533
Views
0
CrossRef citations to date
0
Altmetric
Immunology

Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors

ORCID Icon, , , ORCID Icon & ORCID Icon
Article: 2317439 | Received 31 Oct 2023, Accepted 07 Feb 2024, Published online: 04 Mar 2024

References

  • Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2019. Atlanta (GA): U.S. Department of Health and Human Services, CDC; 2019.
  • O’neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. In: eEllcomeTrust, editor. The review on antimicrobial resistance. HM Goverment; 2014.
  • Breijyeh Z, Jubeh B, Karaman R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. doi:10.3390/molecules25061340.
  • Angulo FJ, Collignon P, Wegener HC, Braam P, Butler CD. The routine use of antibiotics to promote animal growth does little to benefit protein undernutrition in the developing world. Clin Infect Dis. 2005;41(7):1007–25. doi:10.1086/433191.
  • Mezali L, Hamdi TM. Prevalence and antimicrobial resistance of salmonella isolated from meat and meat products in Algiers (Algeria). Foodborne Pathog Dis. 2012;9(6):522–529. doi:10.1089/fpd.2011.1032.
  • Costanzo V, Roviello GN. The potential role of vaccines in preventing antimicrobial resistance (AMR): an update and future perspectives. Vaccines. 2023;11(2):333. doi:10.3390/vaccines11020333.
  • Micoli F, Bagnoli F, Rappuoli R, Serruto D. The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19(5):287–302. doi:10.1038/s41579-020-00506-3.
  • Atkins KE, Lafferty EI, Deeny SR, Davies NG, Robotham JV, Jit M. Use of mathematical modelling to assess the impact of vaccines on antibiotic resistance. Lancet Infect Dis. 2018;18(6):204–13. doi:10.1016/S1473-3099(17)30478-4.
  • Bagnoli F, Payne DJ. Reaction: alternative modalities to address antibiotic-resistant pathogens. Chem. 2017;3(3):369372. doi:10.1016/j.chempr.2017.08.017.
  • Andreano E, D’Oro U, Rappuoli R, Finco O. Vaccine evolution and its application to fight modern threats. Front Immunol. 2019;10:1722. doi:10.3389/fimmu.2019.01722.
  • Kim C, Holm M, Frost I, Hasso-Agopsowicz M, Abbas K. Global and regional burden of attributable and associated bacterial antimicrobial resistance avertable by vaccination: modelling study. Int J Infect Dis. 2023;130(8):e011341. doi:10.1016/j.ijid.2023.04.026.
  • Orenstein WA, Gellin BG, Beigi RH, Despres S, Lynfield R, Maldonado Y, Mouton C, Rawlins W, Rothholz MC, Smith N. et al. A call for greater consideration for the role of vaccines in national strategies to combat antibiotic-resistant bacteria: recommendations from the national vaccine advisory committee. Public Health Rep. 2016;131(1):11–16. doi:10.1177/003335491613100105.
  • Kennedy DA, Read AF. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc Natl Acad Sci. 2018;115(51):12878–86. doi:10.1073/pnas.1717159115.
  • Heymann DL, Kieny MP, Laxminarayan R. Adding to the mantra: vaccines prevent illness and death, and preserve existing antibiotics. Lancet Infect Dis. 2022;22(8):1108–1109. doi:10.1016/S1473-3099(22)00374-7.
  • WHO. Vaccines for antimicrobial resistance (AMR). WHO; 2023. [accessed 2023 Oct 16]. https://www.who.int/teams/immunization-vaccines-and-biologicals/product-and-delivery-research/anti-microbial-resistance.
  • Vekemans J, Hasso-Agopsowicz M, Kang G, Hausdorff WP, Fiore A, Tayler E, Klemm EJ, Laxminarayan R, Srikantiah P, Friede M. et al. Leveraging vaccines to reduce antibiotic use and prevent antimicrobial resistance: a World Health Organization action framework. Clin Infect Dis. 2021;73(4):1011–17. doi:10.1093/cid/ciab062.
  • WHO. Ageing and health. WHO; 2022 Oct 1 [accessed 2023 Sept 16]. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.
  • Cobelens F, Suri RK, Helinski M, Makanga M, Weinberg AL, Schaffmeister B, Deege F, Hatherill M. Accelerating research and development of new vaccines against tuberculosis: a global roadmap. Lancet Infect Dis. 2022;22(4):108–20. doi:10.1016/S1473-3099(21)00810-0.
  • Franco AR, Peri F. Developing new anti-tuberculosis vaccines: focus on adjuvants. Cells. 2021;10(1):78. doi:10.3390/cells10010078.
  • Wagner A, Weinberger B. Vaccines to prevent infectious diseases in the older population: immunological challenges and future perspectives. Front Immunol. 2020;11:717. doi:10.3389/fimmu.2020.00717.
  • Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16(1):1–16. doi:10.1186/s12979-019-0164-9.
  • Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschi C, Medaglini D. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol. 2018;40:83–94. doi:10.1016/j.smim.2018.10.010.
  • Nandi A, Pecetta S, Bloom DE. EClinMed 57. ; 2023 Global antibiotic use during the COVID-19 pandemic: analysis of pharmaceutical sales data from 71 countries, 2020–2022. p. 101848 doi:10.1016/j.eclinm.2023.101848.
  • Punjabi CD, Madaline T, Gendlina I, Chen V, Nori P, Pirofski L-A. Prevalence of methicillin-resistant staphylococcus aureus (MRSA) in respiratory cultures and diagnostic performance of the MRSA nasal polymerase chain reaction (PCR) in patients hospitalized with coronavirus disease 2019 (COVID-19) pneumonia. Infect Control Hosp Epidemiol. 2021;42(9):1156–8. doi:10.1017/ice.2020.440.
  • Coppola M, Ottenhoff TH. Genome wide approaches discover novel mycobacterium tuberculosis antigens as correlates of infection, disease, immunity and targets for vaccination. Semin Immunol. 2018;39:88–101. doi:10.1016/j.smim.2018.07.001.
  • Flynn CE, Guarner J. Emerging Antimicrobial Resistance. Mod Pathol. 2023;36(9):100249. doi:10.1016/j.modpat.2023.100249.
  • Orme IM. The Achilles heel of BCG. Tuberculosis. 2010;90(6):329–32. doi:10.1016/j.tube.2010.06.002.
  • Rangaka MX, Frick M, Churchyard G, García-Basteiro AL, Hatherill M, Hanekom W, Hill PC, Hamada Y, Quaife M, Vekemans J. et al. Clinical trials of tuberculosis vaccines in the era of increased access to preventive antibiotic treatment. Lancet Respir Med. 2023;11(4):380–390. doi:10.1016/S2213-2600(23)00084-X.
  • da Costa C, Onyebujoh P, Thiry G, Zumla A. Advances in development of new tuberculosis vaccines. Curr Opin Pulm Med. 2023;29(3):143–8. doi:10.1097/MCP.0000000000000950.
  • Allen JC, Toapanta FR, Chen W, Tennant SM. Understanding immunosenescence and its impact on vaccination of older adults. Vaccine. 2020;38(52):8264–72. doi:10.1016/j.vaccine.2020.11.002.
  • Accardi G, Caruso C. Immune-inflammatory responses in the elderly: an update. Immun Ageing. 2018;15(1). doi:10.1186/s12979-018-0117-8.
  • Weinberger B. Adjuvant strategies to improve vaccination of the elderly population. Curr Opin Pharmacol. 2018;41:34–41. doi:10.1016/j.coph.2018.03.014.
  • Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12(1):36–44. doi:10.1016/S1473-3099(11)70295-X.
  • Fane M, Weeraratna AT. How the ageing microenvironment influences tumour progression. Nat Rev Cancer. 2020;20(2):89–106. doi:10.1038/s41568-019-0222-9.
  • Liu Z, Liang Q, Ren Y, Guo C, Ge X, Wang L, Cheng Q, Luo P, Zhang Y, Han X. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther. 2023;8(1):200. doi:10.1038/s41392-023-01451-2.
  • Nikolich-Žugich J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol. 2008;8(7):512–522. doi:10.1038/nri2318.
  • Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125(10–11):827–48. doi:10.1016/j.mad.2004.07.010.
