2,009
Views
0
CrossRef citations to date
0
Altmetric
Coronavirus

COVID-19 vaccines: Immune correlates and clinical outcomes

ORCID Icon, , & ORCID Icon
Article: 2324549 | Received 24 Jan 2024, Accepted 24 Feb 2024, Published online: 22 Mar 2024

References

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–9. doi:10.1056/NEJMoa2001017.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Berlin DA, Gulick RM, Martinez FJ, Solomon CG. Severe COVID-19. N Engl J Med. 2020;383(25):2451–2460. doi:10.1056/NEJMcp2009575.
  • White DB, Lo B. A framework for rationing ventilators and critical care beds during the COVID-19 pandemic. JAMA. 2020;323(18):1773. doi:10.1001/jama.2020.5046.
  • Douin DJ, Ward MJ, Lindsell CJ, Howell MP, Hough CL, Exline MC, Gong MN, Aboodi MS, Tenforde MW, Feldstein LR, et al. ICU bed utilization during the coronavirus disease 2019 pandemic in a multistate analysis—March to June 2020. Crit Care Explor. 2021;3(3):e0361. doi:10.1097/CCE.0000000000000361.
  • Dar M, Swamy L, Gavin D, Theodore A. Mechanical-ventilation supply and options for the COVID-19 pandemic. Leveraging all available resources for a limited resource in a crisis. Ann Am Thorac Soc. 2021;18(3):408–416. doi:10.1513/AnnalsATS.202004-317CME.
  • Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021;384(5):403–416. doi:10.1056/NEJMoa2035389.
  • Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020;383(27):2603–2615. doi:10.1056/NEJMoa2034577.
  • Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, Chadwick DR, Clark R, Cosgrove C, Galloway J, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med. 2021;385(13):1172–1183. doi:10.1056/NEJMoa2107659.
  • Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, Goepfert PA, Truyers C, Fennema H, Spiessens B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med. 2021;384(23):2187–2201. doi:10.1056/NEJMoa2101544.
  • World Health Organization. 2023. Tracking SARS-CoV-2 variants. [accessed 2023 Dec 26]. https://www.who.int/activities/tracking-SARS-CoV-2-variants
  • Feikin DR, Higdon MM, Abu-Raddad LJ, Andrews N, Araos R, Goldberg Y, Groome MJ, Huppert A, O’Brien KL, Smith PG, et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet. 2022;399(10328):924–944. doi:10.1016/S0140-6736(22)00152-0.
  • Abu-Raddad LJ, Chemaitelly H, Butt AA, National Study Group for COVID-19 Vaccination. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med. 2021;385(2):187–189. doi:10.1056/NEJMc2104974.
  • Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L, Lalloo U, Masilela MSL, Moodley D, Hanley S, et al. Efficacy of NVX-CoV2373 covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021;384(20):1899–1909. doi:10.1056/NEJMoa2103055.
  • Iuliano AD, Brunkard JM, Boehmer TK, Peterson E, Adjei S, Binder AM, Cobb S, Graff P, Hidalgo P, Panaggio MJ, et al. Trends in disease severity and health care utilization during the early omicron variant period compared with previous SARS-CoV-2 high transmission periods — United States, December 2020–January 2022. MMWR Morb Mortal Wkly Rep. 2022;71(4):146–52. doi:10.15585/MMWR.MM7104E4.
  • Gray G, Collie S, Goga A, Garrett N, Champion J, Seocharan I, Bamford L, Moultrie H, Bekker L-G. Effectiveness of Ad26.COV2.S and BNT162b2 vaccines against omicron variant in South Africa. N Engl J Med. 2022;386(23):2243–5. doi:10.1056/NEJMc2202061.
  • Tostanoski LH, Yu J, Mercado NB, McMahan K, Jacob-Dolan C, Martinot AJ, Piedra-Mora C, Anioke T, Chang A, Giffin VM, et al. Immunity elicited by natural infection or Ad26.COV2.S vaccination protects hamsters against SARS-CoV-2 variants of concern. Sci Transl Med. 2021;13(618). doi:10.1126/scitranslmed.abj3789.
