668
Views
0
CrossRef citations to date
0
Altmetric
Novel Vaccines

Hybrid response to SARS-CoV-2 and Neisseria meningitidis C after an OMV-adjuvanted immunization in mice and their offspring

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2346963 | Received 15 Dec 2023, Accepted 20 Apr 2024, Published online: 15 May 2024

References

  • Abulsoud AI, El-Husseiny HM, El-Husseiny AA, El-Mahdy HA, Ismail A, Elkhawaga SY, Khidr EG, Fathi D, Mady EA, Najda A, et al. Mutations in SARS-CoV-2: insights on structure, variants, vaccines, and biomedical interventions. Biomed Pharmacother. 2023;157:113977. doi:10.1016/j.biopha.2022.113977.
  • Zhang N, Li K, Liu Z, Nandakumar KS, Jiang S. A perspective on the roles of adjuvants in developing highly potent COVID-19 vaccines. Viruses. 2022;14:387. doi:10.3390/v14020387.
  • Murphy RL, Paramithiotis E, Sugden S, Chermak T, Lambert B, Montamat-Sicotte D, Mattison J, Steinhubl S. The need for more holistic immune profiling in next-generation SARS-CoV-2 vaccine trials. Front Immunol. 2022;13:923106. doi:10.3389/fimmu.2022.923106.
  • Nathanielsz J, Toh ZQ, Do LAH, Mulholland K, Licciardi PV. SARS-CoV-2 infection in children and implications for vaccination. Pediatr Res. 2023;93:1177–11. doi:10.1038/s41390-022-02254-x.
  • Zhu Y, Almeida FJ, Baillie JK, Bowen AC, Britton PN, Brizuela ME, Buonsenso D, Burgner D, Chew KY, Chokephaibulkit K, et al. International pediatric COVID-19 severity over the course of the pandemic. JAMA Pediatr. 2023;177:1073–1084. doi:10.1001/jamapediatrics.2023.3117.
  • Jarovsky D, de Freitas Fongaro G, Zampol RM, de Oliveira TA, Farias CGA, da Silva DGBP, Cavalcante DTG, Nery SB, de Moraes JC, de Oliveira FI, et al. Characteristics and clinical outcomes of COVID-19 in children: a hospital-based surveillance study in Latin America’s hardest-hit city. IJID Reg. 2023;7:52–62. doi:10.1016/j.ijregi.2022.12.003.
  • van der Pol L, Stork M, van der Ley P. Outer membrane vesicles as platform vaccine technology. Biotechnol J. 2015;10:1689–1706. doi:10.1002/biot.201400395.
  • Micoli F, MacLennan CA. Outer membrane vesicle vaccines. Semin Immunol. 2020;50:101433. doi:10.1016/j.smim.2020.101433.
  • Santana-Mederos D, Perez-Nicado R, Climent Y, Rodriguez L, Ramirez BS, Perez-Rodriguez S, Rodriguez M, Labrada C, Hernandez T, Diaz M, et al. A COVID-19 vaccine candidate composed of the SARS-CoV-2 RBD dimer and: Neisseria meningitidis outer membrane vesicles. RSC Chem Biol. 2022;3:242–249. doi:10.1039/d1cb00200g.
  • Gaspar EB, Prudencio CR, De Gaspari E. Experimental studies using OMV in a new platform of SARS-CoV-2 vaccines. Hum Vaccines Immunother. 2021;17(9):2965–2968. doi:10.1080/21645515.2021.1920272.
  • Lima GG, Portilho AI, De Gaspari E. Adjuvants to increase immunogenicity of SARS-CoV-2 RBD and support maternal–fetal transference of antibodies in mice. Pathog Dis. 2022;80:ftac038. doi:10.1093/femspd/ftac038.
