1,575
Views
0
CrossRef citations to date
0
Altmetric
RSV

Neutralizing activity of anti-respiratory syncytial virus monoclonal antibody produced in Nicotiana benthamiana

, , , , , & ORCID Icon show all
Article: 2327142 | Received 07 Nov 2023, Accepted 03 Mar 2024, Published online: 20 Mar 2024

References

  • Rha B, Curns AT, Lively JY, Campbell AP, Englund JA, Boom JA, Azimi PH, Weinberg GA, Staat MA, Selvarangan R. Respiratory Syncytial Virus-Associated Hospitalizations Among Young Children: 2015-2016. Pediatrics. 2020;146(1):e20193611. doi:10.1542/peds.2019-3611.
  • Hall CB, Weinberg GA, Iwane MK, Blumkin AK, Edwards KM, Staat MA, Auinger P, Griffin MR, Poehling KA, Erdman D, et al. The burden of respiratory syncytial virus infection in young children. N Engl J Med. 2009;360(6):588–10. doi:10.1056/NEJMoa0804877.
  • Centers for Disease Control and Prevention. Increased interseasonal respiratory syncytial virus (RSV) activity in parts of the Southern United States. CDC Health Alert Network; 2021.
  • Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE. Respiratory syncytial virus infection in elderly and high-risk adults. N Engl J Med. 2005;352(17):1749–59. doi:10.1056/NEJMoa043951.
  • Shi T, McAllister DA, O’Brien KL, Simoes EAF, Madhi SA, Gessner BD, Polack FP, Balsells E, Acacio S, Aguayo C, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. Lancet. 2017;390(10098):946–58. doi:10.1016/S0140-6736(17)30938-8.
  • Battles MB, McLellan JS. Respiratory syncytial virus entry and how to block it. Nat Rev Microbiol. 2019;17(4):233–45. doi:10.1038/s41579-019-0149-x.
  • Pandya MC, Callahan SM, Savchenko KG, Stobart CC. A contemporary view of respiratory syncytial virus (RSV) biology and strain-specific differences. Pathogens. 2019;8(2):67. doi:10.3390/pathogens8020067.
  • Patel N, Tian JH, Flores R, Jacobson K, Walker M, Portnoff A, Gueber-Xabier M, Massare MJ, Glenn G, Ellingsworth L et al. Flexible RSV prefusogenic fusion glycoprotein exposes multiple neutralizing epitopes that may collectively contribute to protective immunity. Vaccines (Basel). 2020;8:607.
  • Tang A, Chen Z, Cox KS, Su H-P, Callahan C, Fridman A, Zhang L, Patel SB, Cejas PJ, Swoyer R, et al. A potent broadly neutralizing human RSV antibody targets conserved site IV of the fusion glycoprotein. Nat Commun. 2019;10(1):4153. doi:10.1038/s41467-019-12137-1.
  • McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GBE, Yang Y, Zhang B, Chen L, Srivatsan S, Zheng A, et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science. 2013;342(6158):592–8. doi:10.1126/science.1243283.
  • McLellan JS, Yang Y, Graham BS, Kwong PD. Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. J Virol. 2011;85(15):7788–96. doi:10.1128/JVI.00555-11.
  • Mousa JJ, Kose N, Matta P, Gilchuk P, Crowe JE. A novel pre-fusion conformation-specific neutralizing epitope on the respiratory syncytial virus fusion protein. Nat Microbiol. 2017;2(4):16271. doi:10.1038/nmicrobiol.2016.271.
  • Hause AM, Henke DM, Avadhanula V, Shaw CA, Tapia LI, Piedra PA, Tregoning JS. Sequence variability of the respiratory syncytial virus (RSV) fusion gene among contemporary and historical genotypes of RSV/A and RSV/B. PLoS One. 2017;12(4):e0175792. doi:10.1371/journal.pone.0175792.