  • McMahan K, Yu J, Mercado NB, Loos C, Tostanoski LH, Chandrashekar A, Liu J, Peter L, Atyeo C, Zhu A, et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature. 2020;590(7847):630–4. doi:10.1038/s41586-020-03041-6.
  • Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K, Mercado NB, Yu J, Chan CN, Bondoc S, Starke CE, et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med. 2020;26(11):1694–1700. doi:10.1038/s41591-020-1070-6.
  • Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science. 2022;375(6576):43–50. doi:10.1126/science.abm3425.
  • Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, Lietaer C, Choi S, Hether TD, Marcelis L, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184(24):5932–5949.e15. doi:10.1016/j.cell.2021.10.027.
  • He J, Guo Y, Mao R, Zhang J. Proportion of asymptomatic coronavirus disease 2019: a systematic review and meta‐analysis. J Med Virol. 2021;93(2):820. doi:10.1002/JMV.26326.
  • Mehta OP, Bhandari P, Raut A, Kacimi SEO, Huy NT. Coronavirus disease (COVID-19): comprehensive review of clinical presentation. Front Pub Health. 2020;8:582932. doi:10.3389/fpubh.2020.582932.
  • Lee KC, Morgan AU, Chaiyachati KH, Asch DA, Xiong RA, Do D, Kilaru AS, Lam D, Parambath A, Friedman AB, et al. Pulse oximetry for monitoring patients with covid-19 at home — a pragmatic, randomized trial. N Engl J Med. 2022;386(19):1857–9. doi:10.1056/NEJMc2201541.
  • Wang D, Yin Y, Hu C, Liu X, Zhang X, Zhou S, Jian M, Xu H, Prowle J, Hu B, et al. Clinical course and outcome of 107 patients infected with the novel coronavirus, SARS-CoV-2, discharged from two hospitals in Wuhan, China. Crit Care. 2020;24(1):188. doi:10.1186/s13054-020-02895-6.
  • Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS. Acute respiratory distress syndrome. JAMA. 2012;307(23):2526–33. doi:10.1001/jama.2012.5669.
  • Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Zhou X, Du C, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Int Med. 2020;180(7):934–43. doi:10.1001/jamainternmed.2020.0994.
  • Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022;20(5):270–284. doi:10.1038/s41579-022-00713-0.
  • Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB, Kanneganti T-D. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 2021;22(7):829–38. doi:10.1038/s41590-021-00937-x.
  • Rovito R, Augello M, Ben-Haim A, Bono V, d’Arminio Monforte A, Marchetti G. Hallmarks of severe COVID-19 pathogenesis: a pas de deux between viral and host factors. Front Immunol. 2022;13:912336. doi:10.3389/fimmu.2022.912336.
  • Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, Péré H, Charbit B, Bondet V, Chenevier-Gobeaux C, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi:10.1126/science.abc6027.
  • Ziegler CGK, Miao VN, Owings AH, Navia AW, Tang Y, Bromley JD, Lotfy P, Sloan M, Laird H, Williams HB, et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell. 2021;184(18):4713–4733.e22. doi:10.1016/J.CELL.2021.07.023.
  • Huang J, Hume AJ, Abo KM, Werder RB, Villacorta-Martin C, Alysandratos K-D, Beermann ML, Simone-Roach C, Lindstrom-Vautrin J, Olejnik J, et al. SARS-CoV-2 infection of pluripotent stem Cell-derived Human Lung Alveolar Type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell. 2020;27(6):962–973.e7. doi:10.1016/J.STEM.2020.09.013.
  • Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–2109. doi:10.1111/JTH.14975.
  • Carsana L, Sonzogni A, Nasr A, Rossi RS, Pellegrinelli A, Zerbi P, Rech R, Colombo R, Antinori S, Corbellino M, et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis. 2020;20(10):1135–1140. doi:10.1016/S1473-3099(20)30434-5.
  • Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, Abbondanza D, Fleming SJ, Subramanian A, Montoro DT, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–113. doi:10.1038/s41586-021-03570-8.
