2,168
Views
0
CrossRef citations to date
0
Altmetric
Immunotherapy - Cancer

Unlocking cancer vaccine potential: What are the key factors?

, , , , , , , , & show all
Article: 2331486 | Received 08 Jan 2024, Accepted 13 Mar 2024, Published online: 02 Apr 2024

References

  • Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L, Wang Z, Li W, Geldsetzer P, Bärnighausen T, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 2023;9(4):465–13. doi:10.1001/jamaoncol.2022.7826.
  • Ward ZJ, Scott AM, Hricak H, Atun R. Global costs, health benefits, and economic benefits of scaling up treatment and imaging modalities for survival of 11 cancers: a simulation-based analysis. Lancet Oncol. 2021;22(3):341–50. doi:10.1016/S1470-2045(20)30750-6.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. doi:10.3322/caac.21660.
  • Whitaker K. Earlier diagnosis: the importance of cancer symptoms. Lancet Oncol. 2020;21(1):6–8. doi:10.1016/S1470-2045(19)30658-8.
  • Price S, Spencer A, Zhang X, Ball S, Lyratzopoulos G, Mujica-Mota R, Stapley S, Ukoumunne OC, Hamilton W. Trends in time to cancer diagnosis around the period of changing national guidance on referral of symptomatic patients: a serial cross-sectional study using UK electronic healthcare records from 2006–17. Cancer Epidemiol. 2020;69:101805. doi:10.1016/j.canep.2020.101805.
  • Swanton C, Neal RD, Johnson PWM, Dur CC, Hamilton SA, Zhang N, Kumar H, Sasieni P. NHS-Galleri trial design: equitable study recruitment tactics for targeted population-level screening with a multi-cancer early detection (MCED) test. J Clin Orthod. 2022;40:6606–6606. doi:10.1200/JCO.2022.40.16_suppl.TPS6606.
  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23. doi:10.1016/j.cell.2017.01.017.
  • Tran G, Zafar SY. Financial toxicity and implications for cancer care in the era of molecular and immune therapies. Ann Transl Med. 2018;6(9):166. doi:10.21037/atm.2018.03.28.
  • Ventola CL. Cancer immunotherapy, Part 3: challenges and future trends. P T. 2017;42:514–21.
  • Green AK. Challenges in assessing the cost-effectiveness of cancer immunotherapy. JAMA Netw Open. 2021;4:e2034020. doi:10.1001/jamanetworkopen.2020.34020.
  • Khattak A, Weber JS, Meniawy T, Taylor MH, Ansstas G, Kim KB, McKean M, Long GV, Sullivan RJ, Faries MB, et al. Distant metastasis-free survival results from the randomized, phase 2 mRNA-4157-P201/KEYNOTE-942 trial. J Clin Oncol. 2023;41:9503–9503. suppl 17; abstr LBA9503. doi:10.1200/JCO.2023.41.17_suppl.LBA9503.
  • Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, WH M Jr. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27:S87–97. doi:10.3747/co.27.5223.
  • Tagliamonte M, Cavalluzzo B, Mauriello A, Ragone C, Buonaguro FM, Tornesello ML, Buonaguro L. Molecular mimicry and cancer vaccine development. Mol Cancer. 2023;22:75. doi:10.1186/s12943-023-01776-0.
  • Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022;21:261–82. doi:10.1038/s41573-021-00387-y.
  • Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, Bukur V, Tadmor AD, Luxemburger U, Schrörs B, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222–6. doi:10.1038/nature23003.
  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–46. doi:10.1038/nrc3670.
  • Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 2021;21(5):298–312. doi:10.1038/s41568-021-00339-z.
  • Bedran G, Gasser H-C, Weke K, Wang T, Bedran D, Laird A, Battail C, Zanzotto FM, Pesquita C, Axelson H, et al. The immunopeptidome from a genomic perspective: establishing the noncanonical landscape of MHC class I–associated peptides. Cancer Immunol Res. 2023;11:747–62. doi:10.1158/2326-6066.CIR-22-0621.
  • Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: building a bridge over troubled waters. Cell. 2022;185(15):2770–88. doi:10.1016/j.cell.2022.06.035.
  • Jin K-T, Du W-L, Liu Y-Y, Lan H-R, Si J-X, Mou X-Z. Oncolytic virotherapy in solid tumors: the challenges and achievements. Cancers. 2021;13:588. doi:10.3390/cancers13040588.
  • Ladak RJ, He AJ, Huang Y-H, Ding Y. The Current landscape of mRNA vaccines against viruses and cancer-A mini review. Front Immunol. 2022;13:885371. doi:10.3389/fimmu.2022.885371.
  • Elsheikh R, Makram AM, Huy NT. Therapeutic cancer vaccines and their future implications. Vaccines (Basel). 2023;11:11. doi:10.3390/vaccines11030660.
  • Guo C, Manjili MH, Subjeck JR, Sarkar D, Fisher PB, Wang X-Y. Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res. 2013;119:421–75.
  • Dobosz P, Dzieciątkowski T. The intriguing history of cancer immunotherapy. Front Immunol. 2019;10:2965. doi:10.3389/fimmu.2019.02965.
  • Rastogi I, Muralidhar A, McNeel DG. Vaccines as treatments for prostate cancer. Nat Rev Urol. 2023;20(9):544–59. doi:10.1038/s41585-023-00739-w.
  • Sutherland SIM, Ju X, Horvath LG, Clark GJ. Moving on from sipuleucel-T: new dendritic cell vaccine strategies for prostate cancer. Front Immunol. 2021;12:641307. doi:10.3389/fimmu.2021.641307.
  • Chakraborty C, Sharma AR, Bhattacharya M, Lee S-S. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Front Immunol. 2021;12:679344. doi:10.3389/fimmu.2021.679344.
  • Wherry EJ, Barouch DH. T cell immunity to COVID-19 vaccines. Science. 2022;377(6608):821–2. doi:10.1126/science.add2897.
  • Cromer D, Steain M, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Kent SJ, Triccas JA, Khoury DS, Davenport MP, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe. 2022;3(1):e52–61. doi:10.1016/S2666-5247(21)00267-6.
  • Gumber D, Wang LD. Improving CAR-T immunotherapy: overcoming the challenges of T cell exhaustion. EBioMedicine. 2022;77:103941. doi:10.1016/j.ebiom.2022.103941.
  • Nüssing S, Trapani JA, Parish IA. Revisiting T cell tolerance as a checkpoint target for cancer immunotherapy. Front Immunol. 2020;11:589641. doi:10.3389/fimmu.2020.589641.
  • Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer. 2021;21:360–78. doi:10.1038/s41568-021-00346-0.
  • Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy. Front Immunol. 2022;13:1029069. doi:10.3389/fimmu.2022.1029069.
  • Escamilla-Tilch M, Filio-Rodríguez G, García-Rocha R, Mancilla-Herrera I, Mitchison NA, Ruiz-Pacheco JA, Sánchez‐García FJ, Sandoval‐Borrego D, Vázquez‐Sánchez EA. The interplay between pathogen-associated and danger-associated molecular patterns: an inflammatory code in cancer? Immunol Cell Biol. 2013;91:601–10. doi:10.1038/icb.2013.58.
  • Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. doi:10.1038/s41392-021-00687-0.
  • Willsmore ZN, Harris RJ, Crescioli S, Hussein K, Kakkassery H, Thapa D, Cheung A, Chauhan J, Bax HJ, Chenoweth A, et al. B cells in patients with melanoma: implications for treatment with checkpoint inhibitor antibodies. Front Immunol. 2020;11:622442. doi:10.3389/fimmu.2020.622442.
  • Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, Watkins TBK, Rosenthal R, Biswas D, Rowan A, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell. 2021;184(3):596–614.e14. doi:10.1016/j.cell.2021.01.002.