  • Mas V, Nair H, Campbell H, Melero JA, Williams TC. Antigenic and sequence variability of the human respiratory syncytial virus F glycoprotein compared to related viruses in a comprehensive dataset. Vaccine. 2018;36(45):6660–73. doi:10.1016/j.vaccine.2018.09.056.
  • Papi A, Ison MG, Langley JM, Lee D-G, Leroux-Roels I, Martinon-Torres F, Schwarz TF, van Zyl-Smit RN, Campora L, Dezutter N, et al. Respiratory syncytial virus prefusion F protein vaccine in older adults. N Engl J Med. 2023;388(7):595–608. doi:10.1056/NEJMoa2209604.
  • Viguria N, Navascués A, Juanbeltz R, Echeverría A, Ezpeleta C, Castilla J. Effectiveness of palivizumab in preventing respiratory syncytial virus infection in high-risk children. Hum Vaccines Immunother. 2021;17(6):1867–72. doi:10.1080/21645515.2020.1843336.
  • Keam SJ. Nirsevimab: first approval. Drugs. 2023;83(2):181–7. doi:10.1007/s40265-022-01829-6.
  • Brady T, Cayatte C, Roe TL, Speer SD, Ji H, Machiesky L, Zhang T, Wilkins D, Tuffy KM, Kelly EJ, et al. Fc-mediated functions of nirsevimab complement direct respiratory syncytial virus neutralization but are not required for optimal prophylactic protection. Front Immunol. 2023;14:1283120. doi:10.3389/fimmu.2023.1283120.
  • Hammitt LL, Dagan R, Yuan Y, Baca Cots M, Bosheva M, Madhi SA, Muller WJ, Zar HJ, Brooks D, Grenham A, et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N Engl J Med. 2022;386(9):837–46. doi:10.1056/NEJMoa2110275.
  • Tian D, Battles MB, Moin SM, Chen M, Modjarrad K, Kumar A, Kanekiyo M, Graepel KW, Taher NM, Hotard AL, et al. Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein. Nat Commun. 2017;8(1):1877. doi:10.1038/s41467-017-01858-w.
  • Gilman M, Furmanova-Hollenstein P, Pascual G, Wout A, Langedijk J, McLellan J. Transient opening of trimeric prefusion RSV F proteins. Nat Commun. 2019;10(1):2105. doi:10.1038/s41467-019-09807-5.
  • McLellan J, Chen M, Leung S, Graepel K, Du X, Yang Y, Zhou T, Baxa U, Yasuda E, Beaumont T, et al. Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. Science. 2013;340(6136):1113–17. doi:10.1126/science.1234914.
  • Chen Q, Davis K. The potential of plants as a system for the development and production of human biologics. F1000 Resear. 2016;5. doi:10.12688/f1000research.8010.1.
  • Gerasimova SV, Smirnova OG, Kochetov AV, Shumnyi VK. Production of recombinant proteins in plant cells. Russ J Plant Physiol. 2016;63(1):26–37. doi:10.1134/S1021443716010076.
  • Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs. 2005;10(1):185–218. doi:10.1517/14728214.10.1.185.
  • Sack M, Hofbauer A, Fischer R, Stoger E. The increasing value of plant-made proteins. Curr Opin Biotechnol. 2015;32:163–70. doi:10.1016/j.copbio.2014.12.008.
  • Dent M, Hurtado J, Paul AM, Sun H, Lai H, Yang M, Esqueda A, Bai F, Steinkellner H, Chen Q, et al. Plant-produced anti-dengue virus monoclonal antibodies exhibit reduced antibody-dependent enhancement of infection activity. J Gen Virol. 2016;97(12):3280–90. doi:10.1099/jgv.0.000635.
  • Zhang Y, Li D, Jin X, Huang Z. Fighting ebola with ZMapp: spotlight on plant-made antibody. Sci China Life Sci. 2014;57(10):987–8. doi:10.1007/s11427-014-4746-7.
  • Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, Thitithanyanont A, Phoolcharoen W. Monoclonal antibodies B38 and H4 produced in Nicotiana benthamiana neutralize SARS-CoV-2 in vitro. Front Plant Sci. 2020;11:11. doi:10.3389/fpls.2020.589995.