  • Wang D, Yang L, Yue D, Cao L, Li L, Wang D, Ping Y, Shen Z, Zheng Y, Wang L. et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 2019;452:244–253. doi:10.1016/j.canlet.2019.03.040.
  • Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15(9):505–522. doi:10.1038/s41569-018-0064-2.
  • Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm‐aging: an evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000;908(1):244–54. doi:10.1111/j.1749-6632.2000.tb06651.x.
  • Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, Hoft DF, Peng G. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9(1):249. doi:10.1038/s41467-017-02689-5.
  • Ye J, Huang X, Hsueh EC, Zhang Q, Ma C, Zhang Y, Varvares MA, Hoft DF, Peng G. Human regulatory T cells induce T-lymphocyte senescence. Blood. 2012;120(10):2021–31. doi:10.1182/blood-2012-03-416040.
  • Chou PJ, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des. 2013;19(9):1680–98. doi:10.2174/138161213805219711.
  • Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 2011;11(4):289–295. doi:10.1038/nri2959.
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492–499. doi:10.1038/ni.2035.
  • Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther. 2023;8(1):283. doi:10.1038/s41392-023-01557-7.
  • Nanishi E, Angelidou A, Rotman C, Dowling DJ, Levy O, Ozonoff A. Precision vaccine adjuvants for older adults: a scoping review. Clin Infect Dis. 2022;75(Supplement_1):72–80. doi:10.1093/cid/ciac302.
  • Abbas AK, Lichtman AH, Pillai S. Basic immunology: functions and disorders of the immune system. Philadelphia (PA): Elsevier; 2020.
  • Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB. B cell immunosenescence. Annu Rev Cell Dev Biol. 2020;36(1):551–74. doi:10.1146/annurev-cellbio-011620-034148.
  • Metcalf TU, Wilkinson PA, Cameron MJ, Ghneim K, Chiang C, Wertheimer AM, Hiscott JB, Nikolich-Zugich J, Haddad EK. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol. 2017;199(4):1405–17. doi:10.4049/jimmunol.1700148.
  • Henson SM, Lanna A, Riddell NE, Franzese O, Macaulay R, Griffiths SJ, Puleston DJ, Watson AS, Simon AK, Tooze SA. et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest. 2014;124(9):4004–4016. doi:10.1172/JCI75051.
  • Latz E, Duewell P. NLRP3 inflammasome activation in inflammaging. Semin Immunol. 2018;40:61–73. doi:10.1016/j.smim.2018.09.001.
  • Franchi L, Amer A, Body-Malapel M, Kanneganti T-D, Özören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat Immunol. 2006;7(6):576–582. doi:10.1038/ni1346.
  • Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nat Immunol. 2006;7(6):569–75. doi:10.1038/ni1344.
  • Furman D, Chang J, Lartigue L, Bolen CR, Haddad F, Gaudilliere B, Ganio EA, Fragiadakis GK, Spitzer MH, Douchet I. et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med. 2017;23(2):174–184. doi:10.1038/nm.4267.
  • Thevaranjan N, Puchta, A., Schulz, C., Naidoo, A., Szamosi, J.C., Verschoor, C P., Loukov, D., Schenck, L P., Jury, J., Foley, K P., Schertzer, J D. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe. 2017;21(4):455–466.e4. doi:10.1016/j.chom.2017.03.002.
  • Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Ter Horst R, Jansen T, Jacobs L, Bonder MJ. et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–36.e8. doi:10.1016/j.cell.2016.10.020.
  • Puchta A, Naidoo A, Verschoor CP, Loukov D, Thevaranjan N, Mandur TS, Nguyen P-S, Jordana M, Loeb M, Xing Z. et al. TNF drives monocyte dysfunction with age and results in impaired anti-pneumococcal immunity. PloS Pathog. 2016;12(1):e1005368. doi:10.1371/journal.ppat.1005368.
  • Parish ST, Wu JE, Effros RB. Modulation of T lymphocyte replicative senescence via TNF-α inhibition: role of caspase-3. J Immunol. 2009;182(7):4237–4243. doi:10.4049/jimmunol.0803449.
  • Frasca D, Diaz A, Romero M, Landin AM, Blomberg BB. High TNF-α levels in resting B cells negatively correlate with their response. Exp Gerontol. 2014;54:116–22. doi:10.1016/j.exger.2014.01.004.
  • Aiello A, Ligotti ME, Garnica M, Accardi G, Calabrò A, Pojero F, Arasanz H, Bocanegra A, Blanco E, Chocarro L. et al. How can we improve vaccination response in old people? Part I: targeting immunosenescence of innate immunity cells. Int J Mol Sci. 2022;23(17):9880. doi:10.3390/ijms23179880.
  • Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev. 2011;10(3):336–345. doi:10.1016/j.arr.2010.06.004.
  • Agrawal A, Agrawal S, Gupta S. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front Immunol. 2017;8:896. doi:10.3389/fimmu.2017.00896.
  • Panda A, Qian F, Mohanty S, van Duin D, Newman FK, Zhang L, Chen S, Towle V, Belshe RB, Fikrig E. et al. Age-associated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J Immunol. 2010;184(5):2518–2527. doi:10.4049/jimmunol.0901022.
  • Garbe K, Bratke K, Wagner S, Virchow JC, Lommatzsch M. Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age. Hum Immunol. 2012;73(5):493–7. doi:10.1016/j.humimm.2012.02.007.
  • Della Bella S, Bierti L, Presicce P, Arienti R, Valenti M, Saresella M, Vergani C, Villa ML. Peripheral blood dendritic cells and monocytes are differently regulated in the elderly. Clin Immunol. 2007;122(2):220–8. doi:10.1016/j.clim.2006.09.012.
  • Jing Y, Shaheen E, Drake RR, Chen N, Gravenstein S, Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum Immunol. 2009;70(10):777–84. doi:10.1016/j.humimm.2009.07.005.
  • Wille-Reece U, Flynn BJ, Loré K, Koup RA, Miles AP, Saul A, Kedl RM, Mattapallil JJ, Weiss WR, Roederer M. et al. Toll-like receptor agonists influence the magnitude and quality of memory T cell responses after prime-boost immunization in nonhuman primates. J Exp Med. 2006;203(5):1249–1258. doi:10.1084/jem.20052433.
  • Li G, Smithey MJ, Rudd BD, Nikolich‐Žugich J. Age‐associated alterations in CD8α+ dendritic cells impair CD8 T‐cell expansion in response to an intracellular bacterium. Aging Cell. 2012;11(6):968–77. doi:10.1111/j.1474-9726.2012.00867.x.
  • Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence: a systems-level overview of immune cell biology and strategies for improving vaccine responses. Exp Gerontol. 2019;124:110632. doi:10.1016/j.exger.2019.110632.
  • Briceño O, Lissina A, Wanke K, Afonso G, Braun A, Ragon K, Miquel T, Gostick E, Papagno L, Stiasny K. et al. Reduced naïve CD 8 + T -cell priming efficacy in elderly adults. Aging Cell. 2016;15(1):14–21. doi:10.1111/acel.12384.
  • Sridharan A, Esposo M, Kaushal K, Tay J, Osann K, Agrawal S, Gupta S, Agrawal A. Age-associated impaired plasmacytoid dendritic cell functions lead to decreased CD4 and CD8 T cell immunity. Age. 2011;33(3):363–76. doi:10.1007/s11357-010-9191-3.
  • Tosi MF. Innate immune responses to infection. J Allergy Clin Immunol. 2005;116(2):241–249. doi:10.1016/j.jaci.2005.05.036.
  • Medzhitov R, Janeway CA Jr. Innate immunity: impact on the adaptive immune response. 1997;9(1):4–9. doi: 10.1016/S0952-7915(97)80152-5.
  • Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428–436. doi:10.1038/ni.2588.
  • Vallejo AN. CD28 extinction in human T cells: altered functions and the program of T‐cell senescence. Immunol Rev. 2005;205(1):158–169. doi:10.1111/j.0105-2896.2005.00256.x.
  • Weng N-P, Akbar AN, Goronzy J. CD28− T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009;30(7):306–312. doi:10.1016/j.it.2009.03.013.
