1,523
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Other

From defense to offense: Modulating toll-like receptors to combat arbovirus infections

ORCID Icon, , , &
Article: 2306675 | Received 08 Sep 2023, Accepted 14 Jan 2024, Published online: 23 Jan 2024

References

  • Lemaitre B, Reichhart JM, Hoffmann JA. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci. 1997;94:14614–12. doi:10.1073/pnas.94.26.14614.
  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973–83. doi:10.1016/S0092-8674(00)80172-5.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014 Sep 25;5:461. doi:10.3389/fimmu.2014.00461.
  • Tsan MF, Gao B. Review: pathogen-associated molecular pattern contamination as putative endogenous ligands of toll-like receptors. J Endotoxin Res. 2007;13(1):6–14. doi:10.1177/0968051907078604.
  • Roeder A, Kirschning CJ, Rupec RA, Schaller M, Weindl G, Korting HC. Toll-like receptors as key mediators in innate antifungal immunity. Med Mycol. 2004;42(6):485–98. doi:10.1080/13693780400011112.
  • Mukherjee S, Huda S, Sinha Babu SP. Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand J Immunol. 2019;90(1):e12771. doi:10.1111/sji.12771.
  • Rice M, Nicol A, Nuovo GJ. The differential expression of toll like receptors and RIG-1 in the placenta of neonates with in utero infections. Ann Diagn Pathol. 2023;62:152080. doi:10.1016/j.anndiagpath.2022.152080.
  • Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317–37. doi:10.1093/intimm/dxp017.
  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443–51. doi:10.1016/s1074-7613(00)80119-3.
  • Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance. J Cell Mol Med. 2010;14(11):2592–2603. doi:10.1111/j.1582-4934.2010.01127.x.
  • Takeda K, Takeuchi O, Akira S. Recognition of lipopeptides by toll-like receptors. J Endotoxin Res. 2002;8(6):459–463. doi:10.1177/09680519020080060101.
  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA. 2000;97(25):13766–71. doi:10.1073/pnas.250476497.
  • Hajjar AM, O’Mahony DS, Ozinsky A, Underhill DM, Aderem A, Klebanoff SJ, Wilson CB. Cutting edge: functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J Immunol. 2001;166(1):15–19. doi:10.4049/jimmunol.166.1.15.
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi:10.1016/j.cell.2006.02.015.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi:10.1038/ni.1863.
  • Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem. 2004;279(13):12542–50. doi:10.1074/jbc.M310175200.
  • Sioud M. Innate sensing of self and non-self RNAs by toll-like receptors. Trends Mol Med. 2006;12(4):167–176. doi:10.1016/j.molmed.2006.02.004.
  • Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA. et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110(6):1970–81. doi:10.1182/blood-2006-09-044776.
  • Boehme KW, Compton T. Innate sensing of viruses by toll-like receptors. J Virol. 2004;78(15):7867–73. doi:10.1128/JVI.78.15.7867-7873.2004.
  • Botos I, Segal DM, Davies DR. The structural biology of toll-like receptors. Structure. 2011;19(4):447–59. doi:10.1016/j.str.2011.02.004.
  • Gao D, Li W. Structures and recognition modes of toll‐like receptors. Proteins. 2017;85(1):3–9. doi:10.1002/prot.25179.
  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, Segal DM. Leucine-rich repeats and pathogen recognition in toll-like receptors. Trends Immunol. 2003;24(10):528–33. doi:10.1016/S1471-4906(03)00242-4.
  • Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209. doi:10.1007/s10495-014-1073-1.
  • Park SH, Kyeong MS, Hwang Y, Ryu SY, Han SB, Kim Y. Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger. Biochem Biophys Res Commun. 2012;419:735–40. doi:10.1016/j.bbrc.2012.02.091.
  • Rani M, Nicholson SE, Zhang Q, Schwacha MG. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns. 2017;43(2):297–303. doi:10.1016/j.burns.2016.10.001.
  • Brieger A, Rink L, Haase H. Differential regulation of TLR-dependent MyD88 and TRIF signaling pathways by free zinc ions. J Immunol. 2013;191(4):1808–17. doi:10.4049/jimmunol.1301261.
