185
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hydration mechanism and mechanical properties of a developed low-carbon and lightweight strain-hardening cementitious composites

, , &

References

  • Zhao K, Zhang P, Guo W, et al. Steel reinforcement corrosion in strain hardening cementitious composites (SHCC): the role of multiple microcracks and surface impregnation. J Sustain Cem Based Mater. 2022;11(6):452–464. doi:10.1080/21650373.2021.2003907.
  • Chang J, Hu J, Pei T, et al. Application of low drying shrinkage ECC in the protection layer of thermal insulation wall. J SustainCem Based Mater. 2023;12(12):1495–1508. doi:10.1080/21650373.2023.2240359.
  • Shaikh FU, Nishiwaki T, Kwon S. Effect of fly ash on tensile properties of ultra-high performance fiber reinforced cementitious composites (UHP-FRCC). J SustainCem Based Mater. 2018;7(6):357–371. doi:10.1080/21650373.2018.1514672.
  • Xu L-Y, Huang B-T, Li VC, et al. High-strength high-ductility engineered/strain-hardening cementitious composites (ECC/SHCC) incorporating geopolymer fine aggregates. Cem Concr Compos. 2022;125:104296. doi:10.1016/j.cemconcomp.2021.104296.
  • Huang B-T, Zhu J-X, Weng K-F, et al. Ultra-high-strength engineered/strain-hardening cementitious composites (ECC/SHCC): material design and effect of fiber hybridization. Cem Concr Compos. 2022;129:104464. doi:10.1016/j.cemconcomp.2022.104464.
  • Yoo D-Y, Oh T, Kang M-C, et al. Enhanced tensile ductility and sustainability of high-strength strain-hardening cementitious composites using waste cement kiln dust and oxidized polyethylene fibers. Cem Concr Compos. 2021;120:104030. doi:10.1016/j.cemconcomp.2021.104030.
  • Yu K, Wang Y, Yu J, et al. A strain-hardening cementitious composites with the tensile capacity up to 8%. Constr Build Mater. 2017;137:410–419. doi:10.1016/j.conbuildmat.2017.01.060.
  • Chen Y, Yu J, Leung CK. Use of high strength strain-hardening cementitious composites for flexural repair of concrete structures with significant steel corrosion. Constr Build Mater. 2018;167:325–337. doi:10.1016/j.conbuildmat.2018.02.009.
  • Wei J, Wu C, Chen Y, et al. Shear strengthening of reinforced concrete beams with high strength strain-hardening cementitious composites (HS-SHCC). Mater Struct. 2020;53(4):1–15. doi:10.1617/s11527-020-01537-1.
  • Chen Y, Yu J, Younas H, et al. Experimental and numerical investigation on bond between steel rebar and high-strength strain-hardening cementitious composite (SHCC) under direct tension. Cem Concr Compos. 2020;112:103666. doi:10.1016/j.cemconcomp.2020.103666.
  • Kang S-T, Lee Y, Park Y-D, et al. Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Compos Struct. 2010;92(1):61–71. doi:10.1016/j.compstruct.2009.06.012.
  • Yang E-H, Wang S, Yang Y, et al. Fiber-bridging constitutive law of engineered cementitious composites. ACT. 2008;6(1):181–193. doi:10.3151/jact.6.181.
  • Ding C, Guo L, Chen B. Orientation distribution of polyvinyl alcohol fibers and its influence on bridging capacity and mechanical performances for high ductility cementitious composites. Constr Build Mater. 2020;247:118491. doi:10.1016/j.conbuildmat.2020.118491.
  • Schauffert EA, Cusatis G. Lattice discrete particle model for fiber-reinforced concrete. I: Theory. J Eng Mech. 2012;138(7):826–833. doi:10.1061/(ASCE)EM.1943-7889.0000387.
  • Rasheed MA, Prakash SS. Behavior of hybrid-synthetic fiber reinforced cellular lightweight concrete under uniaxial tension—Experimental and analytical studies. Constr Build Mater. 2018;162:857–870. doi:10.1016/j.conbuildmat.2017.12.095.
  • Gou H, Sofi M, Özyurt N, et al. Effect of pre-saturated lightweight sand on material properties of eco-friendly lightweight cementitious composites. J Sustain Cem Based Mater. 2023;12(5):561–579. doi:10.1080/21650373.2022.2095677.