  • Diamond MS, Kanneganti TD. Innate immunity: the first line of defense against SARS-CoV-2. Nat Immunol. 2022;23(2):165–176. doi:10.1038/s41590-021-01091-0.
  • Kleymenov DA, Bykonia EN, Popova LI, Mazunina EP, Gushchin VA, Kolobukhina LV, Burgasova OA, Kruzhkova IS, Kuznetsova NA, Shidlovskaya EV, et al. A deep look into COVID-19 severity through dynamic changes in blood cytokine levels. Front Immunol. 2021;12:771609. doi:10.3389/FIMMU.2021.771609/BIBTEX.
  • De Biasi S, Meschiari M, Gibellini L, Bellinazzi C, Borella R, Fidanza L, Gozzi L, Iannone A, Lo Tartaro D, Mattioli M,et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020;11(1):1–17. doi:10.1038/s41467-020-17292-4.
  • Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi:10.1016/S0140-6736(20)30211-7.
  • Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26(10):1636–1643. doi:10.1038/s41591-020-1051-9.
  • Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, et al. Tocilizumab in patients hospitalized with covid-19 pneumonia. N Engl J Med. 2021;384(1):20–30. doi:10.1056/NEJMoa2030340.
  • The RECOVERY Collaborative Group;Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, et al. Dexamethasone in hospitalized patients with covid-19. N Engl J Med. 2021;384(8):693–704. doi:10.1056/NEJMoa2021436.
  • Ahmad FB, Cisewski JA, Xu J, Anderson RN. COVID-19 mortality update — United States, 2022. MMWR Morb Mortal Wkly Rep. 2023;72(18):493–496. doi:10.15585/MMWR.MM7218A4.
  • Centers for Disease Control and Prevention. COVID Data tracker; 2023. [accessed 2023 Dec 26]. https://covid.cdc.gov/covid-data-tracker
  • Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi:10.1038/s41586-020-2008-3.
  • Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol. 2021;21(2):73–82. doi:10.1038/s41577-020-00480-0.
  • Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH. Novel approaches for vaccine development. Cell. 2021;184(6):1589–1603. doi:10.1016/j.cell.2021.02.030.
  • WHO. Coronavirus (COVID-19) dashboard | WHO coronavirus (COVID-19) dashboard with vaccination data. [accessed 2023 Nov 12]. https://covid19.who.int/?mapFilter=vaccinations
  • Hardt K, Vandebosch A, Sadoff J, Le Gars M, Truyers C, Lowson D, Van Dromme I, Vingerhoets J, Kamphuis T, Scheper G, et al. Efficacy, safety, and immunogenicity of a booster regimen of Ad26.COV2.S vaccine against COVID-19 (ENSEMBLE2): results of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Infect Dis. 2022;22(12):1703–1715. doi:10.1016/S1473-3099(22)00506-0.
  • Dunkle LM, Kotloff KL, Gay CL, Áñez G, Adelglass JM, Barrat Hernández AQ, Harper WL, Duncanson DM, McArthur MA, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022;386(6):531–543. doi:10.1056/NEJMoa2116185.
  • Collier ARY, Yu J, McMahan K, Liu J, Chandrashekar A, Maron JS, Atyeo C, Martinez DR, Ansel JL, Aguayo R, et al. Differential kinetics of immune responses elicited by covid-19 vaccines. N Engl J Med. 2021;385(21):2010–2012. doi:10.1056/NEJMc2115596.
  • Barouch DH. Covid-19 vaccines - immunity, variants, boosters. N Engl J Med. 2022;387(11):1011–20. doi:10.1056/NEJMra2206573.
  • Mahrokhian SH, Tostanoski LH, Jacob-Dolan C, Zahn RC, Wegmann F, McMahan K, Yu J, Gebre MS, Bondzie EA, Wan H, et al. Durability and expansion of neutralizing antibody breadth following Ad26.COV2.S vaccination of mice. NPJ Vaccines. 2022;7(1):1–8. doi:10.1038/s41541-022-00454-4.
  • Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M, McMahan K, Liu J, Chandrashekar A, Patel S, et al. Durable humoral and cellular immune responses 8 months after Ad26.COV2.S vaccination. N Engl J Med. 2021;385(10):951–953. doi:10.1056/NEJMc2108829.
  • Lederer K, Castaño D, Gómez Atria D, Oguin TH, Wang S, Manzoni TB, Muramatsu H, Hogan MJ, Amanat F, Cherubin P, et al. SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody generation. Immunity. 2020;53(6):1281–1295.e5. doi:10.1016/j.immuni.2020.11.009.
  • Turner JS, O’Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, et al. SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature. 2021;596(7870):109–113. doi:10.1038/s41586-021-03738-2.
  • Havers FP, Patel K, Whitaker M, Milucky J, Reingold A, Armistead I, Meek J, Anderson EJ, Weigel A, Reeg L, et al. Laboratory-confirmed COVID-19–associated hospitalizations among adults during SARS-CoV-2 omicron BA.2 variant predominance — COVID-19–associated hospitalization surveillance network, 14 states, June 20, 2021–May 31, 2022. MMWR Morb Mortal Wkly Rep. 2022;71(34):1085–91. doi:10.15585/mmwr.mm7134a3.
  • Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, de Silva TI, Peacock SJ, Barclay WS, de Silva TI, Towers GJ, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21(3):162–177. doi:10.1038/s41579-022-00841-7.
  • Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS, Krüger N, Graichen L, Hofmann-Winkler H, Kempf A, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell. 2021;184(9):2384–2393.e12. doi:10.1016/j.cell.2021.03.036.
  • Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, et al. Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization. Nature. 2021;596(7871):276–280. doi:10.1038/s41586-021-03777-9.
  • Hachmann NP, Miller J, Collier ARY, Ventura JD, Yu J, Rowe M, Bondzie EA, Powers O, Surve N, Hall K, et al. Neutralization escape by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 2022;387(1):86–88. doi:10.1056/NEJMc2206576.
  • Yu J, Collier ARY, Rowe M, Mardas F, Ventura JD, Wan H, Miller J, Powers O, Chung B, Siamatu M, et al. Neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants. N Engl J Med. 2022;386(16):1579–1580. doi:10.1056/NEJMc2201849.
  • Lasrado N, Collier ARY, Miller J, Hachmann, N.P., Liu, J., Sciacca, M., Wu, C., Anand, T., Bondzie, E.A., Fisher, J.L, et al. Waning immunity against XBB.1.5 following bivalent mRNA boosters. bioRxiv. 2023 Jan 23; doi:10.1101/2023.01.22.525079.
  • Lasrado N, Collier ARY, Hachmann NP, Miller J, Rowe M, Schonberg ED, Rodrigues SL, LaPiana A, Patio RC, Anand T, et al. Neutralization escape by SARS-CoV-2 omicron subvariant BA.2.86. Vaccine. 2023;41(47):6904–9. doi:10.1016/J.VACCINE.2023.10.051.
  • Yang S, Yu Y, Xu Y, Jian, F, Song, W, Yisimayi, A, Wang, P, Wang, J, Liu, J, Yu, L, et al. Fast evolution of SARS-CoV-2 BA.2·86 to JN.1 under heavy immune pressure. Lancet Infect Dis. 2023. 24(2):e70–e72. doi:10.1016/S1473-3099(23)00744-2.
  • United States Food and Drug Administration. Coronavirus (COVID-19) update: FDA authorizes moderna, pfizer-BioNTech bivalent COVID-19 vaccines for use as a booster dose | FDA. [accessed 2023 Nov 13]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-moderna-pfizer-biontech-bivalent-covid-19-vaccines-use
  • Collier ARY, Miller J, Hachmann NP, McMahan K, Liu J, Bondzie EA, Gallup L, Rowe M, Schonberg E, Thai S, et al. Immunogenicity of BA.5 bivalent mRNA vaccine boosters. N Engl J Med. 2023;388(6):565–567. doi:10.1056/NEJMc2213948.
