80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Microwave-assisted hydrothermal synthesis of autoclaved bricks from municipal solid waste incineration fly ash and coal fly ash (MSWIFA) and its carbon emission

, &

References

  • Awasthi SK, Sarsaiya S, Kumar V, et al. Processing of municipal solid waste resources for a circular economy in China: an overview. Fuel. 2022;317:123478. doi: 10.1016/j.fuel.2022.123478.
  • Liu J, Xie G, Wang Z, et al. Manufacture of alkali-activated cementitious materials using municipal solid waste incineration (MSWI) ash: immobilization of heavy metals in MSWI fly ash by MSWI bottom ash. Constr Build Mater. 2023;392:131848. doi: 10.1016/j.conbuildmat.2023.131848.
  • Wu S, Zhou J, Pan Y, et al. Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China. Waste Manag. 2016;50:113–120. doi: 10.1016/j.wasman.2016.01.038.
  • Zhang Y, Wang L, Chen L, et al. Treatment of municipal solid waste incineration fly ash: state-of-the-art technologies and future perspectives. J Hazard Mater. 2021;411:125132. doi: 10.1016/j.jhazmat.2021.125132.
  • Li T, Wang B. Effect and mechanism of nano-alumina on early hydration properties and heavy metals solidification/stabilization of alkali-activated MSWI fly ash solidified body. J Hazard Mater. 2023;452:131327. doi: 10.1016/j.jhazmat.2023.131327.
  • Li W, Li L, Wen Z, et al. Removal of dioxins from municipal solid waste incineration fly ash by low-temperature thermal treatment: laboratory simulation of degradation and ash discharge stages. Waste Manag. 2023;168:45–53. doi: 10.1016/j.wasman.2023.05.044.
  • Chen Y, Zhao M, Lv Y, et al. Utilization of municipal solid waste incineration fly ash as construction materials based on geopolymerization. Resour Conserv Recycl Adv. 2023;19:200162. doi: 10.1016/j.rcradv.2023.200162.
  • Cicek T, Tanrıverdi M. Lime based steam autoclaved fly ash bricks. Constr Build Mater. 2007;21(6):1295–1300. doi: 10.1016/j.conbuildmat.2006.01.005.
  • Shan Y, Liu Z, Guan D. CO2 emissions from china’s lime industry. Appl Energy. 2016;166:245–252. doi: 10.1016/j.apenergy.2015.04.091.
  • Guo X, Shi H. Microstructure and heavy metal adsorption mechanisms of hydrothermally synthesized Al-substituted tobermorite. Mater Struct. 2017;50(6):1–10. doi: 10.1617/s11527-017-1100-0.
  • Guo X, Meng F, Shi H. Microstructure and characterization of hydrothermal synthesis of Al-substituted tobermorite. Constr Build Mater. 2017;133:253–260. doi: 10.1016/j.conbuildmat.2016.12.059.
  • Guo X, Song M. Micro-nanostructures of tobermorite hydrothermal-synthesized from fly ash and municipal solid waste incineration fly ash. Constr Build Mater. 2018;191:431–439. doi: 10.1016/j.conbuildmat.2018.10.030.
  • Guo X, Zhang T, Song M. Hydrothermal synthesized and nano-modified wall materials from solid wastes. Constr Build Mater. 2019;217:242–250. doi: 10.1016/j.conbuildmat.2019.05.069.
  • Guo X, Zhang T. Utilization of municipal solid waste incineration fly ash to produce autoclaved and modified wall blocks. J Clean Prod. 2020;252:119759. doi: 10.1016/j.jclepro.2019.119759.
  • Guo X, Zhang T. Effects of ultrasonically dispersed nano-slurries on solid waste-based autoclaved concrete (SWAC) and its leaching of heavy metals. J Sustain Cem Based Mater. 2022;11(3):149–163. doi: 10.1080/21650373.2021.1901790.
