, efficacy, and immunogenicity of flublok in the prevention of seasonal influenza in adults. Ther Adv Vacc Immun. 2015;3(4):97–108. doi:10.1177/2051013615595595.
  • Ellis D, Lederhofer J, Acton OJ, Tsybovsky Y, Kephart S, Yap C, Gillespie RA, Creanga A, Olshefsky A, Stephens T, et al. Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nat Commun. 2022;13(1). doi:10.1038/s41467-022-29416-z.
  • Amaro RE, Swift RV, Votapka L, Li WW, Walker RC, Bush RM. Mechanism of 150-cavity formation in influenza neuraminidase. Nat Commun. 2011;2(1). doi:10.1038/ncomms1390.
  • Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;443(7107):45–9. doi:10.1038/nature05114.
  • Bhatnagar BS, Bogner RH, Pikal MJ. Protein stability during freezing: separation of stresses and mechanisms of protein stabilization. Pharma Dev Tech. 2008;12(5):505–23. doi:10.1080/10837450701481157.
  • Pikal-Cleland KA, Rodriguez-Hornedo N, Amidon GL, Carpenter JF. Protein denaturation during freezing and thawing in phosphate Buffer systems: monomeric and tetrameric β-galactosidase. Arch Biochem Biophys. 2000;384(2):398–406. doi:10.1006/abbi.2000.2088.
  • Rumsey SC, Galeano NF, Arad Y, Deckelbaum RJ. Cryopreservation with sucrose maintains normal physical and biological properties of human plasma low density lipoproteins. J Lipid Res. 1992;33(10):1551–61. doi:10.1016/S0022-2275(20)41409-9.
  • Yu LX. Pharmaceutical quality by design: product and process development, understanding, and control. Pharma Res. 2008;25(10):2463–2463. doi:10.1007/s11095-008-9667-3.
  • Clenet D, Hourquet V, Woinet B, Ponceblanc H, Vangelisti M. A spray freeze dried micropellet based formulation proof-of-concept for a yellow fever vaccine candidate. Euro J Pharma Biopharma. 2019;142:334–43. doi:10.1016/j.ejpb.2019.07.008.
  • Clenet D, Clavier L, Strobbe B, Le Bon C, Zoonens M, Saulnier A. Full-length G glycoprotein directly extracted from rabies virus with detergent and then stabilized by amphipols in liquid and freeze-dried forms. Biotech Bioeng. 2021;118(11):4317–30. doi:10.1002/bit.27900.
  • Huelsmeyer M, Kuzman D, Boncina M, Martinez J, Steinbrugger C, Weusten J, Calero-Rubio C, Roche W, Niederhaus B, VanHaelst Y, et al. A universal tool for stability predictions of biotherapeutics, vaccines and in vitro diagnostic products. Sci Reps. 2023;13(1). doi:10.1038/s41598-023-35870-6.