  • Akira S, Sato S. Toll-like receptors and their signaling mechanisms. Scand J Infect Dis. 2003;35(9):555–62. doi:10.1080/00365540310015683.
  • Baccala R, Gonzalez-Quintial R, Lawson BR, Stern ME, Kono DH, Beutler B, Theofilopoulos AN. Sensors of the innate immune system: their mode of action. Nat Rev Rheumatol. 2009;5(8):448–56. doi:10.1038/nrrheum.2009.136.
  • Brown J, Wang H, Hajishengallis GN, Martin M. TLR-signaling networks: an integration of adaptor molecules, kinases, and cross-talk. J Dent Res. 2011;90(4):417–27. doi:10.1177/0022034510381264.
  • Campbell GR, Rawat P, Spector SA. Pacritinib inhibition of IRAK1 blocks aberrant TLR8 signalling by SARS-CoV-2 and HIV-1-derived RNA. J Innate Immun. 2023;15(1):96–106. doi:10.1159/000525292.
  • Honda K, Takaoka A, Taniguchi T. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity. 2006;25(3):349–60. doi:10.1016/j.immuni.2006.08.009.
  • Tian Y, Wang ML, Zhao J. Crosstalk between autophagy and type I interferon responses in innate antiviral immunity. Viruses. 2019;11:132. doi:10.3390/v11020132.
  • Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol. 2004;40(12):861–8. doi:10.1016/j.molimm.2003.10.006.
  • Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014;426(6):1246–1264. doi:10.1016/j.jmb.2013.11.024.
  • Chamberlain RW. Arboviruses, the arthropod-borne animal viruses. In: Maramorosch K. editor. Insect viruses. Current topics in microbiology and immunology. Vol. 42. Berlin, Heidelberg: Springer; 1968. pp. 38–58.
  • Patterson J, Sammon M, Garg M. Dengue, Zika and chikungunya: emerging arboviruses in the New World. West J Emerg Med. 2016;17:671–9. doi:10.5811/westjem.2016.9.30904.
  • Boga JA, Alvarez-Arguelles ME, Rojo-Alba S, Rodríguez M, de Oña M, Melón S. Simultaneous detection of Dengue virus, Chikungunya virus, Zika virus, Yellow fever virus and West Nile virus. J Virol Methods. 2019;268:53–5.
  • Yang X, Quam MB, Zhang T, Sang S. Global burden for dengue and the evolving pattern in the past 30 years. J Travel Med. 2021. doi:10.1093/jtm/taab146.
  • Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011 Jul 15;11(8):532–543. doi:10.1038/nri3014.
  • Wang A, Thurmond S, Islas L, Hui K, Hai R. Zika virus genome biology and molecular pathogenesis. Emerg Microbes Infect. 2017 Mar 22;6(3):e13. doi:10.1038/emi.2016.141.
  • Bernardo-Menezes LC, Agrelli A, Oliveira ASLE, Moura RR, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop. 2022 Sep 30;55:e02632022. doi:10.1590/0037-8682-0263-2022.
  • Shen S, Shi J, Wang J, Tang S, Wang H, Hu Z, Deng F. Phylogenetic analysis revealed the central roles of two African countries in the evolution and worldwide spread of Zika virus. Virol Sin. 2016;31(2):118–30. doi:10.1007/s12250-016-3774-9.
  • Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010;8(7):491–500. doi:10.1038/nrmicro2368.
  • Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L. Chikungunya virus infection: an overview. New Microbiol. 2013;36:211–27.
  • Chen R, Puri V, Fedorova N, Lin D, Hari KL, Jain R, Rodas JD, Das SR, Shabman RS, Weaver SC. et al. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J Virol. 2016;90(23):10600–11. doi:10.1128/JVI.01166-16.
  • Brinton MA. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013 Dec 27;6(1):13–53. doi:10.3390/v6010013.
  • Zeller HG, Schuffenecker I. West Nile virus: an overview of its spread in Europe and the Mediterranean basin in contrast to its spread in the Americas. Eur J Clin Microbiol Infect Dis. 2004;23(3):147–56. doi:10.1007/s10096-003-1085-1.