  • Wang Z, Ma S, Zheng S, et al. Incorporation of Al and Na in hydrothermally synthesized tobermorite. J Am Ceram Soc. 2017;100(2):792–799. doi: 10.1111/jace.14599.
  • Maruyama I, Rymeš J, Aili A, et al. Long-term use of modern Portland cement concrete: the impact of Al-tobermorite formation. Mater Des. 2021;198:109297. doi: 10.1016/j.matdes.2020.109297.
  • Lin M, Chen G, Chen Y, et al. Hydrothermal solidification of alkali-activated clay-slaked lime mixtures. Constr Build Mater. 2022;325:126660. doi: 10.1016/j.conbuildmat.2022.126660.
  • Komarneri S, Roy DM, Roy R. Al-substituted tobermorite: shows cation exchange. Cem Concr Res. 1982;12(6):773–780. doi: 10.1016/0008-8846(82)90041-2.
  • Komarneni S, Roy DM. Tobermorites: a new family of cation exchangers. Science. 1983;221(4611):647–648. doi: 10.1126/science.221.4611.647.
  • Hu T, Kou L, Yang L, et al. Micro-structural evolution of high aluminium fly ash enhanced by microwave heating to accelerate activation reaction process. Powder Technol. 2021;377:739–747. doi: 10.1016/j.powtec.2020.08.049.
  • Chen Z, Lu S, Tang M, et al. Mechanical activation of fly ash from MSWI for utilization in cementitious materials. Waste Manag. 2019;88:182–190. doi: 10.1016/j.wasman.2019.03.045.
  • Shi C, Day RL. Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res. 2001;31(5):813–818. doi: 10.1016/S0008-8846(01)00481-1.
  • Ambrus M, Mucsi G. Advanced processing of high Ca fly ash for enhanced reactivity and improved high value-added application possibilities. Case Stud Constr Mater. 2023;18:e02214. doi: 10.1016/j.cscm.2023.e02214.
  • Gong J, Yu L, Li Z, et al. Mechanical activation improves reactivity and reduces leaching of municipal solid waste incineration (MSWI) bottom ash in cement hydration system. J Clean Prod. 2022;363:132533. doi: 10.1016/j.jclepro.2022.132533.
  • Rakić JM, Petrović RD, Radojević VJ, et al. Effects of selected inorganic chemical activators on properties and hydration mechanism of high volume fly ash (HVFA) binders. Constr Build Mater. 2023;391:131833. doi: 10.1016/j.conbuildmat.2023.131833.
  • Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem Concr Res. 2007;37(12):1583–1589. doi: 10.1016/j.cemconres.2007.08.021.
  • Oh JE, Monteiro PJM, Jun SS, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res. 2010;40(2):189–196. doi: 10.1016/j.cemconres.2009.10.010.
  • Joseph S, Snellings R, Cizer Ö. Activation of Portland cement blended with high volume of fly ash using Na2SO4. Cem Concr Compos. 2019;104:103417. doi: 10.1016/j.cemconcomp.2019.103417.
  • Liu B, Shi J, Liang H, et al. Synergistic enhancement of mechanical property of the high replacement low-calcium ultrafine fly ash blended cement paste by multiple chemical activators. J Build Eng. 2020;32:101520. doi: 10.1016/j.jobe.2020.101520.
  • Trincal V, Multon S, Benavent V, et al. Shrinkage mitigation of metakaolin-based geopolymer activated by sodium silicate solution. Cem Concr Res. 2022;162:106993. doi: 10.1016/j.cemconres.2022.106993.
  • Fang J, Lu W, Xu C. Progress in activating techniques and mechanism studies of fly ash. J Shanghai Univ Nat Sci. 2002;8:255–260.
  • Nassiri S, Markandeya A, Haider MM, et al. Technical and environmental assessment of hydrothermally synthesized foshagite and tobermorite-like crystals as fibrillar C–S–H seeds in cementitious materials. J Sustain Cem Based Mater. 2023;12(10):1181–1204. doi: 10.1080/21650373.2023.2185828.