  • Appay V, Nixon DF, Donahoe SM, Gillespie GMA, Dong T, King A, Ogg GS, Spiegel HML, Conlon C, Spina CA. et al. HIV-specific CD8+ T cells produce antiviral cytokines but are impaired in cytolytic function. J Exp Med. 2000;192(1):63–76. doi:10.1084/jem.192.1.63.
  • Yu M, Li G, Lee W-W, Yuan M, Cui D, Weyand CM, Goronzy JJ. Signal inhibition by the dual-specific phosphatase 4 impairs T cell-dependent B-cell responses with age. Proc Natl Acad Sci USA. 2012;109(15):879–88. doi:10.1073/pnas.1109797109.
  • Tu W, Rao S. Mechanisms underlying T cell immunosenescence: aging and cytomegalovirus infection. Front Microbiol. 2016;7:2111. doi:10.3389/fmicb.2016.02111.
  • Mandal PK, Rossi DJ. DNA-damage-induced differentiation in hematopoietic stem cells. Cell. 2012;148(5):847–8. doi:10.1016/j.cell.2012.02.011.
  • Steinmann G, Klaus B, Müller‐Hermelink HK. The involution of the ageing human thymic epithelium is independent of puberty: a morphometric study. Scand J Immunol. 1985;22(5):563–575. doi:10.1111/j.1365-3083.1985.tb01916.x.
  • Czesnikiewicz-Guzik M, Lee W-W, Cui D, Hiruma Y, Lamar DL, Yang Z-Z, Ouslander JG, Weyand CM, Goronzy JJ. T cell subset-specific susceptibility to aging. Clin Immunol. 2008;127(1):107–18. doi:10.1016/j.clim.2007.12.002.
  • Qi Q, Zhang DW, Weyand CM, Goronzy JJ. Mechanisms shaping the naïve T cell repertoire in the elderly—thymic involution or peripheral homeostatic proliferation? Exp Gerontol. 2014;54:71–4. doi:10.1016/j.exger.2014.01.005.
  • Hale JS, Boursalian TE, Turk GL, Fink PJ. Thymic output in aged mice. Proc Natl Acad Sci USA. 2006;103(22):8447–52. doi:10.1073/pnas.0601040103.
  • Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, Witkowski J, Fulbright J, Weyand CM, Goronzy JJ. et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174(11):7446–7452. doi:10.4049/jimmunol.174.11.7446.
  • Haynes L, Lefebvre JS. Age-related deficiencies in antigen-specific CD4 T cell responses: lessons from mouse models. Aging Dis. 2011;2:374–81.
  • Kohler S, Wagner U, Pierer M, Kimmig S, Oppmann B, Möwes B, Jülke K, Romagnani C, Thiel A. Post‐thymic in vivo proliferation of naive CD4+ T cells constrains the TCR repertoire in healthy human adults. Eur J Immunol. 2005;35(6):1987–94. doi:10.1002/eji.200526181.
  • Valkenburg SA, Venturi V, Dang THY, Bird NL, Doherty PC, Turner SJ, Davenport MP, Kedzierska K. Early priming minimizes the age-related immune compromise of CD8+ T cell diversity and function. PloS Pathog. 2012;8(2):e1002544. doi:10.1371/journal.ppat.1002544.
  • Li G, Yu M, Lee W-W, Tsang M, Krishnan E, Weyand CM, Goronzy JJ. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med. 2012;18(10):1518–24. doi:10.1038/nm.2963.
  • Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A, Ward S, Marches R, Chambers ES, Gomes DCO, Riddell NE. et al. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat Immunol. 2020;21(6):684–694. doi:10.1038/s41590-020-0643-3.
  • Suarez‐Álvarez B, Rodríguez RM, Schlangen K, Raneros AB, Márquez-Kisinousky L, Fernández AF, Díaz-Corte C, Aransay AM, López-Larrea C. Phenotypic characteristics of aged CD4 + CD28 null T lymphocytes are determined by changes in the whole-genome DNA methylation pattern. Aging Cell. 2017;16(2):293–303. doi:10.1111/acel.12552.
  • Hwang KA, Kim HR, Kang I. Aging and human CD4+ regulatory T cells. Mech Ageing Dev. 2009;130(8):509–517. doi:10.1016/j.mad.2009.06.003.
  • Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G, Hildeman DA, Belkaid Y, Chougnet C. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J Immunol. 2008;181(3):1835–48. doi:10.4049/jimmunol.181.3.1835.
  • Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol. 2007;188(1–2):117–27. doi:10.1016/j.jneuroim.2007.05.011.
  • Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ, Nayak L, Moss PAH. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol. 2002;169(4):1984–92. doi:10.4049/jimmunol.169.4.1984.
  • Akbar AN, Henson SM, Lanna A. Senescence of T lymphocytes: implications for enhancing human immunity. Trends Immunol. 2016;37(12):866–876. doi:10.1016/j.it.2016.09.002.
  • Corey L, Gilbert PB, Tomaras GD, Haynes BF, Pantaleo G, Fauci AS. Immune correlates of vaccine protection against HIV-1 acquisition. Sci Transl Med. 2015;7(310):310rv7. doi:10.1126/scitranslmed.aac7732.
  • WHO. Correlates of vaccine-induced protection: methods and implications. Geneva (Switzerland): WHO; 2013.
  • Siegrist C-A, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol. 2009;9(3):185–194. doi:10.1038/nri2508.
  • Jefferson T, Rivetti D, Rivetti A, Rudin M, Di Pietrantonj C, Demicheli V. Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review. Lancet. 2005;366(9492):1165–74. doi:10.1016/S0140-6736(05)67339-4.
  • Schenkein JG, Park S, Nahm MH. Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency. Vaccine. 2008;26(43):5521–5526. doi:10.1016/j.vaccine.2008.07.071.
  • Cunningham AL, Lal H, Kovac M, Chlibek R, Hwang S-J, Díez-Domingo J, Godeaux O, Levin MJ, McElhaney JE, Puig-Barberà J. et al. Efficacy of the herpes zoster subunit vaccine in adults 70 years of age or older. N Engl J Med. 2016;375(11):1019–1032. doi:10.1056/NEJMoa1603800.
  • Triglav TK, Poljak M. Vaccination indications and limits in the elderly. Acta Dermatovenerol Alp Pannonica Adriat. 2013;22:65–70.
  • Kaml M, Weiskirchner I, Keller M, Luft T, Hoster E, Hasford J, Young L, Bartlett B, Neuner C, Fischer K-H. et al. Booster vaccination in the elderly: their success depends on the vaccine type applied earlier in life as well as on pre-vaccination antibody titers. Vaccine. 2006;24(47–48):6808–6811. doi:10.1016/j.vaccine.2006.06.037.
  • Frasca D, Diaz A, Romero M, Blomberg BB. The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine. 2016;34(25):2834–40. doi:10.1016/j.vaccine.2016.04.023.
  • Rossi MID, Yokota T, Medina KL, Garrett KP, Comp PC, Schipul AH, Kincade PW. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003;101(2):576–84. doi:10.1182/blood-2002-03-0896.
  • Gibson KL, Wu Y-C, Barnett Y, Duggan O, Vaughan R, Kondeatis E, Nilsson B-O, Wikby A, Kipling D, Dunn‐Walters DK. et al. B‐cell diversity decreases in old age and is correlated with poor health status. Aging Cell. 2009;8(1):18–25. doi:10.1111/j.1474-9726.2008.00443.x.
  • Ma S, Wang C, Mao X, Hao Y. B cell dysfunction associated with aging and autoimmune diseases. Front Immunol. 2019;10:318. doi:10.3389/fimmu.2019.00318.
  • Mouat IC, Goldberg E, Horwitz MS. Age-associated B cells in autoimmune diseases. Cell Mol Life Sci. 2022;79(8):402. doi:10.1007/s00018-022-04433-9.
  • Frasca D, Diaz A, Romero M, D’Eramo F, Blomberg BB. Aging effects on T-bet expression in human B cell subsets. Cell Immunol. 2017;321:68–73. doi:10.1016/j.cellimm.2017.04.007.
  • Rubtsova K, Rubtsov AV, van Dyk LF, Kappler JW, Marrack P. T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance. Proc Natl Acad Sci USA. 2013;110(34):3216–24. doi:10.1073/pnas.1312348110.
  • Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, Rahman S, Zerrouki K, Hanna R, Morehouse C. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE. Nat Commun. 2018;9(1):1758. doi:10.1038/s41467-018-03750-7.
  • Jenks SA, Cashman KS, Zumaquero E, Marigorta UM, Patel AV, Wang X, Tomar D, Woodruff MC, Simon Z, Bugrovsky R. et al. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity. 2018;49(4):725–39.e6. doi:10.1016/j.immuni.2018.08.015.
  • Jegerlehner A, Maurer P, Bessa J, Hinton HJ, Kopf M, Bachmann MF. TLR9 signaling in B cells determines class switch recombination to IgG2a. J Immunol. 2007;178(4):2415–20. doi:10.4049/jimmunol.178.4.2415.
  • Jiang W, Lederman M, Harding C, Rodriguez B, Mohner R, Sieg S. TLR9 stimulation drives naïve B cells to proliferate and to attain enhanced antigen presenting function. Eur J Immunol. 2007;37(8):2205–13. doi:10.1002/eji.200636984.
  • Suthers AN, Sarantopoulos S. TLR7/TLR9-and B cell receptor-signaling crosstalk: promotion of potentially dangerous B cells. Front Immunol. 2017;8:775. doi:10.3389/fimmu.2017.00775.
  • Shi Y, Yamazaki T, Okubo Y, Uehara Y, Sugane K, Agematsu K. Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 2005;175(5):3262–7. doi:10.4049/jimmunol.175.5.3262.
  • Jiang N, He J, Weinstein JA, Penland L, Sasaki S, He X-S, Dekker CL, Zheng N-Y, Huang M, Sullivan M. et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med. 2013;5(171):171ra19. doi:10.1126/scitranslmed.3004794.
  • Duan T, Du Y, Xing C, Wang HY, Wang R-F. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13:812774. doi:10.3389/fimmu.2022.812774.
  • Li B, Xia Y, Hu B. Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci. 2020;77(14):2751–2769. doi:10.1007/s00018-020-03453-7.
  • Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010;33(4):492–503. doi:10.1016/j.immuni.2010.10.002.
  • Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol. 2021;21(2):83–100. doi:10.1038/s41577-020-00479-7.
  • Wang Y, Zhang S, Li H, Wang H, Zhang T, Hutchinson MR, Yin H, Wang X. Small-molecule modulators of toll-like receptors. Acc Chem Res. 2020;53(5):1046–55. doi:10.1021/acs.accounts.9b00631.
  • Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of pattern recognition receptor agonists as candidate adjuvants. Front Cell Infect Microbiol. 2021;11:968. doi:10.3389/fcimb.2021.745016.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–384. doi:10.1038/ni.1863.
  • Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15. doi:10.1016/j.immuni.2010.03.012.
  • Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol. 2012;12(7):479–491. doi:10.1038/nri3247.
  • Clark K, Nanda S, Cohen P. Molecular control of the NEMO family of ubiquitin-binding proteins. Nat Rev Mol Cell Biol. 2013;14(10):673–685. doi:10.1038/nrm3644.
  • Sun J, Li N, Oh K-S, Dutta B, Vayttaden SJ, Lin B, Ebert TS, De Nardo D, Davis J, Bagirzadeh R. et al. Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use. Sci Signal. 2016;9(409):3–3. doi:10.1126/scisignal.aab2191.
  • Qian F, Wang X, Zhang L, Chen S, Piecychna M, Allore H, Bockenstedt L, Malawista S, Bucala R, Shaw AC. et al. Age‐associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell. 2012;11(1):104–10. doi:10.1111/j.1474-9726.2011.00759.x.
  • Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell. 2020;180(6):1044–1066. doi:10.1016/j.cell.2020.02.041.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi:10.3389/fimmu.2014.00461.
  • Pulendran B. Modulating vaccine responses with dendritic cells and Toll‐like receptors. Immunol Rev. 2004;199(1):227–250. doi:10.1111/j.0105-2896.2004.00144.x.
  • McWhirter SM, Fitzgerald KA, Rosains J, Rowe DC, Golenbock DT, Maniatis T. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc Natl Acad Sci USA. 2004;101(1):233–8. doi:10.1073/pnas.2237236100.
  • Ning S, Pagano J, Barber G. IRF7: activation, regulation, modification and function. Genes Immun. 2011;12(6):399–414. doi:10.1038/gene.2011.21.
  • Philbin VJ, Dowling DJ, Gallington LC, Cortés G, Tan Z, Suter EE, Chi KW, Shuckett A, Stoler-Barak L, Tomai M. et al. Imidazoquinoline Toll-like receptor 8 agonists activate human newborn monocytes and dendritic cells through adenosine-refractory and caspase-1–dependent pathways. J Allergy Clin Immunol. 2012;130(1):195–204. e9. doi:10.1016/j.jaci.2012.02.042.
  • Maisonneuve C, Bertholet S, Philpott DJ, De Gregorio E. Unleashing the potential of NOD-and Toll-like agonists as vaccine adjuvants. Proc Natl Acad Sci USA. 2014;111(34):12294–9. doi:10.1073/pnas.1400478111.
  • Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, Ferguson DJP, Campbell BJ, Jewell D, Simmons A. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–97. doi:10.1038/nm.2069.
  • Reed SG, Carter D, Casper C, Duthie MS, Fox CB. Correlates of GLA family adjuvants’ activities. Semin Immunol. 2018;39:22–9. doi:10.1016/j.smim.2018.10.004.
  • Alving CR, Peachman KK, Rao M, Reed SG. Adjuvants for human vaccines. Curr Opin Immunol. 2012;24(3):310–5. doi:10.1016/j.coi.2012.03.008.
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine. 2008;26(39):5046–57. doi:10.1016/j.vaccine.2008.07.035.
  • Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, Silverman C, Alving CR. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci USA. 1992;89(1):358–62. doi:10.1073/pnas.89.1.358.
  • Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, Kielland A, Vosters O, Vanderheyde N, Schiavetti F. et al. AS04, an Aluminum Salt- and TLR4 Agonist-Based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol. 2009;183(10):6186–97. doi:10.4049/jimmunol.0901474.
  • Cauwelaert ND, Desbien AL, Hudson TE, Pine SO, Reed SG, Coler RN, Orr MT. The TLR4 agonist vaccine adjuvant, GLA-SE, requires canonical and atypical mechanisms of action for TH1 induction. PloS One. 2016;11(1):e0146372. doi:10.1371/journal.pone.0146372.
  • Pantel A, Cheong C, Dandamudi D, Shrestha E, Mehandru S, Brane L, Ruane D, Teixeira A, Bozzacco L, Steinman RM. et al. A new synthetic TLR4 agonist, GLA, allows dendritic cells targeted with antigen to elicit Th1 T‐cell immunity in vivo. Eur J Immunol. 2012;42(1):101–109. doi:10.1002/eji.201141855.
  • Clegg CH, Roque R, Van Hoeven N, Perrone L, Baldwin SL, Rininger JA, Bowen RA, Reed SG. Adjuvant solution for pandemic influenza vaccine production. Proc Natl Acad Sci USA. 2012;109(43):17585–90. doi:10.1073/pnas.1207308109.
  • Coler RN, Baldwin SL, Shaverdian N, Bertholet S, Reed SJ, Raman VS, Lu X, DeVos J, Hancock K, Katz JM. et al. A synthetic adjuvant to enhance and expand immune responses to influenza vaccines. PloS One. 2010;5(10):e13677. doi:10.1371/journal.pone.0013677.
  • Ashour D, Rebs S, Arampatzi P, Saliba A-E, Dudek J, Schulz R, Hofmann U, Frantz S, Cochain C, Streckfuß-Bömeke K. et al. An interferon gamma response signature links myocardial aging and immunosenescence. Cardiovasc Res. 2023;119(14):2458–68. doi:10.1093/cvr/cvad068.
  • Falloon J, Yu J, Esser MT, Villafana T, Yu L, Dubovsky F, Takas T, Levin MJ, Falsey AR. An adjuvanted, postfusion F protein–based vaccine did not prevent respiratory syncytial virus illness in older adults. J Infect Dis. 2017;216(11):1362–70. doi:10.1093/infdis/jix503.
  • HogenEsch H, O’Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccin. 2018;3(1):51. doi:10.1038/s41541-018-0089-x.
  • Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4(1):23–45. doi:10.7774/cevr.2015.4.1.23.
  • Pulendran B, Arunachalam PS, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021;20(6):454–475. doi:10.1038/s41573-021-00163-y.
  • Awate S, Babiuk LA, Mutwiri G. Mechanisms of action of adjuvants. Front Immunol. 2013;4:114. doi:10.3389/fimmu.2013.00114.
  • Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: understanding the structure and mechanism of adjuvanticity. Vaccine. 2019;37(24):3167–78. doi:10.1016/j.vaccine.2019.04.055.
  • Stephen J, Scales HE, Benson RA, Erben D, Garside P, Brewer JM. Neutrophil swarming and extracellular trap formation play a significant role in Alum adjuvant activity. NPJ Vaccin. 2017;2(1):1. doi:10.1038/s41541-016-0001-5.
  • Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ. et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17(8):996–1002. doi:10.1038/nm.2403.
  • Fox CB, Kramer RM, Barnes V L, Dowling QM, Vedvick TS. Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines. 2013;1(1):7–20. doi:10.1177/2051013613480144.
  • Sun B, Xia T. Nanomaterial-based vaccine adjuvants. J Mater Chem B. 2016;4(33):5496–5509. doi:10.1039/C6TB01131D.
  • Peng S, Cao F, Xia Y, Gao X-D, Dai L, Yan J, Ma G. Particulate alum via Pickering emulsion for an enhanced COVID‐19 vaccine adjuvant. Adv Mater. 2020;32(40):2004210. doi:10.1002/adma.202004210.
  • Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW, Watson N, Turner HL, Menis S, Abbott RK, Bhiman JN. et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med. 2020;26(3):430–440. doi:10.1038/s41591-020-0753-3.
  • Luchner M, Reinke S, Milicic A. TLR agonists as vaccine adjuvants targeting cancer and infectious diseases. Pharmaceutics. 2021;13(2):142. doi:10.3390/pharmaceutics13020142.
  • Bode C, Zhao G, Steinhagen F, Kinjo T, Klinman DM. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines. 2011;10(4):499–511. doi:10.1586/erv.10.174.
  • Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev. 2009;61(3):195–204. doi:10.1016/j.addr.2008.12.008.
  • Krug A, Rothenfusser S, Hornung V, Jahrsdörfer B, Blackwell S, Ballas ZK, Endres S, Krieg AM, Hartmann G. Identification of CpG oligonucleotide sequences with high induction of IFN‐α/β in plasmacytoid dendritic cells. Eur J Immunol. 2001;31(7):2154–63. doi:10.1002/1521-4141(200107)31:7<2154:AID-IMMU2154>3.0.CO;2-U.
  • Kranzer K, Bauer M, Lipford GB, Heeg K, Wagner H, Lang R. CpG‐oligodeoxynucleotides enhance T‐cell receptor‐triggered interferon‐γ production and up‐regulation of CD69 via induction of antigen‐presenting cell‐derived interferon type I and interleukin‐12. Immunology. 2000;99(2):170–8. doi:10.1046/j.1365-2567.2000.00964.x.
  • Kuo TY, Lin M-Y, Coffman RL, Campbell JD, Traquina P, Lin Y-J, Liu LTC, Cheng J, Wu Y-C, Wu C-C. et al. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Sci Rep. 2020;10(1):20085. doi:10.1038/s41598-020-77077-z.
  • Jackson S, Lentino J, Kopp J, Murray L, Ellison W, Rhee M, Shockey G, Akella L, Erby K, Heyward WL. et al. Immunogenicity of a two-dose investigational hepatitis B vaccine, HBsAg-1018, using a toll-like receptor 9 agonist adjuvant compared with a licensed hepatitis B vaccine in adults. Vaccine. 2018;36(5):668–674. doi:10.1016/j.vaccine.2017.12.038.
  • Cooper C, Mackie D. Hepatitis B surface antigen-1018 ISS adjuvant-containing vaccine: a review of HEPLISAV™ safety and efficacy. Expert Rev Vaccines. 2011;10(4):417–427. doi:10.1586/erv.10.162.
  • McMillan JK, O’Donnell P, Chang SP, Sanyal M. Pattern recognition receptor ligand-induced differentiation of human transitional B cells. PloS One. 2022;17(8):e0273810. doi:10.1371/journal.pone.0273810.
  • Fan J, Jin S, Gilmartin L, Toth I, Hussein W, Stephenson R. Advances in infectious disease vaccine adjuvants. Vaccines. 2022;10(7):1120. doi:10.3390/vaccines10071120.
  • Lien CE, Kuo T-Y, Lin Y-J, Lian W-C, Lin M-Y, Liu LTC, Cheng J, Chou Y-C, Chen C. Evaluating the neutralizing ability of a CpG-adjuvanted S-2P subunit vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern. Clin Infect Dis. 2022;74(11):1899–905. doi:10.1093/cid/ciab711.
  • Lien CE, Lin Y-J, Chen C, Lian W-C, Kuo T-Y, Campbell JD, Traquina P, Lin M-Y, Liu LTC, Chuang Y-S. et al. CpG-adjuvanted stable prefusion SARS-CoV-2 spike protein protected hamsters from SARS-CoV-2 challenge. Sci Rep. 2021;11(1):8761. doi:10.1038/s41598-021-88283-8.
  • Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol. 2014;49(6):439–462. doi:10.3109/10409238.2014.953628.
  • Rajput ZI, Hu S-H, Xiao C-W, Arijo AG. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B. 2007;8(3):153–61. doi:10.1631/jzus.2007.B0153.
  • Fernández-Tejada A, Chea EK, George C, Pillarsetty N, Gardner JR, Livingston PO, Ragupathi G, Lewis JS, Tan DS, Gin DY. et al. Development of a minimal saponin vaccine adjuvant based on QS-21. Nat Chem. 2014;6(7):635–643. doi:10.1038/nchem.1963.
  • Lacaille-Dubois M-A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21: a review. Phytomedicine. 2019;60:152905. doi:10.1016/j.phymed.2019.152905.
  • Marciani DJ. Elucidating the mechanisms of action of saponin-derived adjuvants. Trends Pharmacol Sci. 2018;39(6):573–585. doi:10.1016/j.tips.2018.03.005.
  • Brown GD. Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol. 2006;6(1):33–43. doi:10.1038/nri1745.
  • Pifferi C, Fuentes R, Fernández-Tejada A. Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nat Rev Chem. 2021;5(3):197–216. doi:10.1038/s41570-020-00244-3.
  • Zhu D, Tuo W. QS-21: a potent vaccine adjuvant. Nat Prod Chem Res. 2016;3(4).
  • Wang P. Natural and synthetic saponins as vaccine adjuvants. Vaccines. 2021;9(222):9030222. doi:10.3390/vaccines9030222.
  • Welsby I, Detienne S, N’Kuli F, Thomas S, Wouters S, Bechtold V, De Wit D, Gineste R, Reinheckel T, Elouahabi A. et al. Lysosome-dependent activation of human dendritic cells by the vaccine adjuvant QS-21. Front Immunol. 2017;7:663. doi:10.3389/fimmu.2016.00663.
  • Lövgren Bengtsson K, Morein B, Osterhaus AD. ISCOM technology-based matrix M™ adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines. 2011;10(4):401–403. doi:10.1586/erv.11.25.
  • Magnusson SE, Altenburg AF, Bengtsson KL, Bosman F, de Vries RD, Rimmelzwaan GF, Stertman L. Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res. 2018;66(2):224–33. doi:10.1007/s12026-018-8991-x.
  • RTS SCTP. First results of phase 3 trial of RTS, S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365:1863–75.
  • Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, Ayles HM, Henostroza G, Thienemann F, Scriba TJ. et al. Phase 2b controlled trial of M72/AS01E vaccine to prevent tuberculosis. N Engl J Med. 2018;379(17):1621–1634. doi:10.1056/NEJMoa1803484.
  • Stertman L, Palm AKE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, Carnrot C, Shinde V, Smith G, Glenn G. et al. The matrix-M™ adjuvant: a critical component of vaccines for the 21st century. Hum Vaccin Immunother. 2023;19(1):2189885. doi:10.1080/21645515.2023.2189885.