  • McCarthy PM, Valdera FA, Smolinsky TR, Adams AM, O’Shea AE, Thomas KK, Van Decar S, Carpenter EL, Tiwari A, Myers JW, et al. Tumor infiltrating lymphocytes as an endpoint in cancer vaccine trials. Front Immunol. 2023;14:1090533. doi:10.3389/fimmu.2023.1090533.
  • Yan Y, Cao S, Liu X, Harrington SM, Bindeman WE, Adjei AA, Jang JS, Jen J, Li Y, Chanana P, et al. CX3CR1 identifies PD-1 therapy–responsive CD8+ T cells that withstand chemotherapy during cancer chemoimmunotherapy. JCI Insight. 2018;3:3. doi:10.1172/jci.insight.97828.
  • Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, Gao P, Bandyopadhyay S, Sun H, Zhao Z, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature. 2022;602(7897):503–9. doi:10.1038/s41586-021-04390-6.
  • D’Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, Grupp S, Tap WD, Chagin K, Binder GK, et al. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 c259T cells in synovial sarcoma. Cancer Discov. 2018;8(8):944–57. doi:10.1158/2159-8290.CD-17-1417.
  • Crompton JG, Sukumar M, Restifo NP. Uncoupling T-cell expansion from effector differentiation in cell-based immunotherapy. Immunol Rev. 2014;257(1):264–76. doi:10.1111/imr.12135.
  • Duan L-J, Wang Q, Zhang C, Yang D-X, Zhang X-Y. Potentialities and challenges of mRNA vaccine in cancer immunotherapy. Front Immunol. 2022;13:923647. doi:10.3389/fimmu.2022.923647.
  • Chang R, Gulley JL, Fong L. Vaccinating against cancer: getting to prime time. J Immunother Cancer. 2023;11:11. doi:10.1136/jitc-2022-006628.
  • Cuzzubbo S, Mangsbo S, Nagarajan D, Habra K, Pockley AG, McArdle SEB. Cancer vaccines: adjuvant potency, importance of age, lifestyle, and treatments. Front Immunol. 2020;11:615240. doi:10.3389/fimmu.2020.615240.
  • Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):28. doi:10.1186/s13045-022-01247-x.
  • Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev Cancer. 2021;21(6):345–59. doi:10.1038/s41568-021-00347-z.
  • Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol. 2022;13:868695. doi:10.3389/fphar.2022.868695.
  • Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X, et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther. 2023;8(1):149. doi:10.1038/s41392-023-01408-5.
  • Nia HT, Munn LL, Jain RK. Physical traits of cancer. Science. 2020;370:370. doi:10.1126/science.aaz0868.
  • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. doi:10.1158/2159-8290.CD-21-1059.
  • Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, Lihm J, Ceglia N, Guasp P, Chu A, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144–50. doi:10.1038/s41586-023-06063-y.
  • Pharma H. Hookipa pharma reports first Quarter 2023 financial results and recent business highlights. Hookipa Pharma Inc n.d. [accessed 2024 Mar 2]. https://ir.hookipapharma.com/node/8826/pdf.
  • Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: naive to memory and everything in between. Adv Physiol Educ. 2013;37:273–83. doi:10.1152/advan.00066.2013.
  • Dolgin E. Personalized cancer vaccines pass first major clinical test. Nat Rev Drug Discov. 2023;22(8):607–9. doi:10.1038/d41573-023-00118-5.
  • Kallingal A, Olszewski M, Maciejewska N, Brankiewicz W, Baginski M. Cancer immune escape: the role of antigen presentation machinery. J Cancer Res Clin Oncol. 2023;149(10):8131–41. doi:10.1007/s00432-023-04737-8.
  • Chang S, Kohrt H, Maecker HT. Monitoring the immune competence of cancer patients to predict outcome. Cancer Immunol Immunother. 2014;63(7):713–9. doi:10.1007/s00262-014-1521-3.