  • Beasley DW, McAuley AJ, Bente DA. Yellow fever virus: genetic and phenotypic diversity and implications for detection, prevention and therapy. Ant Res. 2015;115:48–70.
  • Gardner CL, Ryman KD. Yellow fever: a reemerging threat. Clin Lab Med. 2010;30(1):237–260. doi:10.1016/j.cll.2010.01.001.
  • Couto-Lima D, Madec Y, Bersot MI, Campos SS, Motta MD, Santos FB, Vazeille M, Vasconcelos PF, Lourenço-de-Oliveira R, Failloux AB. Potential risk of re-emergence of urban transmission of yellow fever virus in Brazil facilitated by competent Aedes populations. Sci Rep. 2017;7(1):1–2. doi:10.1038/s41598-017-05186-3.
  • Gould EA, Higgs S. Impact of climate change and other factors on emerging arbovirus diseases. Trans R Soc Trop Med Hyg. 2009;103(2):109–21. doi:10.1016/j.trstmh.2008.07.025.
  • Tambo E, El Dessouky AG, Khater EI. Innovative preventive and resilience approaches against Aedes-linked vector-borne arboviral diseases threat and epidemics burden in gulf council countries. Oman Med J. 2019. doi:10.5001/omj.2019.73.
  • Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J. 2008;2:49–59. doi:10.2174/1874285800802010049.
  • Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med. 2004;10(12):1366–1373. doi:10.1038/nm1140.
  • Gagnon SJ, Mori M, Kurane I, Green S, Vaughn DW, Kalayanarooj S, Suntayakorn S, Ennis FA, Rothman AL. Cytokine gene expression and protein production in peripheral blood mononuclear cells of children with acute dengue virus infections. J Med Virol. 2002;67(1):41–6. doi:10.1002/jmv.2190.
  • Modhiran N, Watterson D, Blumenthal A, Baxter AG, Young PR, Stacey KJ. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol Cell Biol. 2017;95(5):491–495. doi:10.1038/icb.2017.5.
  • Tsai YT, Chang SY, Lee CN, Kao CL. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol. 2009;11(4):604–15. doi:10.1111/j.1462-5822.2008.01277.x.
  • Bustos-Arriaga J, García-Machorro J, León-Juárez M, García-Cordero J, Santos-Argumedo L, Flores-Romo L, Méndez-Cruz AR, Juárez-Delgado FJ, Cedillo-Barrón L. Activation of the innate immune response against DENV in normal non-transformed human fibroblasts. PloS Negl Trop Dis. 2011. doi:10.1371/journal.pntd.0001420.
  • Sariol CA, Martínez MI, Rivera F, Rodríguez IV, Pantoja P, Abel K, Arana T, Giavedoni L, Hodara V, White LJ. et al. Decreased dengue replication and an increased anti-viral humoral response with the use of combined toll-like receptor 3 and 7/8 agonists in macaques. PloS One. 2011. doi:10.1371/journal.pone.0019323.
  • Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, Feng L, Zhang P, Huang X. Activation of toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-β in cultured hepatoma cells. PloS One. 2011. doi:10.1371/journal.pone.0023346.
  • Sengupta S, Mukherjee S, Bhattacharya N, Tripathi A. Differential genotypic signatures of toll-like receptor polymorphisms among dengue-chikungunya mono-and co-infected Eastern Indian patients. Eur J Clin Microbiol Infect Dis. 2021;40:1369–81.
  • Décembre E, Assil S, Hillaire ML, Dejnirattisai W, Mongkolsapaya J, Screaton GR, Davidson AD, Dreux M. Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PloS Pathog. 2014. doi:10.1371/journal.ppat.1004434.
  • Perry ST, Prestwood TR, Lada SM, Benedict CA, Shresta S. Cardif-mediated signaling controls the initial innate response to dengue virus in vivo. J Virol. 2009;83(16):8276–81. doi:10.1128/JVI.00365-09.
