98
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Enhancing the properties of carbonation cured gamma dicalcium silicates (γ-C2S) using biomimetic molecules

, &

References

  • Shi C, Day RL. A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res. 1995;25(6):1333–1346. doi: 10.1016/0008-8846(95)00126-W.
  • Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res. 2015;78:110–125. doi: 10.1016/j.cemconres.2015.04.013.
  • Chatterjee AK. High belite cements - present status and future technological options: part I. Cem Concr Res. 1996;26(8):1213–1225 doi: 10.1016/0008-8846(96)00099-3.
  • Quillin K. Performance of belite-sulfoaluminate cements. Cem Concr Res. 2001;31(9):1341–1349 doi: 10.1016/S0008-8846(01)00543-9.
  • Walling SA, Provis JL. Magnesia-Based cements: a journey of 150 years, and cements for the future? Chem Rev. 2016;116(7):4170–4204. doi: 10.1021/acs.chemrev.5b00463.
  • De Silva P, Bucea L, Moorehead DR, et al. Carbonate binders: reaction kinetics, strength and microstructure. Cem Concr Compos. 2006;28(7):613–620. doi: 10.1016/j.cemconcomp.2006.03.004.
  • Ashraf W, Olek J. Carbonation activated binders from pure calcium silicates: reaction kinetics and performance controlling factors. Cem Concr Compos. 2018;93(February):85–98. doi: 10.1016/j.cemconcomp.2018.07.004.
  • Mrak M, Winnefeld F, Lothenbach B, et al. The influence of calcium sulfate content on the hydration of belite-calcium sulfoaluminate cements with different clinker phase compositions. Mater Struct. 2021;54(212) doi: 10.1617/s11527-021-01811-w.
  • Ashraf W, Olek J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. J Mater Sci. 2016;51(13):6173–6191. doi: 10.1007/s10853-016-9909-4.
  • Bukowski JM, Berger RL. Reactivity and strength development of CO2 activated non-hydraulic calcium silicates. Cem Concr Res. 1979;9(1):57–68. doi: 10.1016/0008-8846(79)90095-4.
  • Berger RL, Young JF, Leung K. Acceleration of hydration of calcium silicates by carbon dioxide treatment. Nature Physical Science. 1972;240(97):16–18. doi: 10.1038/physci240016a0.
  • Goñi S, Guerrero A. Study of alkaline hydrothermal activation of belite cements by thermal analysis. J Therm Anal Calorim. 2010;99(2):471–477. doi: 10.1007/s10973-009-0140-2.
  • Kubátová D, Zezulová A, Rybová A, et al. Formation of belite-based binder from waste materials. J Therm Anal Calorim. 2020;142(5):1625–1633. doi: 10.1007/s10973-020-10252-6.
  • Ashraf W. Microstructure of chemically activated of gamma-dicalcium silicate paste. Constr Build Mater. 2018;185:617–627 doi: 10.1016/j.conbuildmat.2018.07.030.
  • Young JF, Barret P, Bezjak A, et al. Mathematical modelling of hydration of cement: hydration of dicalcium silicate. Mater Struct. 1987;20(5):377–382. doi: 10.1007/BF02472586.
  • Muhyaddin GF, Asaad DS. Durability aspects of concretes made with boron-activated high belite cement (HBC). Mater Struct. 2022;55(175) doi: 10.1617/s11527-022-02014-7.
  • Wesselsky A, Jensen OM. Synthesis of pure Portland cement phases. Cem Concr Res. 2009;39(11):973–980. doi: 10.1016/j.cemconres.2009.07.013.
  • Mu Y, Liu Z, Wang F, et al. Carbonation characteristics of γ-dicalcium silicate for low-carbon building material. Constr Build Mater. 2018;177:322–331. doi: 10.1016/j.conbuildmat.2018.05.087.