  • Costa HHM, Orts DJB, Moura AD, Duarte-Neto AN, Cirqueira CS, Rodrigo AR, Kanamura CT, Miguita K, Ferreira JE, Santos RTM, et al. RBD and spike DNA-Based immunization in rabbits elicited IgG avidity maturation and high neutralizing antibody responses against SARS-CoV-2. Viruses. 2023;15:555. doi:10.3390/v15020555.
  • De Gaspari EN, Zollinger WD. Expression of class 5 antigens by meningococcal strains obtained from patients in Brazil and evaluation of two new monoclonal antibodies. Braz J Infect Dis. 2001;5:143–153. doi:10.1590/s1413-86702001000300007.
  • Portilho AI, Correa VA, dos Cirqueira CS, De Gaspari E. Intranasal and intramuscular immunization with outer membrane vesicles from serogroup C meningococci induced functional antibodies and immunologic memory. Immunol Invest. 2022;51:2066–2085. doi:10.1080/08820139.2022.2107931.
  • Dutta S, Sengupta P. Men and mice: relating their ages. Life Sci. 2016;152:244–248. doi:10.1016/j.lfs.2015.10.025.
  • Vermont CL, Van Dijken HH, Van Limpt CJP, De Groot R, Van Alphen L, Van den Dobbelsteen GPJM. Antibody avidity and immunoglobulin G isotype distribution following immunization with a monovalent meningococcal B outer membrane vesicle vaccine. Infect Immun. 2002;70:584–590. doi:10.1128/IAI.70.2.584-590.2002.
  • Chackerian B, Lowy DR, Schiller JT. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction of protective autoantibodies. J Clin Invest. 2001;108:415–423. doi:10.1172/JCI11849.
  • Dimitrov JD, Lacroix-Desmazes S, Kaveri SV. Important parameters for evaluation of antibody avidity by immunosorbent assay. Anal Biochem. 2011;418:149–151. doi:10.1016/j.ab.2011.07.007.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol. 2014;5:520. doi:10.3389/fimmu.2014.00520.
  • Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi:10.1146/annurev.iy.07.040189.001045.
  • Sadeghi L, Mohit E, Moallemi S, Ahmadi FM, Bolhassani A. Recent advances in various bio-applications of bacteria-derived outer membrane vesicles. Microb Pathog. 2023;185:106440. doi:10.1016/j.micpath.2023.106440.
  • Wang K, Long QX, Deng HJ, Hu J-L, Gao QZ, Zhang GJ, He CL, Huang LY, Hu JL, Chen J, et al. Longitudinal dynamics of the neutralizing antibody response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Clin Infect Dis. 2021;73:E531–E539. doi:10.1093/cid/ciaa1143.
  • Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon. 2024;10:e24662. doi:10.1016/j.heliyon.2024.e24662.
  • Priyanka, Abusalah MAH, Chopra H, Sharma A, Mustafa SA, Choudhary OP, Sharma M, Dhawan M, Khosla R, Loshali A, et al. Nanovaccines: a game changing approach in the fight against infectious diseases. Biomed Pharmacother. 2023;167:115597. doi:10.1016/j.biopha.2023.115597.
  • Jiang L, Driedonks TAP, Jong WSP, Dhakal S, Bart van den Berg van Saparoea H, Sitaras I, Zhou R, Caputo C, Littlefield K, Lowman M, et al. A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and delta variants. J Extracell Vesicles. 2022;11:e12192. doi:10.1002/jev2.12192.
  • van der Ley PA, Zariri A, van Riet E, Oosterhoff D, Kruiswijk CP. An intranasal OMV-Based vaccine induces high mucosal and systemic protecting immunity against a SARS-CoV-2 infection. Front Immunol. 2021;12:781280. doi:10.3389/fimmu.2021.781280.
  • Thapa HB, Müller AM, Camilli A, Schild S. An intranasal vaccine based on outer membrane vesicles against SARS-CoV-2. Front Microbiol. 2021;12:752739. doi:10.3389/fmicb.2021.752739.