  • Kayesh ME, Kitab B, Sanada T, Hayasaka D, Morita K, Kohara M, Tsukiyama-Kohara K. Susceptibility and initial immune response of Tupaia belangeri cells to dengue virus infection. Infect Genet Evol. 2017;51:203–10. doi:10.1016/j.meegid.2017.04.003.
  • Luo H, Winkelmann ER, Fernandez-Salas I, Li L, Mayer SV, Danis-Lozano R, Sanchez-Casas RM, Vasilakis N, Tesh R, Barrett AD. et al. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Ant Res. 2018;151:55–62.
  • Kayesh ME, Tsukiyama-Kohara K. Mammalian animal models for dengue virus infection: a recent overview. Arch Virol. 2022;167(1):31–44. doi:10.1007/s00705-021-05298-2.
  • Estrada-Jiménez T, Millan-Perez Pena L, Flores-Mendoza L, Sedeño-Monge V, Santos-López G, Rosas-Murrieta N, Reyes-Carmona S, Terán-Cabanillas E, Hernández J, Herrera-Camacho I. et al. Upregulation of the suppressors of cytokine signaling 1 and 3 is associated with arrest of phosphorylated-STAT1 nuclear importation and reduced innate response in dengue virus-infected macrophages. Viral Immunol. 2016;29(2):95–104. doi:10.1089/vim.2014.0136.
  • Latanova A, Starodubova E, Karpov V. Flaviviridae nonstructural proteins: the role in molecular mechanisms of triggering inflammation. Viruses. 2022. doi:10.3390/v14081808.
  • Kao YS, Wang LC, Chang PC, Lin HM, Lin YS, Yu CY, Chen CC, Lin CF, Yeh TM, Wan SW. et al. Negative regulation of type I interferon signaling by integrin-linked kinase permits dengue virus replication. PloS Pathog. 2023. doi:10.1371/journal.ppat.1011241.
  • Udawatte DJ, Lang DM, Currier JR, Medin CL, Rothman AL. Dengue virus downregulates TNFR1-and TLR3-stimulated NF-κB activation by targeting RIPK1. Front Cell Infect Microbiol. 2022. doi:10.3389/fcimb.2022.926036.
  • Plociennikowska A, Frankish J, Moraes T, Del Prete D, Kahnt F, Acuna C, Slezak M, Binder M, Bartenschlager R. TLR3 activation by Zika virus stimulates inflammatory cytokine production which dampens the antiviral response induced by RIG-I-like receptors. J Virol. 2021. doi:10.1128/jvi.01050-20.
  • Santos CN, Magalhães LS, Fonseca AB, Bispo AJ, Porto RL, Alves JC, Dos Santos CA, de Carvalho JV, da Silva AM, Teixeira MM. et al. Association between genetic variants in TREM1, CXCL10, IL4, CXCL8 and TLR7 genes with the occurrence of congenital Zika syndrome and severe microcephaly. Sci Rep. 2023. doi:10.1038/s41598-023-30342-3.
  • Haque A, Akçeşme FB, Pant AB. A review of Zika virus: hurdles toward vaccine development and the way forward. Antivir Ther. 2018;23(4):285–93. doi:10.3851/IMP3215.
  • Lundberg R, Melén K, Westenius V, Jiang M, Österlund P, Khan H, Vapalahti O, Julkunen I, Kakkola L. Zika virus non-structural protein NS5 inhibits the RIG-I pathway and interferon lambda 1 promoter activation by targeting IKK epsilon. Viruses. 2019. doi:10.3390/v11111024.
  • Gim E, Shim DW, Hwang I, Shin OS, Yu JW. Zika virus impairs host NLRP3-mediated inflammasome activation in an NS3-dependent manner. Immune Netw. 2019 23;19(6). doi:10.4110/in.2019.19.e40.
  • Hernández-Sarmiento LJ, Valdés-López JF, Urcuqui-Inchima S. American-Asian-and African lineages of Zika virus induce differential pro-inflammatory and interleukin 27-dependent antiviral responses in human monocytes. Virus Res. 2023. doi:10.1016/j.virusres.2023.199040.
  • Daffis S, Samuel MA, Suthar MS, Gale JM, Diamond MS. Toll-like receptor 3 has a protective role against West Nile virus infection. J Virol. 2008;82(21):10349–58. doi:10.1128/JVI.00935-08.
  • Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, Liu W, Ashour J, Shupert WL, Holbrook MR. et al. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol. 2010;84(7):3503–15. doi:10.1128/JVI.01161-09.
  • Xie G, Luo H, Tian B, Mann B, Bao X, McBride J, Tesh R, Barrett AD, Wang T. A West Nile virus NS4B-P38G mutant strain induces cell intrinsic innate cytokine responses in human monocytic and macrophage cells. Vaccine. 2015;33(7):869–78. doi:10.1016/j.vaccine.2014.12.056.
  • Segato-Vendrameto CZ, Zanluca C, Zucoloto AZ, Zaninelli TH, Bertozzi MM, Saraiva-Santos T, Ferraz CR, Staurengo-Ferrari L, Badaro-Garcia S, Manchope MF. et al. Chikungunya virus and its envelope protein E2 induce hyperalgesia in mice: inhibition by anti-E2 monoclonal antibodies and by targeting TRPV1. Cells. 2023. doi:10.3390/cells12040556.
  • Lani R, Teoh BT, Sam SS, AbuBakar S, Hassandarvish P. Fisetin modulates toll-like receptor-mediated innate antiviral response in Chikungunya virus-infected hepatocellular carcinoma Huh7 cells. Immuno. 2022;2(4):703–19. doi:10.3390/immuno2040043.
  • Petitdemange C, Wauquier N, Vieillard V. Control of immunopathology during chikungunya virus infection. J Allergy Clin Immunol. 2015;135(4):846–55. doi:10.1016/j.jaci.2015.01.039.
  • Bouraï M, Lucas-Hourani M, Gad HH, Drosten C, Jacob Y, Tafforeau L, Cassonnet P, Jones LM, Judith D, Couderc T. et al. Mapping of Chikungunya virus interactions with host proteins identified nsP2 as a highly connected viral component. J Virol. 2012;86(6):3121–34. doi:10.1128/JVI.06390-11.
  • Amaral MP, Coirada FC, de Souza Apostolico J, Tomita N, Fernandes ER, Souza HF, Chura-Chambi RM, Morganti L, Boscardin SB, Rosa DS. Prime-boost with Chikungunya virus E2 envelope protein combined with poly (I: C) induces specific humoral and cellular immune responses. Curr Res Immunol. 2021;2:23–31.
  • Tricou V, Essink B, Ervin JE, Turner M, Escudero I, Rauscher M, Brose M, Lefevre I, Borkowski A, Wallace D. Immunogenicity and safety of concomitant and sequential administration of yellow fever YF-17D vaccine and tetravalent dengue vaccine candidate TAK-003: a phase 3 randomized, controlled study. PloS Negl Trop Dis. 2023;17:e0011124. doi:10.1371/journal.pntd.0011124.
  • Cong Y, McArthur MA, Cohen M, Jahrling PB, Janosko KB, Josleyn N, Kang K, Zhang T, Holbrook MR. Characterization of yellow fever virus infection of human and non-human primate antigen presenting cells and their interaction with CD4+ T cells. Plos Neglect Trop Dis. 2016. doi:10.1371/journal.pntd.0004709.
  • Van Tol S, Hage A, Giraldo MI, Bharaj P, Rajsbaum R. The TRIMendous role of TRIMs in virus–host interactions. Vaccines. 2017. doi:10.3390/vaccines5030023.
  • Facciolà A, Visalli G, Laganà A, Di Pietro A. An overview of vaccine adjuvants: Current evidence and future perspectives. Vaccines (Basel). 2022 May 22;10(5):819. doi:10.3390/vaccines10050819.
  • Makkouk A, Abdelnoor AM. The potential use of toll-like receptor (TLR) agonists and antagonists as prophylactic and/or therapeutic agents. Immunopharmacol Immunotoxicol. 2009;31(3):331–8. doi:10.1080/08923970902802926.
  • Nicholls EF, Madera L, Hancock RE. Immunomodulators as adjuvants for vaccines and antimicrobial therapy. Annal New York Acad Sci. 2010;1213:46–61.