  • Miao L, Zhang Y, Huang L. mRNA vaccine for cancer immunotherapy. Mol Cancer. 2021;20(1):41. doi:10.1186/s12943-021-01335-5.
  • Batista-Duharte A, Hassouneh F, Alvarez-Heredia P, Pera A, Solana R. Immune checkpoint inhibitors for vaccine improvements: Current status and new approaches. Pharmaceutics. 2022;14:14. doi:10.3390/pharmaceutics14081721.
  • Wang L, Geng H, Liu Y, Liu L, Chen Y, Wu F, Liu Z, Ling S, Wang Y, Zhou L. Hot and cold tumors: immunological features and the therapeutic strategies. MedComm. 2023;4:e343. doi:10.1002/mco2.343.
  • Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer vaccines, adjuvants, and delivery systems. Front Immunol. 2021;12:627932. doi:10.3389/fimmu.2021.627932.
  • Smithy JW, Blouin A, Diamond LC, Postow M. Ensuring equity in the era of HLA-restricted cancer therapeutics. J Immunother Cancer. 2022;10:10. doi:10.1136/jitc-2022-005600.
  • Farlow A, Torreele E, Gray G, Ruxrungtham K, Rees H, Prasad S, Gomez C, Sall A, Magalhães J, Olliaro P, et al. The future of epidemic and pandemic vaccines to serve global public health needs. Vaccines (Basel). 2023;11:11. doi:10.3390/vaccines11030690.
  • Dyer O. Covid-19: countries are learning what others paid for vaccines. BMJ. 2021;372:n281. doi:10.1136/bmj.n281.
  • Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, Brody JD. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3:911–26. doi:10.1038/s43018-022-00418-6.
  • Khan ST, Montroy J, Forbes N, Bastin D, Kennedy MA, Diallo J-S, Kekre N, Fergusson DA, Lalu M, Auer RC, et al. Safety and efficacy of autologous tumour cell vaccines as a cancer therapeutic to treat solid tumours and haematological malignancies: a meta-analysis protocol for two systematic reviews. BMJ Open. 2020;10(6):e034714. doi:10.1136/bmjopen-2019-034714.
  • Tang F, Tie Y, Tu C, Wei X. Surgical trauma-induced immunosuppression in cancer: recent advances and the potential therapies. Clin Transl Med. 2020;10(1):199–223. doi:10.1002/ctm2.24.
  • Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, Maurus D, Schwarck-Kokarakis D, Kuhn AN, Omokoko T, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585(7823):107–12. doi:10.1038/s41586-020-2537-9.
  • Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X, Sobral M, Pyrdol JW, Smith KL, Lu Y, Haag S, et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack. Nature. 2022;606(7916):992–8. doi:10.1038/s41586-022-04772-4.
  • Kalaora S, Lee JS, Barnea E, Levy R, Greenberg P, Alon M, Yagel G, Bar Eli G, Oren R, Peri A, et al. Immunoproteasome expression is associated with better prognosis and response to checkpoint therapies in melanoma. Nat Commun. 2020;11(1):896. doi:10.1038/s41467-020-14639-9.
  • Spiliopoulou P, Janse van Rensburg HJ, Avery L, Kulasingam V, Razak A, Bedard P, Hansen A, Chruscinski A, Wang B, Kulikova M, et al. Longitudinal efficacy and toxicity of SARS-CoV-2 vaccination in cancer patients treated with immunotherapy. Cell Death Disease. 2023;14(1):49. doi:10.1038/s41419-022-05548-4.
  • Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. Nat Cancer. 2023;4(7):937–54. doi:10.1038/s43018-023-00588-x.
  • Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Sig Transduct Target Ther. 2023;8:9. doi:10.1038/s41392-022-01270-x.
  • Zhang B, Bassani-Sternberg M. Current perspectives on mass spectrometry-based immunopeptidomics: the computational angle to tumor antigen discovery. J Immunother Cancer. 2023;11:11. doi:10.1136/jitc-2023-007073.