  • Watkins HC, Rappazzo CG, Higgins JS, Sun X, Brock N, Chau A, Misra A, Cannizzo JPB, King MR, Maines TR, et al. Safe recombinant outer membrane vesicles that display M2e elicit heterologous influenza protection. Mol Ther. 2017;25:989–1002. doi:10.1016/j.ymthe.2017.01.010.
  • Shehata MM, Mostafa A, Teubner L, Mahmoud SH, Kandeil A, Elshesheny R, Boubak TA, Frantz R, La Pietra L, Pleschka S, et al. Bacterial outer membrane vesicles (OMVs)-based dual vaccine for influenza a H1N1 virus and MERS-CoV. Vaccines (Basel). 2019;7:46. doi:10.3390/vaccines7020046.
  • Lovell JF, Baik YO, Choi SK, Lee C, Lee JY, Miura K, Huang WC, Park YS, Woo SJ, Seo SH, et al. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med. 2022;20:462. doi:10.1186/s12916-022-02661-1.
  • Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, Bao L, Mo F, Li X, Huang Y, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature. 2020;586:572–577. doi:10.1038/s41586-020-2599-8.
  • Bauer G. High avidity of vaccine-induced immunoglobulin G against SARS-CoV-2: potential relevance for protective humoral immunity. Explor Immunol. 2021;2:133–156. doi:10.37349/ei.2022.00040.
  • Dapporto F, Marchi S, Leonardi M, Piu P, Lovreglio P, Decaro N, Buonvino N, Stufano A, Lorusso E, Bombardieri E, et al. Antibody avidity and neutralizing response against SARS-CoV-2 omicron variant after infection or vaccination. J Immunol Res. 2022;2022:4813199. doi:10.1155/2022/4813199.
  • Nakagama Y, Candray K, Kaku N, Komase Y, Rodriguez-Funes MV, Dominguez R, Tsuchida T, Kunishima H, Nagai E, Adachi E, et al. Antibody avidity maturation following recovery from infection or the booster vaccination grants breadth of SARS-CoV-2 neutralizing capacity. J Infect Dis. 2023;227:780–787. doi:10.1093/infdis/jiac492.
  • Manuylov V, Burgasova O, Borisova O, Smetanina S, Vasina D, Grigoriev I, Kudryashova A, Semashko M, Cherepovich B, Kharchenko O, et al. Avidity of IgG to SARS-CoV-2 RBD as a prognostic factor for the severity of COVID-19 reinfection. Viruses. 2022;14:617. doi:10.3390/v14030617.
  • Benner SE, Patel EU, Laeyendecker O, Pekosz A, Littlefield K, Eby Y, Fernandez RE, Miller J, Kirby CS, Keruly M, et al. SARS-CoV-2 antibody avidity responses in COVID-19 patients and convalescent plasma donors. J Infect Dis. 2020;222:1974–1984. doi:10.1093/infdis/jiaa581.
  • Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119:5640–5649. doi:10.1182/blood-2012-01-380121.
  • Ullah I, Prévost J, Ladinsky MS, Stone H, Lu M, Anand SP, Beaudoin-Bussières G, Symmes K, Benlarbi M, Ding S, et al. Live imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacy. Immunity. 2021;54:2143–58.e15. doi:10.1016/j.immuni.2021.08.015.
  • Zhang A, Stacey HD, D’Agostino MR, Tugg Y, Marzok A, Miller MS. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol. 2023;23:381–396. doi:10.1038/s41577-022-00813-1.
  • Romeu B, Lastre M, García L, Cedré B, Mandariote A, Fariñas M, Oliva R, Pérez O. Combined meningococcal serogroup A and W135 outer-membrane vesicles activate cell-mediated immunity and long-term memory responses against non-covalent capsular polysaccharide A. Immunol Res. 2014;58:75–85. doi:10.1007/s12026-013-8427-6.