  • Mahato J, Yang J, Lee N, et al. Incorporation of a high volume of cenosphere particles in low water-to-cement matrix for developing high strength and lightweight cementitious composites. J Sustain Cem Based Mater. 2023;12(5):580–591. doi:10.1080/21650373.2022.2095678.
  • Lu C, She P, Chu H, et al. An investigation on the performance enhancement and cost reduction of engineered cementitious composites developed with local PVA and PET fibers. J Sustain Cem Based Mater. 2023;12(8):1020–1032. doi:10.1080/21650373.2022.2152898.
  • Zhu H, Wan KT, Satekenova E, et al. Development of lightweight strain hardening cementitious composite for structural retrofit and energy efficiency improvement of unreinforced masonry housings. Constr Build Mater. 2018;167:791–812. doi:10.1016/j.conbuildmat.2018.02.033.
  • Hamdany AH, Ding Y, Qian S. Mechanical and antibacterial behavior of photocatalytic lightweight engineered cementitious composites. J Mater Civ Eng. 2021;33(10):04021262. doi:10.1061/(ASCE)MT.1943-5533.0003886.
  • Babu KG, Babu DS. Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem Concr Res. 2003;33(5):755–762. doi:10.1016/S0008-8846(02)01055-4.
  • Chen F, Zhang Y, Liu J, et al. Fly ash based lightweight wall materials incorporating expanded perlite/SiO2 aerogel composite: towards low thermal conductivity. Constr Build Mater. 2020;249:118728. doi:10.1016/j.conbuildmat.2020.118728.
  • Zhao M, Zhao M, Chen M, et al. An experimental study on strength and toughness of steel fiber reinforced expanded-shale lightweight concrete. Constr Build Mater. 2018;183:493–501. doi:10.1016/j.conbuildmat.2018.06.178.
  • Wang S, Li V. 27 Lightweight engineered cementitious composites (ECC). PRO 30: 4th international RILEM workshop on high performance fiber reinforced cement composites (HPFRCC 4), 2003; Ann Arbor, MI; p. 379–390.
  • Ranjbar N, Kuenzel C. Cenospheres: a review. Fuel. 2017;207:1–12. doi:10.1016/j.fuel.2017.06.059.
  • Shukla S, Seal S, Akesson J, et al. Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Appl Surf Sci. 2001;181(1–2):35–50. doi:10.1016/S0169-4332(01)00341-5.
  • Kolay P, Singh DP. Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cem Concr Res. 2001;31(4):539–542. doi:10.1016/S0008-8846(01)00457-4.
  • Cheng H, Hu Y. Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol. 2010;101(11):3816–3824. doi:10.1016/j.biortech.2010.01.040.
  • Chen W, Qi Z, Zhang L, et al. Effects of cenosphere on the mechanical properties of cement-based composites. Constr Build Mater. 2020;261:120527. doi:10.1016/j.conbuildmat.2020.120527.
  • Chen W, Dang J, Du H. Using low-grade calcined clay to develop low-carbon and lightweight strain-hardening cement composites. J Build Eng. 2022;58:105023. doi:10.1016/j.jobe.2022.105023.
  • Amran M, Huang S-S, Onaizi AM, et al. Fire spalling behavior of high-strength concrete: a critical review. Constr Build Mater. 2022;341:127902. doi:10.1016/j.conbuildmat.2022.127902.
  • Suraneni P, Weiss J. Examining the pozzolanicity of supplementary cementitious materials using isothermal calorimetry and thermogravimetric analysis. Cem Concr Compos. 2017;83:273–278. doi:10.1016/j.cemconcomp.2017.07.009.
  • Cao Y, Wang Y, Zhang Z, et al. Recent progress of utilization of activated kaolinitic clay in cementitious construction materials. Compos B Eng. 2021;211:108636. doi:10.1016/j.compositesb.2021.108636.
  • Lu W, Chen X, Peng Y, et al. Benchmarking construction waste management performance using big data. Resour Conserv Recycl. 2015;105:49–58. doi:10.1016/j.resconrec.2015.10.013.
  • Ding Z, Gong W, Tam VW, et al. Conceptual framework for renovation waste management based on renovation waste generation rates in residential buildings: an empirical study in China. J Cleaner Prod. 2019;228:284–293. doi:10.1016/j.jclepro.2019.04.153.
  • Xiao J, Ma Z, Ding T. Reclamation chain of waste concrete: a case study of shanghai. Waste Manag. 2016;48:334–343. doi:10.1016/j.wasman.2015.09.018.