  • Becker JP, Riemer AB. The importance of being presented: target validation by immunopeptidomics for epitope-specific immunotherapies. Front Immunol. 2022;13:883989. doi:10.3389/fimmu.2022.883989.
  • Kula T, Dezfulian MH, Wang CI, Abdelfattah NS, Hartman ZC, Wucherpfennig KW, Lyerly HK, Elledge SJ. T-Scan: a genome-wide method for the systematic discovery of T cell epitopes. Cell. 2019;178:1016–28.e13. doi:10.1016/j.cell.2019.07.009.
  • Morse MA, Gwin WR III, Mitchell DA. Vaccine therapies for cancer: then and Now. Target Oncol. 2021;16:121–52. doi:10.1007/s11523-020-00788-w.
  • Cruz-Tapias P, Castiblanco J, Anaya J-M. Major histocompatibility complex: antigen processing and presentation. El Rosario University Press; 2013.
  • Mellman I, Chen DS, Powles T, Turley SJ. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity. 2023;56(10):2188–205. doi:10.1016/j.immuni.2023.09.011.
  • Reza HM, Sultana F, Bari R, Cole J, Baqui AH. Local distribution infrastructure and robust vaccine manufacturing facilities in LMICs should be prioritised to tackle ongoing and future pandemic risk. Lancet Reg Health Southeast Asia. 2023;11:100158. doi:10.1016/j.lansea.2023.100158.
  • Parry H, Bruton R, Tut G, Ali M, Stephens C, Greenwood D, Faustini S, Hughes S, Huissoon A, Meade R, et al. Immunogenicity of single vaccination with BNT162b2 or ChAdOx1 nCoV-19 at 5–6 weeks post vaccine in participants aged 80 years or older: an exploratory analysis. Lancet Healthy Longev. 2021;2:e554–60. doi:10.1016/S2666-7568(21)00169-0.
  • Ward H, Whitaker M, Flower B, Tang SN, Atchison C, Darzi A, Donnelly CA, Cann A, Diggle PJ, Ashby D, et al. Population antibody responses following COVID-19 vaccination in 212,102 individuals. Nat Commun. 2022;13(1):907. doi:10.1038/s41467-022-28527-x.
  • Palgen J-L, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Le Grand R. Optimize prime/boost vaccine strategies: trained immunity as a new player in the game. Front Immunol. 2021;12:612747. doi:10.3389/fimmu.2021.612747.
  • Wang B, Pei J, Xu S, Liu J, Yu J. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities. Front Immunol. 2023;14:1246682. doi:10.3389/fimmu.2023.1246682.
  • Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21. doi:10.1038/nature22991.
  • Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt K, Gjini E, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019;565(7738):234–9. doi:10.1038/s41586-018-0792-9.
  • Tang M, Cai J-H, Diao H-Y, Guo W-M, Yang X, Xing S. The progress of peptide vaccine clinical trials in gynecologic oncology. Hum Vaccin Immunother. 2022;18:2062982. doi:10.1080/21645515.2022.2062982.
  • Liu W, Tang H, Li L, Wang X, Yu Z, Li J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Prolif. 2021;54(5):e13025. doi:10.1111/cpr.13025.
  • Mizukoshi E, Nakagawa H, Tamai T, Kitahara M, Fushimi K, Nio K, Terashima T, Iida N, Arai K, Yamashita T, et al. Peptide vaccine-treated, long-term surviving cancer patients harbor self-renewing tumor-specific CD8+ T cells. Nat Commun. 2022;13(1):3123. doi:10.1038/s41467-022-30861-z.
  • Nelde A, Rammensee H-G, Walz JS. The peptide vaccine of the future. Molecular & Cellular Proteomics: MCP. 2021;20:100022. doi:10.1074/mcp.R120.002309.
  • Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol. 2022;19(9):993–1011. doi:10.1038/s41423-022-00897-8.