  • Wang YG, Zou BS, Kuo KH, et al. High-resolution electron microscopy study of belite. J Mater Sci. 1989;24(3):877–880. doi: 10.1007/BF01148771.
  • Chang J, Fang Y, Shang X. The role of β-C2S and γ-C2S in carbon capture and strength development. Mater Struct. 2016;49(10):4417–4424. doi: 10.1617/s11527-016-0797-5.
  • Higuchi T, Morioka M, Yoshioka I, et al. Development of a new ecological concrete with CO2 emissions below zero. Constr Build Mater. 2014;67(PART C):338–343. doi: 10.1016/j.conbuildmat.2014.01.029.
  • Yoshioka K, Obata D, Nanjo H, et al. “New ecological concrete that reduces CO2 emissions below zero level ∼ new method for CO2 capture and storage ∼,” in. Energy Procedia. 2013;37:6018–6025. doi: 10.1016/j.egypro.2013.06.530.
  • Saito T, Sakai E, Morioka M, et al. Carbonation reaction of calcium silicate hydrates by hydrothermal synthesis at 150 °C in OPC-γ-Ca2SiO4-α-quartz systems. ACT. 2007;5(3):333–341. doi: 10.3151/jact.5.333.
  • Jiang T, Cui K, Chang J. Development of low-carbon cement: carbonation of compounded C2S by β-C2S and γ-C2S. Cem Concr Compos. 2023;139:105071. doi: 10.1016/j.cemconcomp.2023.105071.
  • Chang J, Jiang T, Cui K. Influence on compressive strength and CO2 capture after accelerated carbonation of combination β-C2S with γ-C2S. Constr Build Mater. 2021;312:125359. doi: 10.1016/j.conbuildmat.2021.125359.
  • Fang Y, Chang J. Rapid hardening β-C2S mineral and microstructure changes activated by accelerated carbonation curing. J Therm Anal Calorim. 2017;129(2):681–689. doi: 10.1007/s10973-017-6165-z.
  • Guan X, Liu S, Feng C, et al. The hardening behavior of γ-C2S binder using accelerated carbonation. Constr Build Mater. 2016;114:204–207. doi: 10.1016/j.conbuildmat.2016.03.208.
  • Bernal SA, Provis JL, Walkley B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. 2013;53:127–144. doi: 10.1016/j.cemconres.2013.06.007.
  • Moorehead DR. Cementation by the carbonation of hydrated lime. Cem Concr Res. 1986;16(5):700–708. doi: 10.1016/0008-8846(86)90044-X.
  • Khan RI, Ashraf W, Olek J. Amino acids as performance-controlling additives in carbonation-activated cementitious materials. Cem Concr Res. 2021;147:106501. doi: 10.1016/j.cemconres.2021.106501.
  • Lu B, Drissi S, Liu J, et al. Effect of temperature on CO2 curing, compressive strength and microstructure of cement paste. Cem Concr Res. 2022;157:106827. doi: 10.1016/j.cemconres.2022.106827.
  • Shi C, Qu B, Provis JL. Recent progress in low-carbon binders. Cem Concr Res. 2019;122(April):227–250. doi: 10.1016/j.cemconres.2019.05.009.
  • Baffoe E, Ghahremaninezhad A. Effect of proteins on the mineralization, microstructure and mechanical properties of carbonation cured calcium silicate. Cem Concr Compos. 2023;141:105121. Aug. doi: 10.1016/j.cemconcomp.2023.105121.
  • Wu F, You X, Wang M, et al. Increasing flexural strength of CO2 cured cement paste by CaCO3 polymorph control. Cem Concr Compos. 2023;141:105128. Aug. doi: 10.1016/j.cemconcomp.2023.105128.
  • Nawarathna THK, Nakashima K, Kawabe T, et al. Artificial fusion protein to facilitate calcium carbonate mineralization on insoluble polysaccharide for efficient biocementation. ACS Sustainable Chem. Eng. 2021;9(34):11493–11502. doi: 10.1021/acssuschemeng.1c03730.