  • Kirthika S, Singh S. Durability studies on recycled fine aggregate concrete. Constr Build Mater. 2020;250:118850. doi:10.1016/j.conbuildmat.2020.118850.
  • Geng J, Sun J. Characteristics of the carbonation resistance of recycled fine aggregate concrete. Constr Build Mater. 2013;49:814–820. doi:10.1016/j.conbuildmat.2013.08.090.
  • Mostofinejad D, Hosseini SM, Nosouhian F, et al. Durability of concrete containing recycled concrete coarse and fine aggregates and milled waste glass in magnesium sulfate environment. J Build Eng. 2020;29:101182. doi:10.1016/j.jobe.2020.101182.
  • Carneiro JA, Lima PRL, Leite MB, et al. Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete. Cem Concr Compos. 2014;46:65–72. doi:10.1016/j.cemconcomp.2013.11.006.
  • Yu K-Q, Zhu W-J, Ding Y, et al. Micro-structural and mechanical properties of ultra-high performance engineered cementitious composites (UHP-ECC) incorporation of recycled fine powder (RFP). Cem Concr Res. 2019;124:105813. doi:10.1016/j.cemconres.2019.105813.
  • Wang W, Wu H, Ma Z, et al. Using eco-friendly recycled powder from CDW to prepare strain hardening cementitious composites (SHCC) and properties determination. Materials. 2020;13(5):1143. doi:10.3390/ma13051143.
  • Yu J, Jiang F, Yu K, et al. Deformability enhancement of fiber-reinforced cementitious composite by incorporating recycled powder. J Reinf Plast Compos. 2020;39(3-4):119–131. doi:10.1177/0731684419877251.
  • Wang Y, Zhang Z, Yu J, et al. Using green supplementary materials to achieve more ductile ECC. Materials. 2019;12(6):858. doi:10.3390/ma12060858.
  • ASTM C109/C109M-20. Standard test method for compressive strength of hydraulic cement mortars (using 2-in. or [50-mm] cube specimens). West Conshohocken (PA): American Society for Testing and Materials; 2002.
  • ASTM E399-12. Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials. West Conshohocken (PA): American Society for Testing and Materials; 2012.
  • Yokota H, Rokugo K, Sakata N. JSCE recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks (HPRCC). Tokyo (Japan): Japan Society of Civil Engineers; 2008; p. 89.
  • ASTM C157. Standard test method for length change of hardened hydraulic-cement mortar and concrete. West Conshohocken (PA): ASTM International; 2008.
  • Nambiar EK, Ramamurthy K. Air-void characterisation of foam concrete. Cem Concr Res. 2007;37(2):221–230. doi:10.1016/j.cemconres.2006.10.009.
  • Korpa A, Kowald T, Trettin R. Hydration behaviour, structure and morphology of hydration phases in advanced cement-based systems containing micro and nanoscale pozzolanic additives. Cem Concr Res. 2008;38(7):955–962. doi:10.1016/j.cemconres.2008.02.010.
  • John E, Matschei T, Stephan D. Nucleation seeding with calcium silicate hydrate–A review. Cem Concr Res. 2018;113:74–85. doi:10.1016/j.cemconres.2018.07.003.
  • Toutanji H, Delatte N, Aggoun S, et al. Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete. Cem Concr Res. 2004;34(2):311–319. doi:10.1016/j.cemconres.2003.08.017.
  • Zhao Y, Hu X, Shi C, et al. A review on seawater sea-sand concrete: mixture proportion, hydration, microstructure and properties. Constr Build Mater. 2021;295:123602. doi:10.1016/j.conbuildmat.2021.123602.
  • Shaikh FU, Supit SW. Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Constr Build Mater. 2014;70:309–321. doi:10.1016/j.conbuildmat.2014.07.099.
  • Cao M, Ming X, Yin H, et al. Influence of high temperature on strength, ultrasonic velocity and mass loss of calcium carbonate whisker reinforced cement paste. Compos B Eng. 2019;163:438–446. doi:10.1016/j.compositesb.2019.01.030.
  • Li L, Cao M, Yin H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cem Concr Compos. 2019;104:103350. doi:10.1016/j.cemconcomp.2019.103350.
  • Fu Q, Zhang Z, Zhao X, et al. Effect of nano calcium carbonate on hydration characteristics and microstructure of cement-based materials: a review. J Build Eng. 2022;50:104220. doi:10.1016/j.jobe.2022.104220.