  • McFall-Boegeman H, Huang X. Mechanisms of cellular and humoral immunity through the lens of VLP-based vaccines. Expert Rev Vaccines. 2022;21(4):453–69. doi:10.1080/14760584.2022.2029415.
  • Ruzzi F, Semprini MS, Scalambra L, Palladini A, Angelicola S, Cappello C, Pittino OM, Nanni P, Lollini P-L. Virus-like particle (VLP) vaccines for cancer immunotherapy. Int J Mol Sci. 2023;24:12963. doi:10.3390/ijms241612963.
  • Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol. 2008;38:1033–42. doi:10.1002/eji.200737995.
  • Dailey GP, Crosby EJ, Hartman ZC. Cancer vaccine strategies using self-replicating RNA viral platforms. Cancer Gene Ther. 2023;30(6):794–802. doi:10.1038/s41417-022-00499-6.
  • Melief CJM, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125(9):3401–12. doi:10.1172/JCI80009.
  • Riccardo F, Bolli E, Macagno M, Arigoni M, Cavallo F, Quaglino E. Chimeric DNA vaccines: an effective way to overcome immune tolerance. Curr Top Microbiol Immunol. 2017;405:99–122.
  • Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol. 2023;40:200. doi:10.1007/s12032-023-02060-3.
  • Bernard M-C, Bazin E, Petiot N, Lemdani K, Commandeur S, Verdelet C, Margot S, Perkov V, Ripoll M, Garinot M, et al. The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system. Mol Ther Nucleic Acids. 2023;32:794–806. doi:10.1016/j.omtn.2023.05.004.
  • Alameh M-G, Tombácz I, Bettini E, Lederer K, Sittplangkoon C, Wilmore JR, Wilmore JR, Gaudette BT, Soliman OY, Pine M, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021;54:2877–92.e7. doi:10.1016/j.immuni.2021.11.001.
  • Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11. doi:10.1038/s41591-021-01377-8.
  • Nitika, Wei J, Hui A-M. The delivery of mRNA vaccines for therapeutics. Life. 2022;12. doi:10.3390/life12081254.
  • Aguinam ET, Nadesalingam A, Chan A, Smith P, Paloniemi M, Cantoni D, Gronlund J, Gronlund H, Carnell GW, Castillo-Olivares J, et al. Differential T-cell and antibody responses induced by mRNA versus adenoviral vectored COVID-19 vaccines in patients with immunodeficiencies. J Allergy Clin Immunol Glob. 2023;2:100091. doi:10.1016/j.jacig.2023.100091.
  • Weide B, Carralot J-P, Reese A, Scheel B, Eigentler TK, Hoerr I, Rammensee H-G, Garbe C, Pascolo S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J Immunother (1991). 2008;31:180–8. doi:10.1097/CJI.0b013e31815ce501.
  • Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing trials on mRNA vaccines for cancer treatment. Lancet Oncol. 2022;23:e450–8. doi:10.1016/S1470-2045(22)00372-2.
  • Kim H, Liew D, Goodall S. Cost-effectiveness and financial risks associated with immune checkpoint inhibitor therapy. Br J Clin Pharmacol. 2020;86(9):1703–10. doi:10.1111/bcp.14337.
  • McCann N, O’Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol. 2022;77:102210. doi:10.1016/j.coi.2022.102210.
  • Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J. 2011;17(5):359–71. doi:10.1097/PPO.0b013e3182325e63.
  • Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines. 2022;7:75. doi:10.1038/s41541-022-00503-y.
  • Ahmadi SE, Soleymani M, Shahriyary F, Amirzargar MR, Ofoghi M, Fattahi MD, Safa M. Viral vectors and extracellular vesicles: innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy. Cancer Gene Ther. 2023;30:936–54. doi:10.1038/s41417-023-00597-z.
  • Yarnoff B, Bodhaine S, Cohen E, Buck PO. Time and cost of administering COVID-19 mRNA vaccines in the United States. Hum Vaccin Immunother. 2021;17:3871–5. doi:10.1080/21645515.2021.1974289.