  • Oftung F, Korsvold GE, Aase A, Næss LM. Cellular immune responses in humans induced by two serogroup B meningococcal outer membrane vesicle vaccines given separately and in combination. Clin Vaccine Immunol. 2016;23:353–362. doi:10.1128/CVI.00666-15.
  • Martins P, Machado D, Theizen TH, Guarnieri JPO, Bernardes BG, Gomide GP, Corat MAF, Abbehausen C, Módena JLP, Melo CFOR, et al. Outer membrane vesicles from Neisseria meningitidis (proteossome) used for nanostructured Zika virus vaccine production. Sci Rep. 2018;8:8290. doi:10.1038/s41598-018-26508-z.
  • van den Dobbelsteen GPJM, van Dijken HH, Pillai S, van Alphen L. Immunogenicity of a combination vaccine containing pneumococcal conjugates and meningococcal PorA OMVs. Vaccine. 2007;25:2491–2496. doi:10.1016/j.vaccine.2006.09.025.
  • Granoff DM, Maslanka SE, Carlone GM, Plikaytis BD, Santos GF, Mokatrin A, Raff HV. A modified enzyme-linked immunosorbent assay for measurement of antibody responses to meningococcal C polysaccharide that correlate with bactericidal responses. Clin Diagn Lab Immunol. 1998;5:479–485. doi:10.1128/CDLI.5.4.479-485.1998.
  • Christodoulides M, Brooks JL, Rattue E, Heckels JE. Immunization with recombinant class 1 outer-membrane protein from Neisseria meningitidis: influence of liposomes and adjuvants an antibody avidity, recognition of native protein and the induction of a bactericidal immune response against meningococci. Microbiology. 1998;144:3027–3037. doi:10.1099/00221287-144-11-3027.
  • Medhane M, Tunheim G, Næss LM, Mihret W, Bedru A, Norheim G, Petros B, Aseffa A, Rosenqvist E. Avidity of IgG antibodies against meningococcal serogroup a polysaccharide and correlations with bactericidal activity in sera from meningitis patients and controls from ethiopia. Scand J Immunol. 2014;79:267–275. doi:10.1111/sji.12150.
  • Viviani V, Biolchi A, Pizza M. Synergistic activity of antibodies in the multicomponent 4CMenB vaccine. Expert Rev Vaccines. 2022;21:645–658. doi:10.1080/14760584.2022.2050697.
  • Vermont C, Dobbelsteen G. Neisseria meningitidis serogroup B: laboratory correlates of protection. FEMS Immunol Med Microbiol. 2002;34:89–96. doi:10.1111/j.1574-695X.2002.tb00608.x.
  • Mancini F, Rossi O, Necchi F, Micoli F. OMV vaccines and the role of TLR agonists in immune response. Int J Mol Sci. 2020;21:4416. doi:10.3390/ijms21124416.
  • Song Z, Li B, Zhang Y, Li R, Ruan H, Wu J, Liu Q. Outer membrane vesicles of Helicobacter pylori 7.13 as adjuvants promote protective efficacy against Helicobacter pylori infection. Front Microbiol. 2020;11:1340. doi:10.3389/fmicb.2020.01340.
  • Rees W, Bender J, Teague TK, Kedl RM, Crawford F, Marrack P, Kappler J. An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc Natl Acad Sci USA. 1999;96:9781–9786. doi:10.1073/pnas.96.17.9781.
  • Keck S, Schmaler M, Ganter S, Wyss L, Oberle S, Huseby ES, Zehn D, King CG. Antigen affinity and antigen dose exert distinct influences on CD4 T-cell differentiation. Proc Natl Acad Sci USA. 2014;111:14852–14857. doi:10.1073/pnas.1403271111.