  • Wang Q, Bowen A, Valdez R, Gherasim C, Gordon A, Liu L, Ho DD. Antibody response to omicron BA.4–BA.5 bivalent booster. N Engl J Med. 2023;388(6):567–9. doi:10.1056/NEJMc2213907.
  • Rodda LB, Morawski PA, Pruner KB, Fahning ML, Howard CA, Franko N, Logue J, Eggenberger J, Stokes C, Golez I, et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell. 2022;185(9):1588–1601.e14. doi:10.1016/j.cell.2022.03.018.
  • Lin DY, Xu Y, Gu Y, Zeng D, Wheeler B, Young H, Sunny SK, Moore Z. Effectiveness of bivalent boosters against severe omicron infection. N Engl J Med. 2023;388(8):764–6. doi:10.1056/NEJMc2215471.
  • United States Food and Drug Administration. FDA takes action on updated mRNA COVID-19 vaccines to better protect against currently circulating variants | FDA. [accessed 2023 Nov 15]. https://www.fda.gov/news-events/press-announcements/fda-takes-action-updated-mrna-covid-19-vaccines-better-protect-against-currently-circulating
  • Wang Q, Guo Y, Bowen A, Mellis IA, Valdez R, Gherasim C, Gordon A, Liu L, Ho DD., et al. XBB.1.5 monovalent mRNA vaccine booster elicits robust neutralizing antibodies against emerging SARS-CoV-2 variants. bioRxiv. 2023 Dec 6; 568730. 10.1101/2023.11.26.568730.
  • Marks PW, Gruppuso PA, Adashi EY. Urgent need for next-generation COVID-19 vaccines. JAMA. 2023;329(1):19. doi:10.1001/jama.2022.22759.
  • Marks PW, Gruppuso PA, Adashi EY. Defeating SARS-CoV-2 and preparing for the next pandemic. N Engl J Med. 2023;389(9):773–5. doi:10.1056/NEJMp2307867.
  • Havervall S, Marking U, Svensson J, Greilert-Norin N, Bacchus P, Nilsson P, Hober S, Gordon M, Blom K, Klingström J, et al. Anti-spike mucosal IgA protection against SARS-CoV-2 omicron infection. N Engl J Med. 2022;387(14):1333–1336. doi:10.1056/NEJMc2209651.
  • Ssemaganda A, Nguyen HM, Nuhu F, Jahan N, Card CM, Kiazyk S, Severini G, Keynan Y, Su R-C, Ji H, et al. Expansion of cytotoxic tissue-resident CD8+ T cells and CCR6+CD161+ CD4+ T cells in the nasal mucosa following mRNA COVID-19 vaccination. Nat Commun. 2022;13(1):1–9. doi:10.1038/s41467-022-30913-4.
  • Guerrieri M, Francavilla B, Fiorelli D, Nuccetelli M, Passali F, Coppeta L, Somma G, Bernardini S, Magrini A, Di Girolamo S, et al. Nasal and salivary mucosal humoral immune response elicited by mRNA BNT162b2 COVID-19 vaccine compared to SARS-CoV-2 natural infection. Vaccines (Basel). 2021;9(12):1499. doi:10.3390/vaccines9121499.
  • Su F, Patel GB, Hu S, Chen W. Induction of mucosal immunity through systemic immunization: phantom or reality? Hum Vaccin Immunother. 2016;12(4):1070–9. doi:10.1080/21645515.2015.1114195.
  • Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med. 2023;29(4):255–267. doi:10.1016/j.molmed.2023.01.003.
  • Wisnewski AV, Campillo Luna J, Redlich CA, Ansari AA. Human IgG and IgA responses to COVID-19 mRNA vaccines. PloS One. 2021;16(6):e0249499. doi:10.1371/journal.pone.0249499.
  • Rakhra K, Abraham W, Wang C, Moynihan KD, Li N, Donahue N, Baldeon AD, Irvine DJ. Exploiting albumin as a mucosal vaccine chaperone for robust generation of lung-resident memory T cells. Science Immunol. 2021;6(57):8003. doi:10.1126/sciimmunol.abd8003.
  • Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leuk Biol. 2014;95(2):215–24. doi:10.1189/jlb.0313180.
  • Ku MW, Bourgine M, Authié P, Lopez J, Nemirov K, Moncoq F, Noirat A, Vesin B, Nevo F, Blanc C, et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe. 2021;29(2):236–249.e6. doi:10.1016/j.chom.2020.12.010.
  • Hassan AO, Kafai NM, Dmitriev IP, Fremont DH, Curiel DT, Diamond MS, Chen RE, Winkler ES, Wessel AW, Case JB. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020;183:169–84.e13. doi:10.1016/j.cell.2020.08.026.
  • Xu F, Wu S, Yi L, Peng S, Wang F, Si W, Hou L, Zhu T. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg Microbes Infect. 2022;11(1):438–41. doi:10.1080/22221751.2022.2030199.
  • McMahan K, Wegmann F, Aid M, Sciacca M, Liu J, Hachmann NP, Miller J, Jacob-Dolan C, Powers O, Hope D, et al. Mucosal boosting enhances vaccine protection against SARS-CoV-2 in macaques. Nature. 2023 Dec 14; 1–3. 10.1038/s41586-023-06951-3.
  • Afkhami S, D’Agostino MR, Zhang A, Stacey HD, Marzok A, Kang A, Singh R, Bavananthasivam J, Ye G, Luo X, et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell. 2022;185(5):896–915.e19. doi:10.1016/j.cell.2022.02.005.
  • Li JX, Hou LH, Gou JB, Yin Z-D, Wu S-P, Wang F-Z, Zhang Z, Peng Z-H, Zhu T, Shen H-B, et al. Safety, immunogenicity and protection of heterologous boost with an aerosolised Ad5-nCoV after two-dose inactivated COVID-19 vaccines in adults: a multicentre, open-label phase 3 trial. Lancet Infect Dis. 2023;23(10):1143–1152. doi:10.1016/S1473-3099(23)00350-X.
  • Singh C, Verma S, Reddy P, Diamond MS, Curiel DT, Patel C, Jain MK, Redkar SV, Bhate AS, Gundappa V, et al. Phase III pivotal comparative clinical trial of intranasal (iNCOVACC) and intramuscular COVID-19 vaccine (Covaxin®). NPJ Vaccines. 2023;8(1):1–9. doi:10.1038/s41541-023-00717-8.
  • Crotty S. Hybrid immunity. Science. 2021;372(6549):1392–1393. doi:10.1126/science.abj2258.
  • Lasrado N, Barouch DH. SARS-CoV-2 hybrid immunity: the best of both worlds. J Infect Dis. 2023;228(10):1311–1313. doi:10.1093/infdis/jiad353.
  • Koutsakos M, Reynaldi A, Lee WS, Nguyen J, Amarasena T, Taiaroa G, Kinsella P, Liew KC, Tran T, Kent HE, et al. SARS-CoV-2 breakthrough infection induces rapid memory and de novo T cell responses. Immunity. 2023;56(4):879–892.e4. doi:10.1016/j.immuni.2023.02.017.
  • Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, Neradilek M, Seydoux E, Jennewein MF, MacCamy AJ, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021;372(6549):1413–1418. doi:10.1126/science.abg9175.
  • Liu J, Chandrashekar A, Sellers D, Barrett J, Jacob-Dolan C, Lifton M, McMahan K, Sciacca M, VanWyk H, Wu C, et al. Vaccines elicit highly conserved cellular immunity to SARS-CoV-2 omicron. Nature. 2022;603(7901):493–496. doi:10.1038/s41586-022-04465-y.
  • Alter G, Yu J, Liu J, Chandrashekar A, Borducchi EN, Tostanoski LH, McMahan K, Jacob-Dolan C, Martinez DR, Chang A, et al. Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans. Nature. 2021;596(7871):268–272. doi:10.1038/s41586-021-03681-2.