  • Ruiz FJ, Torres-Rueda S, Pearson CAB, Bergren E, Okeke C, Procter SR, Madriz-Montero A, Jit M, Vassall A, Uzochukwu BSC, et al. What, how and who: cost-effectiveness analyses of COVID-19 vaccination to inform key policies in Nigeria. PloS Glob Public Health. 2023;3(3):e0001693. doi:10.1371/journal.pgph.0001693.
  • Light DW, Lexchin J. The costs of coronavirus vaccines and their pricing. J R Soc Med. 2021;114(11):502–4. doi:10.1177/01410768211053006.
  • Cancer. Barinthus biotherapeutics 2023. [accessed 2024 Jan 3]. https://www.barinthusbio.com/pipeline/cancer/.
  • Fakih M, Le DT, Pedersen KS, Shields AF, Shah MA, Mukherjee S, Delaite P, Faivre T, D’Alise AM, Leoni G, et al. First clinical and immunogenicity results including all subjects enrolled in a phase I study of nous-209, an off-the-shelf immunotherapy, with pembrolizumab, for the treatment of tumors with a deficiency in mismatch repair/microsatellite instability (dMMR/MSI). J Clin Oncol. 2022;40:2515. doi:10.1200/JCO.22.00506.
  • Palmer CD, Rappaport AR, Davis MJ, Hart MG, Scallan CD, Hong S-J, Gitlin L, Kraemer LD, Kounlavouth S, Yang A, et al. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2022;28(8):1619–29. doi:10.1038/s41591-022-01937-6.
  • Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N Engl J Med. 2007;357(19):1903–15. doi:10.1056/NEJMoa066092.
  • Bolinger B, Sims S, O’Hara G, de Lara C, Tchilian E, Firner S, Engeler D, Ludewig B, Klenerman P. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. J Immunol. 2013;190:4162–74. doi:10.4049/jimmunol.1202665.
  • Provine NM, Klenerman P. Adenovirus vector and mRNA vaccines: mechanisms regulating their immunogenicity. Eur J Immunol. 2023;53(6):e2250022. doi:10.1002/eji.202250022.
  • Sutton N, San Francisco Ramos A, Beales E, Smith D, Ikram S, Galiza E, Hsia Y, Heath PT. Comparing reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis. Expert Rev Vaccines. 2022;21:1301–18. doi:10.1080/14760584.2022.2098719.
  • Ayati N, Evans S, Zakavi SR, Gruenewald SM. Comparison between viral vector and mRNA based COVID-19 vaccination in prevalence and severity of regional immune reactions, and 18F-FDG PET/CT features. Asia Ocean J Nucl Med Biol. 2023;11:4–12.
  • Li J-X, Hou L-H, Meng F-Y, Wu S-P, Hu Y-M, Liang Q, Chu K, Zhang Z, Xu J-J, Tang R, et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Glob Health. 2017;5:e324–34. doi:10.1016/S2214-109X(16)30367-9.
  • Zhu F, Jin P, Zhu T, Wang W, Ye H, Pan H, Hou L, Li J, Wang X, Wu S, et al. Safety and immunogenicity of a recombinant adenovirus type-5–vectored coronavirus disease 2019 (COVID-19) vaccine with a homologous prime-boost regimen in healthy participants aged ≥6 years: a randomized, double-blind, placebo-controlled, phase 2b trial. Clin Infect Dis. 2022;75:e783–91. doi:10.1093/cid/ciab845.
  • Franke A-C, Hardet R, Prager L, Bentler M, Demeules M, John-Neek P, Jäschke NM, Ha TC, Hacker UT, Adriouch S, et al. Capsid-modified adeno-associated virus vectors as novel vaccine platform for cancer immunotherapy. Mol Ther Methods Clin Dev. 2023;29:238–53. doi:10.1016/j.omtm.2023.03.010.