  • Liu Q-F, Hu Z, Wang X-E, et al. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load. Constr Build Mater. 2022;325:126797. doi:10.1016/j.conbuildmat.2022.126797.
  • Zhang Z, Scherer GW, Bauer A. Morphology of cementitious material during early hydration. Cem Concr Res. 2018;107:85–100. doi:10.1016/j.cemconres.2018.02.004.
  • Scrivener KL, Nonat A. Hydration of cementitious materials, present and future. Cem Concr Res. 2011;41(7):651–665. doi:10.1016/j.cemconres.2011.03.026.
  • He S, Qiu J, Li J, et al. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers. Cem Concr Res. 2017;98:50–60. doi:10.1016/j.cemconres.2017.04.003.
  • Suthiwarapirak P, Matsumoto T, Kanda T. Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure. J Mater Civ Eng. 2004;16(5):433–443. doi:10.1061/(ASCE)0899-1561(2004)16:5(433).
  • Zajac M, Skocek J, Gołek Ł, et al. Supplementary cementitious materials based on recycled concrete paste. J Cleaner Prod. 2023;387:135743. doi:10.1016/j.jclepro.2022.135743.
  • Zajac M, Skibsted J, Bullerjahn F, et al. Semi-dry carbonation of recycled concrete paste. J CO2 Util. 2022;63:102111. doi:10.1016/j.jcou.2022.102111.
  • Lu Z, Yao J, Leung CK. Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC. Cem Concr Res. 2019;126:105899. doi:10.1016/j.cemconres.2019.105899.
  • Barhum R, Mechtcherine V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete. Mater Struct. 2013;46(4):557–572. doi:10.1617/s11527-012-9913-3.
  • Feng J, Yang F, Qian S. Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification. Constr Build Mater. 2021;269:121249. doi:10.1016/j.conbuildmat.2020.121249.
  • Khan M, Cao M, Hussain A, et al. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites. Constr Build Mater. 2021;300:124046. doi:10.1016/j.conbuildmat.2021.124046.
  • Cheng L, Chen Y, Yuan B, et al. The underlying role of sodium tripolyphosphate on the cementitious mechanism of calcium carbonate binder. Compos B Eng. 2022;247:110362. doi:10.1016/j.compositesb.2022.110362.
  • Long W-J, Tao J-L, Lin C, et al. Rheology and buildability of sustainable cement-based composites containing micro-crystalline cellulose for 3D-printing. J Cleaner Prod. 2019;239:118054. doi:10.1016/j.jclepro.2019.118054.
  • Van Den Heede P, De Belie N. Environmental impact and life cycle assessment (LCA) of traditional and ‘green’concretes: literature review and theoretical calculations. Cem Concr Compos. 2012;34(4):431–442. doi:10.1016/j.cemconcomp.2012.01.004.
  • Damineli BL, Kemeid FM, Aguiar PS, et al. Measuring the eco-efficiency of cement use. Cem Concr Compos. 2010;32(8):555–562. doi:10.1016/j.cemconcomp.2010.07.009.
  • Zhao Y, Gao J, Liu C, et al. The particle-size effect of waste clay brick powder on its pozzolanic activity and properties of blended cement. J Cleaner Prod. 2020;242:118521. doi:10.1016/j.jclepro.2019.118521.
  • Gao T, Shen L, Shen M, et al. Analysis on differences of carbon dioxide emission from cement production and their major determinants. J Cleaner Prod. 2015;103:160–170. doi:10.1016/j.jclepro.2014.11.026.
  • Wang Y, Zhu Q, Geng Y. Trajectory and driving factors for GHG emissions in the chinese cement industry. J Cleaner Prod. 2013;53:252–260. doi:10.1016/j.jclepro.2013.04.001.
  • Cao L, Shen W, Huang J, et al. Process to utilize crushed steel slag in cement industry directly: multi-phased clinker sintering technology. J Cleaner Prod. 2019;217:520–529. doi:10.1016/j.jclepro.2019.01.260.
  • Hu W, Zhang D, Ftwi E, et al. Development of sustainable low carbon engineered cementitious composites with waste polyethylene fiber, sisal fiber and carbonation curing. Resour Conserv Recycl. 2023;197:107096. doi:10.1016/j.resconrec.2023.107096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.