  • Ma L, Feng Y, Zhang M, et al. Mechanism study on green high-efficiency hydrothermal activation of fly ash and its application prospect. J Clean Prod. 2020;275:122977. doi: 10.1016/j.jclepro.2020.122977.
  • Das S, Mukhopadhyay AK, Datta S, et al. Prospects of microwave processing: an overview. Bull Mater Sci. 2009;32(1):1–13. doi: 10.1007/s12034-009-0001-4.
  • Wang HF, Ma YB, Lao YF, et al. The process condition research of SrAl2O4: Eu2+, Dy3+ luminous powder by microwave method. Mater Sci Forum. 2013;745–746:528–533. doi: 10.4028/www.scientific.net/MSF.745-746.528.
  • Oghbaei M, Mirzaee O. Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J Alloys Compd. 2010;494(1–2):175–189. doi: 10.1016/j.jallcom.2010.01.068.
  • Qiu Q, Jiang X, Lv G, et al. Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives. Energy Fuels. 2016;30(9):7588–7595. doi: 10.1021/acs.energyfuels.6b01431.
  • Qiu Q, Jiang X, Chen Z, et al. Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash. Energy Fuels. 2017;31(5):5222–5232. doi: 10.1021/acs.energyfuels.6b02516.
  • Qiu Q, Jiang X, Lv G, et al. Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 2018;335:156–163. doi: 10.1016/j.powtec.2018.05.003.
  • Xu Z, Liang Z, Shao H, et al. Heavy metal stabilization in MSWI fly ash using an additive-assisted microwave hydrothermal method. J Ind Eng Chem. 2023;117:352–360. doi: 10.1016/j.jiec.2022.10.023.
  • Inada M, Tsujimoto H, Eguchi Y, et al. Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel. 2005;84:1482–1486. doi: 10.1016/j.fuel.2005.02.002.
  • Miyake M, Niiya S, Matsuda M. Microwave-assisted Al-substituted tobermorite synthesis. J Mater Res. 2000;15(4):850–853. doi: 10.1557/JMR.2000.0122.
  • Xu K, Yang X, Tian G, et al. Preparation of nano-size α-Al2O3 powders by seeding hydrothermal synthesizing method. J Chin Ceram Soc. 2001;(06):576–579.
  • Wu X, Jiang Q-Z, Ma Z-F, et al. Synthesis of titania nanotubes by microwave irradiation. Solid State Commun. 2005;136(9–10):513–517. doi: 10.1016/j.ssc.2005.09.023.
  • Liu S, Sarwar S, Zhang H, et al. One-step microwave-controlled synthesis of CoV2O6·2H2O nanosheet for super long cycle-life battery-type supercapacitor. Electrochim Acta. 2020;364:137320. doi: 10.1016/j.electacta.2020.137320.
  • Luo J, Ma R, Huang X, et al. Bio-fuels generation and the heat conversion mechanisms in different microwave pyrolysis modes of sludge. Appl Energy. 2020;266:114855. doi: 10.1016/j.apenergy.2020.114855.
  • Xiao Y, Shao Z, Wei W, et al. Effect of microwave pretreatment on mechanical behavior of concrete and aggregate recovery. Constr Build Mater. 2023;387:131647. doi: 10.1016/j.conbuildmat.2023.131647.
  • Qu X, Zhao X. Previous and present investigations on the components, microstructure and main properties of autoclaved aerated concrete – a review. Constr Build Mater. 2017;135:505–516. doi: 10.1016/j.conbuildmat.2016.12.208.
  • Passaglia E, Rinaldi R. Katoite, a new member of the Ca3Al2(SiO4)3–Ca3Al2(OH)12 series and a new nomenclature for the hydrogrossular group of minerals. Bull Minér. 1984;107(5):605–618. doi: 10.3406/bulmi.1984.7804.