  • Costa Clemens SA, Weckx L, Clemens R, Almeida Mendes AV, Ramos Souza A, Silveira MBV, da Guarda SNF, de Nobrega MM, de Moraes Pinto MI, Gonzalez IGS, et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet. 2022;399(10324):521–9. doi:10.1016/S0140-6736(22)00094-0.
  • Ramirez-Valdez RA, Baharom F, Khalilnezhad A, Fussell SC, Hermans DJ, Schrager AM, Tobin KKS, Lynn GM, Khalilnezhad S, Ginhoux F, et al. Intravenous heterologous prime-boost vaccination activates innate and adaptive immunity to promote tumor regression. Cell Rep. 2023;42(6):112599. doi:10.1016/j.celrep.2023.112599.
  • Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, D’Alise AM. Personalized cancer vaccines go viral: viral vectors in the era of personalized immunotherapy of cancer. IJMS. 2023;24:16591. doi:10.3390/ijms242316591.
  • Hookipa announces positive phase 1 data and phase 2 plans for HB-200 program for the treatment of advanced head and neck cancers at ASCO. Hookipa Pharma Inc n.d. [accessed 2024 Jan 3]. https://ir.hookipapharma.com/news-releases/news-release-details/hookipa-announces-positive-phase-1-data-and-phase-2-plans-hb-200.
  • Morris VK, Kopetz S. Don’t blame the messenger: lessons learned for cancer mRNA vaccines during the COVID-19 pandemic. Nat Rev Cancer. 2022;22(6):317–8. doi:10.1038/s41568-022-00463-4.
  • Yang C-Y, Lin Y-T, Lin L-J, Chang Y-H, Chen H-Y, Wang Y-P, Shih J-Y, Yu C-J, Yang P-C. Stage shift improves lung cancer survival: real-world evidence. J Thorac Oncol. 2023;18:47–56. doi:10.1016/j.jtho.2022.09.005.
  • Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi:10.3322/caac.21708.
  • Furukawa Y, Hamano Y, Shirane S, Kinoshita S, Azusawa Y, Ando J, Nakauchi H, Ando M. Advances in allogeneic cancer cell therapy and future perspectives on “off-the-shelf” T cell therapy using iPSC technology and gene editing. Cells. 2022;11:11. doi:10.3390/cells11020269.
  • Topalian SL, Forde PM, Emens LA, Yarchoan M, Smith KN, Pardoll DM. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell. 2023;41(9):1551–66. doi:10.1016/j.ccell.2023.07.011.
  • Pilla L, Ferrone S, Maccalli C. Methods for improving the immunogenicity and efficacy of cancer vaccines. Expert Opin Biol Ther. 2018;18(7):765–84. doi:10.1080/14712598.2018.1485649.
  • Zhao J, Chen Y, Ding Z-Y, Liu J-Y. Safety and efficacy of therapeutic cancer vaccines alone or in combination with immune checkpoint inhibitors in cancer treatment. Front Pharmacol. 2019;10:1184. doi:10.3389/fphar.2019.01184.
  • Marofi F, Motavalli R, Safonov VA, Thangavelu L, Yumashev AV, Alexander M, Shomali N, Chartrand MS, Pathak Y, Jarahian M, et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res Ther. 2021;12(1):81. doi:10.1186/s13287-020-02128-1.
  • Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol. 2019;10:168. doi:10.3389/fimmu.2019.00168.
  • Yan T, Zhu L, Chen J. Current advances and challenges in CAR T-Cell therapy for solid tumors: tumor-associated antigens and the tumor microenvironment. Exp Hematol Oncol. 2023;12(1):14. doi:10.1186/s40164-023-00373-7.
  • Yamey G, Garcia P, Hassan F, Mao W, McDade KK, Pai M, Saha S, Schellekens P, Taylor A, Udayakumar K, et al. It is not too late to achieve global COVID-19 vaccine equity. BMJ. 2022;376:e070650. doi:10.1136/bmj-2022-070650.