  • Polowczyk I, Bastrzyk A, Fiedot M. Protein-mediated precipitation of calcium carbonate. Materials. 2016;9(11):944. doi: 10.3390/ma9110944.
  • Yang H, Yao W, Yang L, et al. The self-assembly of CaCO3 crystals in the presence of protein. J Cryst Growth. 2009;311(9):2682–2688. doi: 10.1016/j.jcrysgro.2009.02.049.
  • Kim Y-Y, Carloni JD, Demarchi B, et al. Tuning hardness in calcite by incorporation of amino acids. Nat Mater. 2016;15(8):903–910. doi: 10.1038/nmat4631.
  • Kim HL, Shin YS, Yang SH. Effect of poly(acrylic acid) on crystallization of calcium carbonate in a hydrogel. CrystEngComm. 2022;24(7):1344–1351. doi: 10.1039/D1CE01687C.
  • Goto S, Suenaga K, Kado T, et al. Calcium silicate carbonation products. J Amer Ceram Soc. 1995;78(11):2867–2872. doi: 10.1111/j.1151-2916.1995.tb09057.x.
  • Berliner R, Ball C, West PB. Neutron powder diffraction investigation of model cement compounds. Cem Concr Res. 1997;27(4):551–575. doi: 10.1016/S0008-8846(97)00028-8.
  • Sáez Del Bosque IF, Martínez-Ramírez S, Blanco-Varela MT. FTIR study of the effect of temperature and nanosilica on the nano structure of C-S-H gel formed by hydrating tricalcium silicate. Constr Build Mater. 2014;52:2049–2056 doi: 10.1016/j.conbuildmat.2013.10.056.
  • Odler I. The BET-specific surface area of hydrated Portland cement and related materials. Cem Concr Res. 2003;33(12):2049–2056. doi: 10.1016/S0008-8846(03)00225-4.
  • Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60(2):309–319. doi: 10.1021/ja01269a023.
  • Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951;73(1):373–380. doi: 10.1021/ja01145a126.
  • Ashraf W, Olek J. Elucidating the accelerated carbonation products of calcium silicates using multi-technique approach. J CO2 Util. 2018;23:61–74. doi: 10.1016/j.jcou.2017.11.003.
  • Panesar DK, Francis J. Influence of limestone and slag on the pore structure of cement paste based on mercury intrusion porosimetry and water vapour sorption measurements. Constr Build Mater. 2014;52:52–58. doi: 10.1016/j.conbuildmat.2013.11.022.
  • Ashraf W, Olek J, Tian N. Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus. Cem Concr Compos. 2016;72:284–298. doi: 10.1016/j.cemconcomp.2016.05.023.
  • Khan RI, Siddique S, Ashraf W. Effects of magnesia in semi-hydraulic and non-hydraulic calcium silicate binders during carbonation curing. Constr Build Mater. 2022;338:127628. Jul. doi: 10.1016/j.conbuildmat.2022.127628.
  • Lee, Sung-Hyun, Kim, Kyungnam, Song, Myong-Shin, Mabudo, “Physical and chemical properties of cement mortar with gamma-C2S,”J. Korean Ceram. Soc, vol. 53, no. 2, 194, 199, 2016, doi: 10.4191/kcers.2016.53.2.194.
  • Sow PY. IR - Spectroscopic investigations of the kinetics of calcium carbonate precipitation University Konstanz, 2016.
  • Khan RI, Haque MI, Ashraf W, et al. Role of biopolymers in enhancing multiscale characteristics of carbonation-cured cementitious composites. Cem Concr Compos. 2022;134:104766. doi: 10.1016/j.cemconcomp.2022.104766.
  • Andersen FA, Brečević L, Beuter G, et al. Infrared spectra of amorphous and crystalline calcium carbonate. Acta Chem. Scand. 1991;45:1018–1024. doi: 10.3891/acta.chem.scand.45-1018.