  • Goel RR, Painter MM, Apostolidis SA, Mathew D, Meng W, Rosenfeld AM, Lundgreen KA, Reynaldi A, Khoury DS, Pattekar A, et al. mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern. Science. 2021;374(6572). doi:10.1126/science.abm0829.
  • Keeton R, Tincho MB, Ngomti A, Baguma R, Benede N, Suzuki A, Khan K, Cele S, Bernstein M, Karim F, et al. T cell responses to SARS-CoV-2 spike cross-recognize omicron. Nature. 2022;603(7901):488–492. doi:10.1038/s41586-022-04460-3.
  • Sette A, Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–880. doi:10.1016/j.cell.2021.01.007.
  • Geers D, Shamier MC, Bogers S, den Hartog G, Gommers L, Nieuwkoop NN, Schmitz KS, Rijsbergen LC, van Osch JAT, Dijkhuizen E, et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Science Immunol. 2021;6(59):1750. doi:10.1126/sciimmunol.abj1750.
  • Rydyznski Moderbacher C, Ramirez SI, Dan JM, Grifoni A, Hastie KM, Weiskopf D, Belanger S, Abbott RK, Kim C, Choi J, et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183(4):996–1012.e19. doi:10.1016/j.cell.2020.09.038.
  • Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature. 2020;584(7821):437–442. doi:10.1038/s41586-020-2456-9.
  • Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529). doi:10.1126/science.abf4063.
  • Zhao Z, Kumanovics A, Love T, Melanson SEF, Meng QH, Wu AHB, Wiencek J, Apple FS, Ondracek CR, Koch DD, et al. T cell responses correlate with Self-reported disease severity and neutralizing antibody responses predict protection against SARS-CoV-2 breakthrough infection. Viruses. 2023;15(3):709. doi:10.3390/v15030709.
  • Zhu X, Gebo KA, Abraham AG, Habtehyimer F, Patel EU, Laeyendecker O, Gniadek TJ, Fernandez RE, Baker OR, Ram M, et al. Dynamics of inflammatory responses after SARS-CoV-2 infection by vaccination status in the USA: a prospective cohort study. Lancet Microbe. 2023;4(9):e692–e703. doi:10.1016/S2666-5247(23)00171-4.
  • Liu J, Yu J, McMahan K, Jacob-Dolan C, He X, Giffin V, Wu C, Sciacca M, Powers O, Nampanya F, et al. CD8 T cells contribute to vaccine protection against SARS-CoV-2 in macaques. Science Immunol. 2022;7(77):eabq7647. doi:10.1126/sciimmunol.abq7647.
  • Kumari D, Singh S, Kumari M, Gupta H, Chauhan D, Singh K, Rao Eslavath M, Bhushan B, Dogra V, Bargotya M, et al. Flow cytometry profiling of cellular immune response in COVID-19 infected, recovered and vaccinated individuals. Immunobiology. 2023;228(3):152392. doi:10.1016/j.imbio.2023.152392.
  • Briceño O, Lissina A, Wanke K, Afonso G, Braun A, Ragon K, Miquel T, Gostick E, Papagno L, Stiasny K, et al. Reduced naïve CD 8 + T -cell priming efficacy in elderly adults. Aging Cell. 2016;15(1):14–21. doi:10.1111/acel.12384.
  • Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee J-Y, Olshen RA, Weyand CM, Boyd SD, Goronzy JJ, et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA. 2014;111(36):13139–13144. doi:10.1073/pnas.1409155111.
  • Cohen B, Rubinstein R, Gans MD, Deng L, Rubinstein A, Eisenberg R. COVID-19 infection in 10 common variable immunodeficiency patients in New York City. J Allergy Clin Immunol Pract. 2021;9(1):504–507.e1. doi:10.1016/j.jaip.2020.11.006.
  • Bange EM, Han NA, Wileyto P, Kim JY, Gouma S, Robinson J, Greenplate AR, Hwee MA, Porterfield F, Owoyemi O, et al. CD8+ T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med. 2021;27(7):1280–1289. doi:10.1038/s41591-021-01386-7.