  • Rattanapisit K, Shanmugaraj B, Manopwisedjaroen S, Purwono PB, Siriwattananon K, Khorattanakulchai N, Hanittinan O, Boonyayothin W, Thitithanyanont A, Smith DR, et al. Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana. Sci Rep. 2020;10(1):17698. doi:10.1038/s41598-020-74904-1.
  • Nosaki S, Hoshikawa K, Ezura H, Miura K. Transient protein expression systems in plants and their applications. Plant Biotechnol (Tokyo). 2021;38(3):297–304. doi:10.5511/plantbiotechnology.21.0610a.
  • Tyurin AA, Suhorukova AV, Kabardaeva KV, Goldenkova-Pavlova IV, Goldenkova-Pavlova IV. Transient gene expression is an effective experimental tool for the research into the fine mechanisms of plant gene function: advantages, limitations, and solutions. Plants. 2020;9(9):1187. doi:10.3390/plants9091187.
  • SBaR S. Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J Biotechnol Bioeng. 2014;1:1–4.
  • Iyappan G, Shanmugaraj BM, Inchakalody V, Ma JKC, Ramalingam S. Potential of plant biologics to tackle the epidemic like situations – case studies involving viral and bacterial candidates. Int J Infect Dis. 2018;73:363. doi:10.1016/j.ijid.2018.04.4236.
  • He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, et al. Contributions of the international plant science community to the fight against infectious diseases in humans—part 2: affordable drugs in edible plants for endemic and re-emerging diseases. Plant Biotechnol J. 2021;19(10):1921–36. doi:10.1111/pbi.13658.
  • Shanmugaraj B, Jirarojwattana P, Phoolcharoen W. Molecular farming strategy for the rapid production of protein-based reagents for use in infectious disease diagnostics. Planta Med. 2023;89(10):1010–1020. doi:10.1055/a-2076-2034.
  • Shanmugaraj B, Bulaon CJ, Phoolcharoen W. Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants (Basel). 2020;9(7):842. doi:10.3390/plants9070842.
  • Lobato Gómez M, Huang X, Alvarez D, He W, Baysal C, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennasser P, Saba‐Mayoral A, et al. Contributions of the international plant science community to the fight against human infectious diseases – part 1: epidemic and pandemic diseases. Plant Biotechnol J. 2021;19(10):1901–20. doi:10.1111/pbi.13657.
  • Phoolcharoen W, Shanmugaraj B, Khorattanakulchai N, Sunyakumthorn P, Pichyangkul S, Taepavarapruk P, Praserthsee W, Malaivijitnond S, Manopwisedjaroen S, Thitithanyanont A, et al. Preclinical evaluation of immunogenicity, efficacy and safety of a recombinant plant-based SARS-CoV-2 RBD vaccine formulated with 3M-052-Alum adjuvant. Vaccine. 2023;41(17):2781–92. doi:10.1016/j.vaccine.2023.03.027.
  • Graham BS. Vaccine development for respiratory syncytial virus. Curr Opin Virol. 2017;23:107–12. doi:10.1016/j.coviro.2017.03.012.
  • Chen Q, He J, Phoolcharoen W, Mason HS. Geminiviral vectors based on bean yellow dwarf virus for production of vaccine antigens and monoclonal antibodies in plants. Hum Vaccin. 2011;7(3):331–8. doi:10.4161/hv.7.3.14262.
  • Boukhvalova MS, Mbaye A, Kovtun S, Yim KC, Konstantinova T, Getachew T, Khurana S, Falsey AR, Blanco JCG. Improving ability of RSV microneutralization assay to detect G-specific and cross-reactive neutralizing antibodies through immortalized cell line selection. Vaccine. 2018;36(31):4657–62. doi:10.1016/j.vaccine.2018.06.045.