  • Connolly DJ, O’Neill LA. New developments in toll-like receptor targeted therapeutics. Curr Opin Pharmacol. 2012;12(4):510–8. doi:10.1016/j.coph.2012.06.002.
  • Cho JH, Lee HJ, Ko HJ, Yoon BI, Choe J, Kim KC, Hahn TW, Han JA, Choi SS, Jung YM. et al. The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget. 2017;8(15):24932–48. doi:10.18632/oncotarget.15326.
  • Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008;27(2):161–7. doi:10.1038/sj.onc.1210911.
  • Dunne A, Marshall NA, Mills KH. TLR-based therapeutics. Curr Opin Pharmacol. 2011;11:404–11.
  • Yuan J, Ni G, Wang T, Mounsey K, Cavezza S, Pan X, Liu X. Genital warts treatment: Beyond imiquimod. Hum Vaccin Immunother. 2018;14(7):1815–9. doi:10.1080/21645515.2018.1445947.
  • Shoimer I, Rosen N, Muhn C. Current management of actinic keratoses. Skin Ther Let. 2010;15:5–7.
  • Meyer T, Surber C, French LE, Stockfleth E. Resiquimod, a topical drug for viral skin lesions and skin cancer. Expert Opin Investig Drugs. 2013;22(1):149–59. doi:10.1517/13543784.2013.749236.
  • Pasco ST, Anguita J. Lessons from Bacillus Calmette-Guerin: harnessing trained immunity for vaccine development. Cells. 2020. doi:10.3390/cells9092109.
  • Siu L, Brody J, Gupta S, Marabelle A, Jimeno A, Munster P, Grilley-Olson J, Rook AH, Hollebecque A, Wong RK. et al. Safety and clinical activity of intratumoral MEDI9197 alone and in combination with durvalumab and/or palliative radiation therapy in patients with advanced solid tumors. J Immunother Cancer. 2020. doi:10.1136/jitc-2020-001095.
  • Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology. 2020. doi:10.1080/2162402X.2020.1796002.
  • Shoushtari M, Roohvand F, Salehi-Vaziri M, Arashkia A, Bakhshi H, Azadmanesh K. Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses. Hum Vaccin Immunother. 2022;18(5). doi:10.1080/21645515.2022.2079323.
  • Antonelli AC, Almeida VP, de Castro FO, Silva JM, Pfrimer IA, Cunha-Neto E, Maranhão AQ, Brígido MM, Resende RO, Bocca AL. et al. In silico construction of a multiepitope Zika virus vaccine using immunoinformatics tools. Sci Rep. 2022. doi:10.1038/s41598-021-03990-6.
  • DeFilippis VR. Chikungunya virus vaccines: platforms, progress, and challenges. In: Heise M. editor. Chikungunya virus. Current topics in microbiology and immunology, Vol. 435. Springer: Cham; 2019. doi:10.1007/82_2019_175.
  • Van Hoeven N, Joshi SW, Nana GI, Bosco-Lauth A, Fox C, Bowen RA, Clements DE, Martyak T, Parks DE, Baldwin S. et al. A novel synthetic TLR-4 agonist adjuvant increases the protective response to a clinical-stage West Nile virus vaccine antigen in multiple formulations. PloS One. 2016. doi:10.1371/journal.pone.0149610.
  • Gnjatic S, Sawhney NB, Bhardwaj N. Toll-like receptor agonists: are they good adjuvants? Cancer J. 2010;16:382–91.
  • Van Hoeven N, Wiley S, Gage E, Fiore-Gartland A, Granger B, Gray S, Fox C, Clements DE, Parks DE, Winram S. et al. A combination of TLR-4 agonist and saponin adjuvants increases antibody diversity and protective efficacy of a recombinant west Nile virus antigen. npj Vaccines. 2018;3(1):39. doi:10.1038/s41541-018-0077-1.
  • Huang L, Ge X, Liu Y, Li H, Zhang Z. The role of toll-like receptor agonists and their nanomedicines for tumor immunotherapy. Pharmaceutics. 2022. doi:10.3390/pharmaceutics14061228.