  • Bengtsson KL, Song H, Stertman L, Liu Y, Flyer DC, Massare MJ, Xu R-H, Zhou B, Lu H, Kwilas SA. et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccine. 2016;34(16):1927–1935. doi:10.1016/j.vaccine.2016.02.033.
  • Magnusson SE, Reimer JM, Karlsson KH, Lilja L, Bengtsson KL, Stertman L. Immune enhancing properties of the novel Matrix-M™ adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine. 2013;31(13):1725–33. doi:10.1016/j.vaccine.2013.01.039.
  • Shinde V, Cho I, Plested JS, Agrawal S, Fiske J, Cai R, Zhou H, Pham X, Zhu M, Cloney-Clark S. et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect Dis. 2022;22(1):73–84. doi:10.1016/S1473-3099(21)00192-4.
  • Toback S, Galiza E, Cosgrove C, Galloway J, Goodman AL, Swift PA, Rajaram S, Graves-Jones A, Edelman J, Burns F. et al. Safety, immunogenicity, and efficacy of a COVID-19 vaccine (NVX-CoV2373) co-administered with seasonal influenza vaccines: an exploratory substudy of a randomised, observer-blinded, placebo-controlled, phase 3 trial. Lancet Respir Med. 2022;10(2):167–179. doi:10.1016/S2213-2600(21)00409-4.
  • O’hagan D, Ott GS, De Gregorio E, Seubert A. The mechanism of action of MF59–an innately attractive adjuvant formulation. Vaccine. 2012;30(29):4341–8. doi:10.1016/j.vaccine.2011.09.061.
  • O’Hagan DT, Ott GS, Nest GV, Rappuoli R, Giudice GD. The history of MF59® adjuvant: a phoenix that arose from the ashes. Expert Rev Vaccines. 2013;12(1):13–30. doi:10.1586/erv.12.140.
  • Cantisani R, Pezzicoli A, Cioncada R, Malzone C, De Gregorio E, D’Oro U, Piccioli D. Vaccine adjuvant MF59 promotes retention of unprocessed antigen in lymph node macrophage compartments and follicular dendritic cells. J Immunol. 2015;194(4):1717–25. doi:10.4049/jimmunol.1400623.
  • Vono M, Taccone M, Caccin P, Gallotta M, Donvito G, Falzoni S, Palmieri E, Pallaoro M, Rappuoli R, Di Virgilio F. et al. The adjuvant MF59 induces ATP release from muscle that potentiates response to vaccination. Proc Natl Acad Sci USA. 2013;110(52):21095–100. doi:10.1073/pnas.1319784110.
  • Calabro S, Tortoli M, Baudner BC, Pacitto A, Cortese M, O’Hagan DT, De Gregorio E, Seubert A, Wack A. Vaccine adjuvants alum and MF59 induce rapid recruitment of neutrophils and monocytes that participate in antigen transport to draining lymph nodes. Vaccine. 2011;29(9):1812–23. doi:10.1016/j.vaccine.2010.12.090.
  • Ko EJ, Kang SM. Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother. 2018;14(12):3041–3045. doi:10.1080/21645515.2018.1495301.
  • Chappell KJ, Mordant FL, Li Z, Wijesundara DK, Ellenberg P, Lackenby JA, Cheung STM, Modhiran N, Avumegah MS, Henderson CL. et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis. 2021;21(10):1383–1394. doi:10.1016/S1473-3099(21)00200-0.
  • Ng TW, Cowling BJ, Gao HZ, Thompson MG. Comparative immunogenicity of enhanced seasonal influenza vaccines in older adults: a systematic review and meta-analysis. J Infect Dis. 2019;219(10):1525–35. doi:10.1093/infdis/jiy720.
  • Levast B, Awate S, Babiuk L, Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S. Vaccine potentiation by combination adjuvants. Vaccines. 2014;2(2):297–322. doi:10.3390/vaccines2020297.
  • Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017;16(1):55–63. doi:10.1080/14760584.2016.1213632.
  • Garçon N, Chomez P, Van Mechelen M. GlaxoSmithkline Adjuvant Systems in vaccines: concepts, achievements and perspectives. Expert Rev Vaccines. 2007;6(5):723–739. doi:10.1586/14760584.6.5.723.
  • Lal H, Cunningham AL, Godeaux O, Chlibek R, Diez-Domingo J, Hwang S-J, Levin MJ, McElhaney JE, Poder A, Puig-Barberà J. et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med. 2015;372(22):2087–2096. doi:10.1056/NEJMoa1501184.
  • Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, Planty C, Elouahabi A, Harvengt P, Carlsen H. et al. Adjuvant system AS03 containing α-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine. 2011;29(13):2461–2473. doi:10.1016/j.vaccine.2011.01.011.
  • O’Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. “World in motion”–emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccin. 2021;6(1):158. doi:10.1038/s41541-021-00418-0.
  • Sobolev O, Binda E, O’Farrell S, Lorenc A, Pradines J, Huang Y, Duffner J, Schulz R, Cason J, Zambon M. et al. Adjuvanted influenza-H1N1 vaccination reveals lymphoid signatures of age-dependent early responses and of clinical adverse events. Nat Immunol. 2016;17(2):204–213. doi:10.1038/ni.3328.
  • Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin Immunol. 2018;39:14–21. doi:10.1016/j.smim.2018.05.001.
  • Kaurav M, Madan J, Sudheesh MS, Pandey RS. Combined adjuvant-delivery system for new generation vaccine antigens: alliance has its own advantage. Artif Cells, Nanomed Biotechnol. 2018;46(sup3):818–31. doi:10.1080/21691401.2018.1513941.
  • Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells, Nanomed Biotechnol. 2016;44(1):381–91. doi:10.3109/21691401.2014.953633.
  • Qian C, Liu X, Xu Q, Wang Z, Chen J, Li T, Zheng Q, Yu H, Gu Y, Li S. et al. Recent progress on the versatility of virus-like particles. Vaccines. 2020;8(1):139. doi:10.3390/vaccines8010139.
  • Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: Preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology. 2021;19(1):1–27. doi:10.1186/s12951-021-00806-7.
  • Mishra H, Chauhan V, Kumar K, Teotia D. A comprehensive review on Liposomes: a novel drug delivery system. J Drug Delivery Ther. 2018;8(6):400–4. doi:10.22270/jddt.v8i6.2071.
  • Schwendener RA. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines. 2014;2(6):159–182. doi:10.1177/2051013614541440.
  • Xu J, Wang H, Xu L, Chao Y, Wang C, Han X, Dong Z, Chang H, Peng R, Cheng Y. et al. Nanovaccine based on a protein-delivering dendrimer for effective antigen cross-presentation and cancer immunotherapy. Biomaterials. 2019;207:1–9. doi:10.1016/j.biomaterials.2019.03.037.
  • Desel C, Werninghaus K, Ritter M, Jozefowski K, Wenzel J, Russkamp N, Schleicher U, Christensen D, Wirtz S, Kirschning C. et al. The Mincle-activating adjuvant TDB induces MyD88-dependent Th1 and Th17 responses through IL-1R signaling. PloS One. 2013;8(1):e53531. doi:10.1371/journal.pone.0053531.
  • Schweneker K, Gorka O, Schweneker M, Poeck H, Tschopp J, Peschel C, Ruland J, Groß O. The mycobacterial cord factor adjuvant analogue trehalose-6, 6′-dibehenate (TDB) activates the Nlrp3 inflammasome. Immunobiology. 2013;218(4):664–73. doi:10.1016/j.imbio.2012.07.029.
  • Alameh M-G, Tombácz I, Bettini E, Lederer K, Ndeupen S, Sittplangkoon C, Wilmore JR, Gaudette BT, Soliman OY, Pine M. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54(12):2877–92. doi:10.1016/j.immuni.2021.11.001.
  • Lederer K, Bettini E, Parvathaneni K, Painter MM, Agarwal D, Lundgreen KA, Weirick M, Muralidharan K, Castaño D, Goel RR. et al. Germinal center responses to SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals. Cell. 2022;185(6):1008–24. doi:10.1016/j.cell.2022.01.027.
  • Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E. et al. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med. 2018;215(6):1571–1588. doi:10.1084/jem.20171450.
  • Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ. et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med. 2020;383(25):2427–2438. doi:10.1056/NEJMoa2028436.
  • Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN, McCullough MP, Chappell JD, Denison MR, Stevens LJ. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med. 2020;383(20):1920–1931. doi:10.1056/NEJMoa2022483.
  • Jennings GT, Bachmann MF. The coming of age of virus-like particle vaccines. J Biol Chem. 2008;389(5):521–536. doi:10.1515/BC.2008.064.
  • Walsh KP, Mills KH. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013;34(11):521–530. doi:10.1016/j.it.2013.07.006.
  • Gao Y, Wijewardhana C, Mann JF. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Front Immunol. 2018;9:345. doi:10.3389/fimmu.2018.00345.
  • Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus–like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32. doi:10.1016/j.smim.2017.08.014.
  • Adepoju P. RTS, S malaria vaccine pilots in three African countries. Lancet. 2019;393(10182):1685. doi:10.1016/S0140-6736(19)30937-7.
  • Petrovsky N. Comparative safety of vaccine adjuvants: a summary of current evidence and future needs. Drug Saf. 2015;38(11):1059–1074. doi:10.1007/s40264-015-0350-4.
  • De Swart RL, Kuiken T, Timmerman HH, Amerongen GV, van den Hoogen BG, Vos HW, Neijens HJ, Andeweg AC, Osterhaus ADME. Immunization of macaques with formalin-inactivated respiratory syncytial virus (RSV) induces interleukin-13-associated hypersensitivity to subsequent RSV infection. J Virol. 2002;76(22):11561–9. doi:10.1128/JVI.76.22.11561-11569.2002.
  • Honda-Okubo Y, Barnard D, Ong CH, Peng B-H, Tseng CTK, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89(6):2995–3007. doi:10.1128/JVI.02980-14.
  • Audibert FM, Lise LD. Adjuvants: current status, clinical perspectives and future prospects. Trends Pharmacol Sci. 1993;14(5):174–178. doi:10.1016/0165-6147(93)90204-W.
  • Goto N, Kato H, Maeyama J-I, Eto K, Yoshihara S. Studies on the toxicities of aluminium hydroxide and calcium phosphate as immunological adjuvants for vaccines. Vaccine. 1993;11(9):914–8. doi:10.1016/0264-410X(93)90377-A.
  • Reusche E, Seydel U. Dialysis-associated encephalopathy: light and electron microscopic morphology and topography with evidence of aluminum by laser microprobe mass analysis. Acta Neuropathol (Berl). 1993;86(3):249–258. doi:10.1007/BF00304139.
  • Kramer MF, Heath MD. Aluminium in allergen-specific subcutaneous immunotherapy–a German perspective. Vaccine. 2014;32(33):4140–4148. doi:10.1016/j.vaccine.2014.05.063.
  • Souza JVD, Moreira NDD, Teixeira-Carvalho A, Carneiro CM, Siqueira FAM, Vieira PMDA, Giunchetti RC, Moura SADL, Fujiwara RT, Melo MN. et al. Cell recruitment and cytokines in skin mice sensitized with the vaccine adjuvants: saponin, incomplete Freund’s adjuvant, and monophosphoryl lipid a. PlLoS One. 2012;7(7):e40745. doi:10.1371/journal.pone.0040745.
  • Whitehouse M. Oily adjuvants and autoimmunity: now time for reconsideration? Lupus. 2012;21(2):217–222. doi:10.1177/0961203311429818.
  • Vera-Lastra O. et al. Human adjuvant disease induced by foreign substances: a new model of ASIA (Shoenfeld’s syndrome). Lupus. 2012;21(2):128–135. doi:10.1177/0961203311429317.
  • de Bruijn I, Meyer I, Gerez L, Nauta J, Giezeman K, Palache B. Antibody induction by virosomal, MF59-adjuvanted, or conventional influenza vaccines in the elderly. Vaccine. 2007;26(1):119–27. doi:10.1016/j.vaccine.2007.10.051.
  • Levie K, Gjorup I, Skinhøj P, Stoffel M. A 2-dose regimen of a recombinant hepatitis B vaccine with the immune stimulant AS04 compared with the standard 3-dose regimen of engerix-B in healthy young adults. Scand J Infect Dis. 2002;34(8):610–4. doi:10.1080/00365540110080881.
  • Lorent JH, Quetin-Leclercq J, Mingeot-Leclercq M-P. The amphiphilic nature of saponins and their effects on artificial and biological membranes and potential consequences for red blood and cancer cells. Org Biomol Chem. 2014;12(44):8803–8822. doi:10.1039/C4OB01652A.
  • Waite DC, Jacobson EW, Ennis FA, Edelman R, White B, Kammer R, Anderson C, Kensil CR. Three double-blind, randomized trials evaluating the safety and tolerance of different formulations of the saponin adjuvant QS-21. Vaccine. 2001;19(28–29):3957–67. doi:10.1016/S0264-410X(01)00142-6.
  • Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines. 2020;19(3):279–92. doi:10.1080/14760584.2020.1745636.
  • Naik S, Wala S. Arthritis, a complex connective and synovial joint destructive autoimmune disease: animal models of arthritis with varied etiopathology and their significance. J Postgrad Med. 2014;60(3):309. doi:10.4103/0022-3859.138799.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol. 2004;82(5):488–496. doi:10.1111/j.0818-9641.2004.01272.x.
  • Turley CB, Rupp RE, Johnson C, Taylor DN, Wolfson J, Tussey L, Kavita U, Stanberry L, Shaw A. Safety and immunogenicity of a recombinant M2e–flagellin influenza vaccine (STF2. 4xM2e) in healthy adults. Vaccine. 2011;29(32):5145–52. doi:10.1016/j.vaccine.2011.05.041.
  • Petrovsky N. Freeing vaccine adjuvants from dangerous immunological dogma. Expert Rev Vaccines. 2008;7(1):7–10. doi:10.1586/14760584.7.1.7.
  • Rockman S, Dyson A, Koernig S, Becher D, Ng M, Morelli AB, Barnden M, Tang MLK, Pearse M, Maraskovsky E. et al. Evaluation of the bioactivity of influenza vaccine strains in vitro suggests that the introduction of new strains in the 2010 Southern Hemisphere trivalent influenza vaccine is associated with adverse events. Vaccine. 2014;32(30):3861–3868. doi:10.1016/j.vaccine.2014.03.032.
  • Baay M, Bollaerts K, Verstraeten T. A systematic review and meta-analysis on the safety of newly adjuvanted vaccines among older adults. Vaccine. 2018;36(29):4207–4214. doi:10.1016/j.vaccine.2018.06.004.
  • Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards adjuvant development: focus on antiviral therapy. Int J Mol Sci. 2023;24(11):9225. doi:10.3390/ijms24119225.
  • Li Q, Li Z, Deng N, Ding F, Li Y, Cai H. Built-in adjuvants for use in vaccines. Eur J Med Chem. 2022;227:113917. doi:10.1016/j.ejmech.2021.113917.
  • Reiser ML, Mosaheb MM, Lisk C, Platt A, Wetzler LM. The TLR2 binding neisserial porin PorB enhances antigen presenting cell trafficking and cross-presentation. Sci Rep. 2017;7(1):736. doi:10.1038/s41598-017-00555-4.
  • Lisk C, Yuen R, Kuniholm J, Antos D, Reiser ML, Wetzler LM. Toll-like receptor ligand based adjuvant, PorB, increases antigen deposition on germinal center follicular dendritic cells while enhancing the follicular dendritic cells network. Front Immunol. 2020;11:1254. doi:10.3389/fimmu.2020.01254.
  • Mosaheb MM, Reiser ML, Wetzler LM. Toll-like receptor ligand-based vaccine adjuvants require intact MyD88 signaling in antigen-presenting cells for germinal center formation and antibody production. Front Immunol. 2017;8:225. doi:10.3389/fimmu.2017.00225.
  • Kaur A, Baldwin J, Brar D, Salunke DB, Petrovsky N. Toll-like receptor (TLR) agonists as a driving force behind next-generation vaccine adjuvants and cancer therapeutics. Curr Opin Chem Biol. 2022;70:102172. doi:10.1016/j.cbpa.2022.102172.