  • Shahabi A, Peneva D, Incerti D, McLaurin K, Stevens W. Assessing variation in the cost of Palivizumab for respiratory syncytial virus prevention in preterm infants. PharmacoEconomics Open. 2018;2(1):53–61. doi:10.1007/s41669-017-0042-3.
  • Pogue GP, Vojdani F, Palmer KE, Hiatt E, Hume S, Phelps J, Long L, Bohorova N, Kim D, Pauly M, et al. Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J. 2010;8(5):638–54. doi:10.1111/j.1467-7652.2009.00495.x.
  • Xu J, Ge X, Dolan MC. Towards high-yield production of pharmaceutical proteins with plant cell suspension cultures. Biotechnol Adv. 2011;29(3):278–99. doi:10.1016/j.biotechadv.2011.01.002.
  • Nandi S, Kwong AT, Holtz BR, Erwin RL, Marcel S, McDonald KA. Techno-economic analysis of a transient plant-based platform for monoclonal antibody production. Mabs-austin. 2016;8(8):1456–66. doi:10.1080/19420862.2016.1227901.
  • Tusé D, Tu T, McDonald KA. Manufacturing economics of plant-made biologics: case studies in therapeutic and industrial enzymes. Biomed Res Int. 2014;2014:256135. doi:10.1155/2014/256135.
  • Walwyn DR, Huddy SM, Rybicki EP. Techno-economic analysis of horseradish peroxidase production using a transient expression system in Nicotiana benthamiana. Appl Biochem Biotechnol. 2015;175(2):841–54. doi:10.1007/s12010-014-1320-5.
  • Wilken LR, Nikolov ZL. Recovery and purification of plant-made recombinant proteins. Biotechnol Adv. 2012;30(2):419–33. doi:10.1016/j.biotechadv.2011.07.020.
  • Ridgley LA, Falci Finardi N, Gengenbach BB, Opdensteinen P, Croxford Z, Ma JK, Bodman‐Smith M, Buyel JF, Teh AYH. Killer to cure: expression and production costs calculation of tobacco plant-made cancer-immune checkpoint inhibitors. Plant Biotechnol J. 2023;21(6):1254–69. doi:10.1111/pbi.14034.
  • Werner RG. Economic aspects of commercial manufacture of biopharmaceuticals. J Biotechnol. 2004;113(1–3):171–82. doi:10.1016/j.jbiotec.2004.04.036.
  • Xenopoulos A. A new, integrated, continuous purification process template for monoclonal antibodies: process modeling and cost of goods studies. J Biotechnol. 2015;213:42–53. doi:10.1016/j.jbiotec.2015.04.020.
  • Zeitlin L, Bohorov O, Bohorova N, Hiatt A, Kim DH, Pauly MH, Velasco J, Whaley K, Barnard D, Bates J, et al. Prophylactic and therapeutic testing of Nicotiana-derived RSV-neutralizing human monoclonal antibodies in the cotton rat model. MAbs. 2013;5(2):263–9. doi:10.4161/mabs.23281.
  • Hiatt A, Bohorova N, Bohorov O, Goodman C, Kim D, Pauly MH, Velasco J, Whaley KJ, Piedra PA, Gilbert BE, et al. Glycan variants of a respiratory syncytial virus antibody with enhanced effector function and in vivo efficacy. Proc Natl Acad Sci USA. 2014;111(16):5992–7. doi:10.1073/pnas.1402458111.
  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, et al. Expression of antibody fragments with a controlled N-Glycosylation pattern and induction of endoplasmic reticulum-derived vesicles in seeds of arabidopsis. Plant Physiol. 2011;155(4):2036–48. doi:10.1104/pp.110.171330.
  • Triguero A, Cabrera G, Cremata JA, Yuen C-T, Wheeler J, Ramírez NI. Plant-derived mouse IgG monoclonal antibody fused to KDEL endoplasmic reticulum-retention signal is N-glycosylated homogeneously throughout the plant with mostly high-mannose-type N-glycans. Plant Biotechnol J. 2005;3(4):449–57. doi:10.1111/j.1467-7652.2005.00137.x.