  • Kalousek GL. Crystal chemistry of hydrous calcium silicates: I, substitution of aluminum in lattice of tobermorite. J Am Ceram Soc. 1957;40(3):74–80. doi: 10.1111/j.1151-2916.1957.tb12579.x.
  • Coleman NJ, Brassington DS. Synthesis of Al-substituted 11 Å tobermorite from newsprint recycling residue: a feasibility study. Mater Res Bull. 2003;38(3):485–497. doi: 10.1016/S0025-5408(02)01056-5.
  • Rios C, Williams C, Fullen M. Hydrothermal synthesis of hydrogarnet and tobermorite at 175 °C from kaolinite and metakaolinite in the CaO–Al2O3–SiO2–H2O system: a comparative study. Appl Clay Sci. 2009;43(2):228–237. doi: 10.1016/j.clay.2008.09.014.
  • Jiang J, Cai Q, Ma B, et al. Effect of ZSM-5 waste dosage on the properties of autoclaved aerated concrete. Constr Build Mater. 2021;278:122114. doi: 10.1016/j.conbuildmat.2020.122114.
  • Hillier S, Lumsdon DG, Brydson R, et al. Hydrogarnet:  a host phase for Cr(VI) in chromite ore processing residue (COPR) and other high pH wastes. Environ Sci Technol. 2007;41(6):1921–1927. doi: 10.1021/es0621997.
  • Shi D, Hu C, Zhang J, et al. Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from MSW incineration. Fuel Process Technol. 2017;165:44–53. doi: 10.1016/j.fuproc.2017.05.007.
  • Sedira N, Castro-Gomes J, Magrinho M. Red clay brick and tungsten mining waste-based alkali-activated binder: microstructural and mechanical properties. Constr Build Mater. 2018;190:1034–1048. doi: 10.1016/j.conbuildmat.2018.09.153.
  • Ponomar V, Adesanya E, Ohenoja K, et al. High-temperature performance of slag-based Fe-rich alkali-activated materials. Cem Concr Res. 2022;161:106960. doi: 10.1016/j.cemconres.2022.106960.
  • Böke H, Akkurt S, Özdemir S, et al. Quantification of CaCO3–CaSO3·0.5H2O–CaSO4·2H2O mixtures by FTIR analysis and its ANN model. Mater Lett. 2004;58(5):723–726. doi: 10.1016/j.matlet.2003.07.008.
  • Trezza MA, Lavat AE. Analysis of the system 3CaO·Al2O3–CaSO4·2H2O–CaCO3–H2O by FT-IR spectroscopy. Cem Concr Res. 2001;31(6):869–872. doi: 10.1016/S0008-8846(01)00502-6.
  • Kurtay M, Gerengi H, Kocak Y. The effect of caffeine molecule on the physico-chemical properties of blended cement. Constr Build Mater. 2020;255:119394. doi: 10.1016/j.conbuildmat.2020.119394.
  • Revathi T, Jeyalakshmi R. Fly ash–GGBS geopolymer in boron environment: a study on rheology and microstructure by ATR FT-IR and MAS NMR. Constr Build Mater. 2021;267:120965. doi: 10.1016/j.conbuildmat.2020.120965.
  • Jiang L, Zheng H, Xiong J, et al. Fabrication of negative carbon superhydrophobic self-cleaning concrete coating: high added-value utilization of recycled powders. Cem Concr Compos. 2023;136:104882. doi: 10.1016/j.cemconcomp.2022.104882.
  • Sivasakthi M, Jeyalakshmi R, Rajamane NP. Effect of change in the silica modulus of sodium silicate solution on the microstructure of fly ash geopolymers. J Build Eng. 2021;44:102939. doi: 10.1016/j.jobe.2021.102939.