  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1(2):135–145. doi:10.1038/35100529.
  • Ji Y, Zhao J, Chu CC. Enhanced MHC-I antigen presentation from the delivery of ovalbumin by light-facilitated biodegradable poly (ester amide) s nanoparticles. J Mater Chem B. 2018;6(13):1930–1942. doi:10.1039/C7TB03233A.
  • Taylor DN, Treanor JJ, Strout C, Johnson C, Fitzgerald T, Kavita U, Ozer K, Tussey L, Shaw A. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza–flagellin fusion vaccine (VAX125, STF2. HA1 SI). Vaccine. 2011;29(31):4897–902. doi:10.1016/j.vaccine.2011.05.001.
  • Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential. J Immunol. 2010;185(10):5677–5682. doi:10.4049/jimmunol.1002156.
  • Mizel SB, Graff AH, Sriranganathan N, Ervin S, Lees CJ, Lively MO, Hantgan RR, Thomas MJ, Wood J, Bell B. et al. Flagellin-F1-V fusion protein is an effective plague vaccine in mice and two species of nonhuman primates. Clin Vaccine Immunol. 2009;16(1):21–28. doi:10.1128/CVI.00333-08.
  • Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, Fitzgerald T, Liu G, Kavita U, Song L, Dark I. et al. Safety and immunogenicity of a recombinant hemagglutinin influenza–flagellin fusion vaccine (VAX125) in healthy young adults. Vaccine. 2010;28(52):8268–74. doi:10.1016/j.vaccine.2010.10.009.
  • Aucouturier J, Dupuis L, Deville S, Ascarateil S, Ganne V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines. 2002;1(1):111–18. doi:10.1586/14760584.1.1.111.
  • Moreira LO, Smith AM, DeFreitas AA, Qualls JE, El Kasmi KC, Murray PJ. Modulation of adaptive immunity by different adjuvant–antigen combinations in mice lacking Nod2. Vaccine. 2008;26(46):5808–13. doi:10.1016/j.vaccine.2008.08.038.
  • van Doorn E, Liu, H., Huckriede, A., Hak, E. Safety and tolerability evaluation of the use of montanide ISA™ 51 as vaccine adjuvant: a systematic review. Human Vaccines & Immunotherapeutics. 2016;12(1):159–169. doi:10.1080/21645515.2015.1071455.
  • Stephenson R, You H, McManus D, Toth I. Schistosome vaccine adjuvants in preclinical and clinical research. Vaccines. 2014;2(3):654–85. doi:10.3390/vaccines2030654.
  • Ciarambino T, Crispino P, Buono P, Giordano V, Trama U, Iodice V, Leoncini L, Giordano M. Efficacy and safety of vaccinations in geriatric patients: a literature review. Vaccines. 2023;11(9):1412. doi:10.3390/vaccines11091412.
  • WHO. Guidelines on the non-clinical evaluation of vaccine adjuvants and adjuvanted vaccines. Geneva (Switzerland): WHO; 2014.
  • Da Silva FT, Di Pasquale A, Yarzabal JP, Garçon N. Safety assessment of adjuvanted vaccines: methodological considerations. Hum Vaccin Immunother. 2015;11(7):1814–24. doi:10.1080/21645515.2015.1043501.
  • Sun Y, Gruber M, Matsumoto M. Overview of global regulatory toxicology requirements for vaccines and adjuvants. J Pharmacol Toxicol Methods. 2012;65(2):49–57. doi:10.1016/j.vascn.2012.01.002.
  • Diseases, N.I.o.A.a.I. 2018 NIAID Strategic Plan For Research On Vaccine Adjuvants. 2018 [accessed 2014 Jan 17] https://www.niaid.nih.gov/sites/default/files/NIAIDStrategicPlanVaccineAdjuvants2018.pdf.
  • WHO. Guidelines on clinical evaluation of vaccines: regulatory expectations. Geneva (Switzerland): WHO; 2017.
  • Plitnick LM. Global regulatory guidelines for vaccines. In: Nonclinical development of novel biologics, biosimilars, vaccines and specialty biologics. West Point (PA): Elsevier; 2013. p. 225–41.
  • Use, T.E.M.A.E.o.M.f.H. Guideline on adjuvants in vaccines. London: The European Medicines Agency Evaluation of Medicines for Human Use; 2005.
  • Mestas J, Hughes CC. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172(5):2731–2738. doi:10.4049/jimmunol.172.5.2731.
  • Akbar AN, Soares MVD, Plunkett FJ, Salmon M. Differential regulation of CD8+ T cell senescence in mice and men. Mech Ageing Dev. 2001;121(1–3):69–76. doi:10.1016/S0047-6374(00)00198-6.
  • High KP, Akbar AN, Nikolich-Zugich J. Translational research in immune senescence: assessing the relevance of current models. Semin Immunol. 2012;24(5):373–382. doi:10.1016/j.smim.2012.04.007.
  • Domnich A, Arata L, Amicizia D, Puig-Barberà J, Gasparini R, Panatto D. Effectiveness of MF59-adjuvanted seasonal influenza vaccine in the elderly: a systematic review and meta-analysis. Vaccine. 2017;35(4):513–20. doi:10.1016/j.vaccine.2016.12.011.
  • Young B, Zhao X, Cook AR, Parry CM, Wilder-Smith A, I-Cheng MC. Do antibody responses to the influenza vaccine persist year-round in the elderly? A systematic review and meta-analysis. Vaccine. 2017;35(2):212–21. doi:10.1016/j.vaccine.2016.11.013.
  • Cyster JG, Allen CD. B cell responses: cell interaction dynamics and decisions. Cell. 2019;177(3):524–540. doi:10.1016/j.cell.2019.03.016.
  • Sutmuller R, Garritsen A, Adema GJ. Regulatory T cells and toll‐like receptors: regulating the regulators. Ann Rheum Dis. 2007;66(Suppl 3):iii91. doi:10.1136/ard.2007.078535.
  • Sutmuller RP, den Brok MH, Kramer M, Bennink EJ, Toonen LW, Kullberg BJ, Joosten LA, Akira S, Netea MG, Adema GJ. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest. 2006;116(2):485–494. doi:10.1172/JCI25439.
  • Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: the key role of adjuvant. Tuberculosis. 2023;139:102307. doi:10.1016/j.tube.2023.102307.
  • Perdomo C, Zedler U, Kühl AA, Lozza L, Saikali P, Sander LE, Vogelzang A, Kaufmann SHE, Kupz A. Mucosal BCG vaccination induces protective lung-resident memory T cell populations against tuberculosis. MBio. 2016;7(6):e01686–16. doi:10.1128/mBio.01686-16.
  • Lai R, Afkhami S, Haddadi S, Jeyanathan M, Xing Z. Mucosal immunity and novel tuberculosis vaccine strategies: route of immunisation-determined T-cell homing to restricted lung mucosal compartments. Eur Respir Rev. 2015;24(136):356–60. doi:10.1183/16000617.00002515.
  • Clements JD, Norton EB. The mucosal vaccine adjuvant LT (R192G/L211A) or dmLT. mSphere. 2018;3(4). doi:10.1128/mSphere00215-18.
  • Crothers JW, Norton EB. Recent advances in enterotoxin vaccine adjuvants. Curr Opin Immunol. 2023;85:102398. doi:10.1016/j.coi.2023.102398.
  • Iwanaga N, Chen K, Yang H, Lu S, Hoffmann JP, Wanek A, McCombs JE, Song K, Rangel-Moreno J, Norton EB. et al. Vaccine-driven lung TRM cells provide immunity against Klebsiella via fibroblast IL-17R signaling. Sci Immunol. 2021;6(63):eabf1198. doi:10.1126/sciimmunol.abf1198.
  • Fujihashi K, Sato S, Kiyono H. Mucosal adjuvants for vaccines to control upper respiratory infections in the elderly. Exp Gerontol. 2014;54:21–26. doi:10.1016/j.exger.2014.01.006.
  • Kim W, Zhou JQ, Horvath SC, Schmitz AJ, Sturtz AJ, Lei T, Liu Z, Kalaidina E, Thapa M, Alsoussi WB. et al. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature. 2022;604(7904):141–145. doi:10.1038/s41586-022-04527-1.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608. doi:10.1038/nm.3409.