  • Billeskov R, Wang Y, Solaymani-Mohammadi S, Frey B, Kulkarni S, Andersen P, Agger EM, Sui Y, Berzofsky JA. Low antigen dose in adjuvant-based vaccination selectively induces CD4 T cells with enhanced functional avidity and protective efficacy. J Immunol. 2017;198:3494–3506. doi:10.4049/jimmunol.1600965.
  • Sartoretti J, Eberhardt CS. The potential role of nonhuman primate models to better comprehend early life immunity and maternal antibody transfer. Vaccines (Basel). 2021;9:306. doi:10.3390/vaccines9040306.
  • Presa J, Serra L, Weil-Olivier C, York L. Preventing invasive meningococcal disease in early infancy. Hum Vaccines Immunother. 2022;18:1979846. doi:10.1080/21645515.2021.1979846.
  • Matsui Y, Li L, Prahl M, Cassidy AG, Ozarslan N, Golan Y, Gonzalez VJ, Lin CY, Jigmeddagva U, Chidboy MA, et al. Neutralizing antibody activity against SARS-CoV-2 variants in gestational age-matched mother-infant dyads after infection or vaccination. JCI Insight. 2022;7:e157354. doi:10.1172/jci.insight.157354.
  • Pham A, Aronoff DM, Thompson JL. Maternal COVID-19, vaccination safety in pregnancy, and evidence of protective immunity. J Allergy Clin Immunol. 2021;148:728–731. doi:10.1016/j.jaci.2021.07.013.
  • Trotter C, Findlow J, Balmer P, Holland A, Barchha R, Hamer N, Andrews N, Miller E, Borrow R. Seroprevalence of bactericidal and anti-outer membrane vesicle antibodies to Neisseria meningitidis group B in England. Clin Vaccine Immunol. 2007;14:863–868. doi:10.1128/CVI.00102-07.
  • Bosch AATM, Biesbroek G, Trzcinski K, Sanders EAM, Bogaert D. Viral and bacterial interactions in the upper respiratory tract. PLoS Pathog. 2013;9:e1003057. doi:10.1371/journal.ppat.1003057.
  • Gallacher SD, Seaton A. Meningococcal meningitis and COVID-19 co-infection. BMJ Case Rep. 2020;13:e237366. doi:10.1136/bcr-2020-237366.
  • Ducatez N, Chancel M, Douadi Y, Dayen C, Suguenot R, Lecuyer E, Brihaye B, Bentayeb H. Primary meningococcal arthritis in a COVID-19 18-year-old man: a case report and review of the literature. BMC Infect Dis. 2021;21:499. doi:10.1186/s12879-021-06211-7.
  • Fukasawa LO, Liphaus BL, Gonçalves MG, Higa FT, Camargo CH, Carvalhanas TR, Lemos APS. Invasive meningococcal X disease during the COVID-19 pandemic, Brazil. Emerg Infect Dis. 2022;28:1931–1932. doi:10.3201/eid2809.220531.
  • Shaw D, Abad R, Amin-Chowdhury Z, Bautista A, Bennett D, Broughton K, Cao B, Casanova C, Choi EH, Chu YW, et al. Trends in invasive bacterial diseases during the first 2 years of the COVID-19 pandemic: analyses of prospective surveillance data from 30 countries and territories in the IRIS consortium. Lancet Digit Heal. 2023;5:e582–e593. doi:10.1016/S2589-7500(23)00108-5.
  • Clark SA, Campbell H, Ribeiro S, Bertran M, Walsh L, Walker A, Willerton L, Lekshmi A, Bai X, Lucidarme J, et al. Epidemiological and strain characteristics of invasive meningococcal disease prior to, during and after COVID-19 pandemic restrictions in England. J Infect. 2023;87:385–391. doi:10.1016/j.jinf.2023.09.002.
  • Deghmane AE, Taha MK. Changes in invasive Neisseria meningitidis and Haemophilus influenzae infections in France during the COVID-19 pandemic. Microorganisms. 2022;10:907. doi:10.3390/microorganisms10050907.