  • Guo H, Yuan P, Zhang B, et al. Realization of high-percentage addition of fly ash in the materials for the preparation of geopolymer derived from acid-activated metakaolin. J Clean Prod. 2021;285:125430. doi: 10.1016/j.jclepro.2020.125430.
  • Yu P, Kirkpatrick RJ, Poe B, et al. Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc. 1999;82(3):742–748. doi: 10.1111/j.1151-2916.1999.tb01826.x.
  • Shen X, Feng P, Liu X, et al. New insights into the non-classical nucleation of C–S–H. Cem Concr Res. 2023;168:107135. doi: 10.1016/j.cemconres.2023.107135.
  • Ding J, Tang Z, Ma S, et al. A novel process for synthesis of tobermorite fiber from high-alumina fly ash. Cem Concr Compos. 2016;65:11–18. doi: 10.1016/j.cemconcomp.2015.10.017.
  • Drochytka R, Černý V. Influence of fluidized bed combustion fly ash admixture on hydrothermal synthesis of tobermorite in the mixture with quartz sand, high temperature fly ash and lime. Constr Build Mater. 2020;230:117033. doi: 10.1016/j.conbuildmat.2019.117033.
  • Kotake N, Kuboki M, Kiya S, et al. Influence of dry and wet grinding conditions on fineness and shape of particle size distribution of product in a ball mill. Adv Powder Technol. 2011;22(1):86–92. doi: 10.1016/j.apt.2010.03.015.
  • Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051–1069. doi: 10.1515/pac-2014-1117.
  • Xiong H, Yuan K, Xu J, et al. Pore structure, adsorption, and water absorption of expanded perlite mortar in external thermal insulation composite system during aging. Cem Concr Compos. 2021;116:103900. doi: 10.1016/j.cemconcomp.2020.103900.
  • Huang Q, Zhu X, Liu D, et al. Modification of water absorption and pore structure of high-volume fly ash cement pastes by incorporating nanosilica. J Build Eng. 2021;33:101638. doi: 10.1016/j.jobe.2020.101638.
  • Shi D, Zhang C, Zhang J, et al. Seed-assisted hydrothermal treatment with composite silicon–aluminum additive for solidification of heavy metals in municipal solid waste incineration fly ash. Energy Fuels. 2016;30(12):10661–10670. doi: 10.1021/acs.energyfuels.6b02019.
  • Luke K. Phase studies of pozzolanic stabilized calcium silicate hydrates at 180 °C. Cem Concr Res. 2004;34(9):1725–1732. doi: 10.1016/j.cemconres.2004.05.021.
  • Ibrahim M, Johari MAM, Hussaini SR, et al. Influence of pore structure on the properties of green concrete derived from natural pozzolan and nanosilica. J Sustain Cem Based Mater. 2020;9(4):233–257. doi: 10.1080/21650373.2020.1715901.
  • Chen X, Zhang H, Gong T, et al. Regulation of pore structure of brick-concrete recycled sand powder autoclaved aerated concrete and its relationship with key properties. Constr Build Mater. 2023;392:131849. doi: 10.1016/j.conbuildmat.2023.131849.
  • Bayuseno AP, Schmahl WW, Müllejans T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater. 2009;167(1–3):250–259. doi: 10.1016/j.jhazmat.2008.12.119.
  • Shan C, Jing Z, Pan L, et al. Hydrothermal solidification of municipal solid waste incineration fly ash. Res Chem Intermed. 2011;37(2–5):551–565. doi: 10.1007/s11164-011-0287-x.
  • Yang K-H, Song J-K, Song K-I. Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod. 2013;39:265–272. doi: 10.1016/j.jclepro.2012.08.001.
  • Jiao S, Luo F, Du Q. Carbon emissions assessment of autoclaved building materials. In: International Conference on Electrical and Control Engineering (ICECE); 2011, Sep 16–18; Yichang, China. New York (USA): IEEE Press; 2011. p. 4401–4404.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.