  • Weir CE, Lippincott ER. Infrared studies of aragonite, calcite, and vaterite type structures in the borates, carbonates, and nitrates. J Res Natl Bur Stand A Phys Chem. 1961;65A(3):173–180. doi: 10.6028/jres.065a.021.
  • Sato M, Matsuda S. Structure of vaterite and infrared spectra. Zeitschrift Fur Kristallographie - New Crystal Structures. 1969;129(5-6):405–410. doi: 10.1524/zkri.1969.129.5-6.405.
  • Chakrabarty D, Mahapatra S. Aragonite crystals with unconventional morphologies. J. Mater. Chem. 1999;9(11):2953–2957. doi: 10.1039/a905407c.
  • Zhou GT, Yu JC, Wang XC, et al. Sonochemical synthesis of aragonite-type calcium carbonate with different morphologies. New J. Chem. 2004;28(8):1027. doi: 10.1039/b315198k.
  • Baroghel-Bouny V. Water vapour sorption experiments on hardened cementitious materials. Cem Concr Res. 2007;37(3):414–437. doi: 10.1016/j.cemconres.2006.11.019.
  • Constantinides G, Ravi Chandran KS, Ulm FJ, et al. Grid indentation analysis of composite microstructure and mechanics: principles and validation. Mater Sci Eng, A. 2006;430(1–2):189–202. doi: 10.1016/j.msea.2006.05.125.
  • Ashraf W, Olek J, Jain J. Microscopic features of non-hydraulic calcium silicate cement paste and mortar. Cem Concr Res. 2017;100:361–372. doi: 10.1016/j.cemconres.2017.07.001.
  • Miller M, Bobko C, Vandamme M, et al. Surface roughness criteria for cement paste nanoindentation. Cem Concr Res. 2008;38(4):467–476. doi: 10.1016/j.cemconres.2007.11.014.
  • Dhami NK, Mukherjee A, Reddy MS. Micrographical, minerological and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol Eng. 2016;94:443–454. Sep. doi: 10.1016/j.ecoleng.2016.06.013.
  • Willett RL, Baldwin KW, West KW, et al. Differential adhesion of amino acids to inorganic surfaces. Proc Natl Acad Sci U S A. 2005;102(22):7817–7822. doi: 10.1073/pnas.0408565102.
  • Schussler O, Coirault C, Louis-Tisserand M, et al. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nat Clin Pract Cardiovasc Med. 2009;6(3):240–249. doi: 10.1038/ncpcardio1451.
  • Hwang JJ, Stupp SI. Poly(amino acid) bioadhesives for tissue repair. J Biomater Sci Polym Ed. 2000;11(10):1023–1038. doi: 10.1163/156856200743553.
  • Ma B, Peng Y, Tan H, et al. Effect of polyacrylic acid on rheology of cement paste plasticized by polycarboxylate superplasticizer. Materials. 2018;11(7):1081. Jun. doi: 10.3390/ma11071081.
  • Guo Y, Ma B, Zhi Z, et al. Effect of polyacrylic acid emulsion on fluidity of cement paste. Colloids Surf A Physicochem Eng Asp. 2017;535:139–148. Dec. doi: 10.1016/j.colsurfa.2017.09.039.
  • Ouhenia S, Chateigner D, Belkhir MA, et al. Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. J Cryst Growth. May 2008;310(11):2832–2841. doi: 10.1016/j.jcrysgro.2008.02.006.
  • Watamura H, Sonobe Y, Hirasawa I. Polyacrylic acid-Assisted crystallization phenomena of carbonate crystals. Chem Eng & Technol. 2014;37(8):1422–1426. doi: 10.1002/ceat.201400017.
  • Huang SC, Naka K, Chujo Y. Effect of molecular weights of poly(acrylic acid) on crystallization of calcium carbonate by the delayed addition method. Polym J. 2008;40(2):154–162. doi: 10.1295/polymj.PJ2007162.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.