  • Lin E, Freedman JE, Beaulieu LM. Innate immunity and toll‐like receptor antagonists: a potential role in the treatment of cardiovascular diseases. Cardiovasc Ther. 2009;27(2):117–23. doi:10.1111/j.1755-5922.2009.00077.x.
  • Hong-Geller E, Chaudhary A, Lauer S. Targeting toll-like receptor signaling pathways for design of novel immune therapeutics. Curr Drug Discov Technol. 2008;5(1):29–38. doi:10.2174/157016308783769441.
  • Leon CG, Tory R, Jia J, Sivak O, Wasan KM. Discovery and development of toll-like receptor 4 (TLR4) antagonists: a new paradigm for treating sepsis and other diseases. Pharm Res. 2008;25(8):1751–61. doi:10.1007/s11095-008-9571-x.
  • Sharifi-Rad M, Pezzani R, Redaelli M, Zorzan M, Imran M, Ahmed Khalil A, Salehi B, Sharopov F, Cho WC, Sharifi-Rad J. Preclinical activities of epigallocatechin gallate in signaling pathways in cancer. Molecules. 2020. doi:10.3390/molecules25030467.
  • Boyanapalli SS, Kong AN. “Curcumin, the king of spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 2015;1(2):129–39. doi:10.1007/s40495-015-0018-x.
  • Opal SM, Laterre PF, Francois B, LaRosa SP, Angus DC, Mira JP, Wittebole X, Dugernier T, Perrotin D, Tidswell M. et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309(11):1154–62. doi:10.1001/jama.2013.2194.
  • Karami J, Farhadi E, Delbandi AA, Shekarabi M, Tahmasebi MN, Vaziri AS, Akhtari M, Mousavi MJ, Jamshidi A, Mahmoudi M. Evaluation of TAK-242 (resatorvid) effects on inflammatory status of fibroblast-like synoviocytes in rheumatoid arthritis and trauma patients. Iran J Allergy Asthma Immunol. 2021. doi:10.18502/ijaai.v20i4.6955.
  • Tam JS, Coller JK, Hughes PA, Prestidge CA, Bowen JM. Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian J Gastroenterol. 2021;40(1):5–21. doi:10.1007/s12664-020-01114-y.
  • Lanford RE, Guerra B, Chavez D, Giavedoni L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G. et al. GS-9620, an oral agonist of toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology. 2013;144:1508–17.
  • Rappe JC, Finsterbusch K, Crotta S, Mack M, Priestnall SL, Wack A. A TLR7 antagonist restricts interferon-dependent and-independent immunopathology in a mouse model of severe influenza. J Experiment Med. 2021. doi:10.1084/jem.20201631.
  • Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini TL, Weiss J. et al. The TLR4 antagonist eritoran protects mice from lethal influenza infection. Nature. 2013;497(7450):498–502. doi:10.1038/nature12118.
  • Rallabhandi P, Phillips RL, Boukhvalova MS, Pletneva LM, Shirey KA, Gioannini TL, Weiss JP, Chow JC, Hawkins LD, Vogel SN. et al. Respiratory syncytial virus fusion protein-induced toll-like receptor 4 (TLR4) signaling is inhibited by the TLR4 antagonists rhodobacter sphaeroides lipopolysaccharide and eritoran (E5564) and requires direct interaction with MD-2. MBio. 2012. doi:10.1128/mbio.00218-12.
  • Sexton NR, Ebel GD. Effects of arbovirus multi-host life cycles on dinucleotide and codon usage patterns. Viruses. 2019. doi:10.3390/v11070643.
  • Tang XD, Ji TT, Dong JR, Feng H, Chen FQ, Chen X, Zhao HY, Chen DK, Ma WT. Pathogenesis and treatment of cytokine storm induced by infectious diseases. Int J Mol Sci. 2021. doi:10.3390/ijms222313009.
  • Marín-Lopez A, Calvo-Pinilla E, Moreno S, Utrilla-Trigo S, Nogales A, Brun A, Fikrig E, Ortego J. Modeling arboviral infection in mice lacking the interferon alpha/beta receptor. Viruses. 2019. doi:10.3390/v11010035.