2,146
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Cancer

Vaccines targeting ESR1 activating mutations elicit anti-tumor immune responses and suppress estrogen signaling in therapy resistant ER+ breast cancer

, , , , , , , , , , , , , & ORCID Icon show all
Article: 2309693 | Received 13 Sep 2023, Accepted 19 Jan 2024, Published online: 08 Feb 2024

References

  • Hanker AB, Sudhan DR, Arteaga CL. Overcoming endocrine resistance in breast cancer. Cancer Cell. 2020;37(4):496–10. doi:10.1016/j.ccell.2020.03.009.
  • Haque MM, Desai KV. Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne). 2019;10:573. doi:10.3389/fendo.2019.00573.
  • Gezer U, Bronkhorst AJ, Holdenrieder S. The clinical utility of droplet digital PCR for profiling circulating tumor DNA in breast cancer patients. Diagnostics (Basel). 2022;12(12):3042. doi:10.3390/diagnostics12123042.
  • Stergiopoulou D, Markou A, Giannopoulou L, Buderath P, Balgkouranidou I, Xenidis N, Kakolyris S, Kasimir-Bauer S, Lianidou E. Detection of ESR1 mutations in primary tumors and plasma cell-free DNA in high-grade serous ovarian carcinoma patients. Cancers Basel. 2022;14(15):3790. doi:10.3390/cancers14153790.
  • Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res. 2021;23(1):ARTN 85. doi:10.1186/s13058-021-01462-3.
  • Sundaresan TK, Dubash TD, Zheng Z, Bardia A, Wittner BS, Aceto N, Silva EJ, Fox DB, Liebers M, Kapur R. et al. Evaluation of endocrine resistance using ESR1 genotyping of circulating tumor cells and plasma DNA. Breast Cancer Res Treat. 2021;188(1):43–52. doi:10.1007/s10549-021-06270-z.
  • Muendlein A, Geiger K, Gaenger S, Dechow T, Nonnenbroich C, Leiherer A, Drexel H, Gaumann A, Jagla W, Winder T, et al. Significant impact of circulating tumour DNA mutations on survival in metastatic breast cancer patients. Sci Rep. 2021;11(1):6761. doi:10.1038/s41598-021-86238-7.
  • Dustin D, Gu G, Fuqua SAW. ESR1 mutations in breast cancer. Cancer. 2019;125(21):3714–3728. doi:10.1002/cncr.32345.
  • Ahn SG, Bae SJ, Kim Y, Ji JH, Chu C, Kim D, Lee J, Cha YJ, Lee K-A, Jeong J, et al. Primary endocrine resistance of ER+ breast cancer with ESR1 mutations interrogated by droplet digital PCR. NPJ Breast Cancer. 2022;8(1):58. doi:10.1038/s41523-022-00424-y.
  • Jeselsohn R, Bergholz JS, Pun M, Cornwell M, Liu W, Nardone A, Xiao T, Li W, Qiu X, Buchwalter G, et al. Allele-specific chromatin recruitment and therapeutic vulnerabilities of ESR1 activating mutations. Cancer Cell. 2018;33(2):173–86 e175. doi:10.1016/j.ccell.2018.01.004.
  • Gelsomino L Panza S, Giordano C, Barone I, Gu G, Spina E, Catalano S, Fuqua S, Andò S. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Lett. 2018;428:12–20. doi:10.1016/j.canlet.2018.04.023.
  • Gelsomino L, Gu G, Rechoum Y, Beyer AR, Pejerrey SM, Tsimelzon A, Wang T, Huffman K, Ludlow A, Andò S, et al. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling. Breast Cancer Res Treat. 2016;157(2):253–265. doi:10.1007/s10549-016-3829-5.
  • Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell–based treatments for solid tumors. Nat Med. 2019;25(10):1488–99. doi:10.1038/s41591-019-0596-y.
  • Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168–182. doi:10.1038/nri.2017.131.
  • Crosby EJ, Acharya CR, Haddad A-F, Rabiola CA, Lei G, Wei J-P, Yang X-Y, Wang T, Liu C-X, Wagner KU, et al. Stimulation of Oncogene-specific tumor-infiltrating T cells through combined vaccine and αPD-1 enable sustained antitumor responses against established HER2 breast cancer. Clin Cancer Res. 2020;26(17):4670–81. doi:10.1158/1078-0432.CCR-20-0389.
  • Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, Broadwater G, Hyslop T, Kim S, Rogatko A, et al. Vaccine-induced memory CD8(+) T cells provide clinical benefit in HER2 expressing breast cancer: a mouse to human translational study. Clin Cancer Res. 2019;25(9):2725–36. doi:10.1158/1078-0432.CCR-18-3102.
  • Hartman ZC, Wei J, Osada T, Glass O, Lei G, Yang X-Y, Peplinski S, Kim D-W, Xia W, Spector N, et al. An adenoviral vaccine encoding full-length inactivated human Her2 exhibits potent immunogenicity and enhanced therapeutic efficacy without oncogenicity. Clin Cancer Res. 2010;16(5):1466–77. doi:10.1158/1078-0432.CCR-09-2549.
  • Kuang Y, Siddiqui B, Hu J, Pun M, Cornwell M, Buchwalter G, Hughes ME, Wagle N, Kirschmeier P, Jänne PA, et al. Unraveling the clinicopathological features driving the emergence of ESR1 mutations in metastatic breast cancer. NPJ Breast Cancer. 2018;4(1):22. doi:10.1038/s41523-018-0075-5.
  • Fribbens C, Garcia Murillas I, Beaney M, Hrebien S, O’Leary B, Kilburn L, Howarth K, Epstein M, Green E, Rosenfeld N, et al. Tracking evolution of aromatase inhibitor resistance with circulating tumour DNA analysis in metastatic breast cancer. Ann Oncol. 2018;29(1):145–153. doi:10.1093/annonc/mdx483.
  • Cardoso F, McArthur HL, Schmid P, Cortés J, Harbeck N, Telli ML, Cescon DW, O’Shaughnessy J, Fasching P, Shao Z, et al. LBA21 KEYNOTE-756: phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/HER2– breast cancer. Ann Oncol. 2023;34:S1260–S1261. doi:10.1016/j.annonc.2023.10.011.
  • Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, Doherty M, Stern P. Vaccine development: from concept to early clinical testing. Vaccine. 2016;34(52):6655–64. doi:10.1016/j.vaccine.2016.10.016.
  • Schiller JT, Lowy DR. Raising expectations for subunit vaccine. J Infect Dis. 2015;211(9):1373–1375. doi:10.1093/infdis/jiu648.
  • Tsao LC, Crosby EJ, Trotter TN, Agarwal P, Hwang B-J, Acharya C, Shuptrine CW, Wang T, Wei J, Yang X, et al. CD47 blockade augmentation of trastuzumab antitumor efficacy dependent on antibody-dependent cellular phagocytosis. JCI Insight. 2019;4(24). doi:10.1172/jci.insight.131882.
  • Kurebayashi S, Miyashita Y, Hirose T, Kasayama S, Akira S, Kishimoto T. Characterization of mechanisms of interleukin-6 gene repression by estrogen receptor. J Steroid Biochem Mol Biol. 1997;60(1–2):11–17. doi:10.1016/s0960-0760(96)00175-6.
  • Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17 beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem. 1994;269(17):12940–12946. doi:10.1016/S0021-9258(18)99966-7.
  • Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, Lonardi S, Arthur C, Young LJ, Levy DE, et al. STAT1-deficient mice spontaneously develop estrogen receptor α-positive luminal mammary carcinomas. Breast Cancer Res. 2012;14(1):R16. doi:10.1186/bcr3100.
  • Goodman ML, Trinca GM, Walter KR, Papachristou EK, D’Santos CS, Li T, Liu Q, Lai Z, Chalise P, Madan R, et al. Progesterone receptor attenuates STAT1-mediated IFN signaling in breast cancer. J Immunol. 2019;202(10):3076–3086. doi:10.4049/jimmunol.1801152.
  • Morse MA, Crosby EJ, Force J, Osada T, Hobeika AC, Hartman ZC, Berglund P, Smith J, Lyerly HK. Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 2023;30(6):803–11. doi:10.1038/s41417-023-00587-1.
  • Dailey GP, Crosby EJ, Hartman ZC. Cancer vaccine strategies using self-replicating RNA viral platforms. Cancer Gene Ther. 2023;30(6):794–802. doi:10.1038/s41417-022-00499-6.
  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21(6):360–378. doi:10.1038/s41568-021-00346-0.
  • Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4(1):7. doi:10.1038/s41541-019-0103-y.
  • Gonzalez TL, Rae JM, Colacino JA, Richardson RJ. Homology models of mouse and rat estrogen receptor-alpha ligand-binding domain created by in silico mutagenesis of a human template: molecular docking with 17ss-estradiol, diethylstilbestrol, and paraben analogs. Comput Toxicol. 2019;10:1–16. doi:10.1016/j.comtox.2018.11.003.
  • Lee HJ, Song IH, Park IA, Heo S-H, Kim Y-A, Ahn J-H, Gong G. Differential expression of major histocompatibility complex class I in subtypes of breast cancer is associated with estrogen receptor and interferon signaling. Oncotarget. 2016;7(21):30119–32. doi:10.18632/oncotarget.8798.
  • Sinn BV, Weber KE, Schmitt WD, Fasching PA, Symmans WF, Blohmer J-U, Karn T, Taube ET, Klauschen F, Marmé F, et al. Human leucocyte antigen class I in hormone receptor-positive, HER2-negative breast cancer: association with response and survival after neoadjuvant chemotherapy. Breast Cancer Res. 2019;21(1):142. doi:10.1186/s13058-019-1231-z.
  • Chung YR, Kim HJ, Jang MH, Park SY. Prognostic value of tumor infiltrating lymphocyte subsets in breast cancer depends on hormone receptor status. Breast Cancer Res Treat. 2017;161(3):409–420. doi:10.1007/s10549-016-4072-9.
  • Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L, et al. CD8(+) cytotoxic T cell and FOXP3(+) regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55. doi:10.1007/s10549-011-1647-3.
  • Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22(1):329–360. doi:10.1146/annurev.immunol.22.012703.104803.
  • Giovannetti A, Maselli A, Colasanti T, Rosato E, Salsano F, Pisarri S, Mezzaroma I, Malorni W, Ortona E, Pierdominici M, et al. Autoantibodies to Estrogen receptor α in systemic sclerosis (SSc) as pathogenetic determinants and markers of progression. PloS ONE. 2013;8(9):e74332. doi:10.1371/journal.pone.0074332.
  • Colasanti T, Maselli A, Conti F, Sanchez M, Alessandri C, Barbati C, Vacirca D, Tinari A, Chiarotti F, Giovannetti A, et al. Autoantibodies to estrogen receptor α interfere with T lymphocyte homeostasis and are associated with disease activity in systemic lupus erythematosus. Arthritis & Rheumatism. 2012;64(3):778–87. doi:10.1002/art.33400.
  • Maselli A, Conti F, Alessandri C, Colasanti T, Barbati C, Vomero M, Ciarlo L, Patrizio M, Spinelli FR, Ortona E, et al. Low expression of estrogen receptor β in T lymphocytes and high serum levels of anti-estrogen receptor α antibodies impact disease activity in female patients with systemic lupus erythematosus. Biol Sex Differ. 2016;7(1):3. doi:10.1186/s13293-016-0057-y.
  • Quaynor SD, Stradtman EW, Kim H-G, Shen Y, Chorich LP, Schreihofer DA, Layman LC. Delayed puberty and Estrogen Resistance in a woman with Estrogen receptor α variant. N Engl J Med. 2013;369(2):164–71. doi:10.1056/NEJMoa1303611.
  • Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–61. doi:10.1056/NEJM199410203311604.
  • Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB, et al. Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 2013;73(11):3470–3480. doi:10.1158/0008-5472.CAN-12-4524-T.
  • Hartman ZC, Black EP, Amalfitano A. Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology. 2007;358(2):357–372. doi:10.1016/j.virol.2006.08.041.
  • Hartman ZC, Wei J, Glass OK, Guo H, Lei G, Yang X-Y, Osada T, Hobeika A, Delcayre A, Le Pecq J-B, et al. Increasing vaccine potency through exosome antigen targeting. Vaccine. 2011;29(50):9361–9367. doi:10.1016/j.vaccine.2011.09.133.
  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17(1):13. doi:10.1186/s13059-016-0881-8.
  • Cimen Bozkus C, Blazquez AB, Enokida T, Bhardwaj N. A T-cell-based immunogenicity protocol for evaluating human antigen-specific responses. STAR Protoc. 2021;2(3):100758. doi:10.1016/j.xpro.2021.100758.