166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation of high flexural strength rankinite cement benefiting from formation of aragonite whisker during carbonation curing

, , , , , & show all

References

  • Ashraf W, Olek J, Jain J. Microscopic features of non-hydraulic calcium silicate cement paste and mortar. Cem Concr Res. 2017;100:361–372. doi:10.1016/j.cemconres.2017.07.001.
  • Shi C, Qu B, Provis JL. Recent progress in low-carbon binders. Cem Concr Res. 2019;122:227–250. doi:10.1016/j.cemconres.2019.05.009.
  • Hou G, Yan Z, Sun J, et al. Microstructure and mechanical properties of CO2-cured steel slag brick in pilot-scale. Constr Build Mater. 2021;271:121581. doi:10.1016/j.conbuildmat.2020.121581.
  • Wang X, Ni W, Li J, et al. Carbonation of steel slag and gypsum for building materials and associated reaction mechanisms. Cem Concr Res. 2019;125:105893. doi:10.1016/j.cemconres.2019.105893.
  • Chen Z, Li R, Zheng X, et al. Carbon sequestration of steel slag and carbonation for activating RO phase. Cem Concr Res. 2021;139:106271. doi:10.1016/j.cemconres.2020.106271.
  • Lu B, Shi C, Hou G. Strength and microstructure of CO2 cured low-calcium clinker. Constr Build Mater. 2018;188:417–423. doi:10.1016/j.conbuildmat.2018.08.134.
  • Li J, Zhang W, Xu K, et al. Fibrillar calcium silicate hydrate seeds from hydrated tricalcium silicate lower cement demand. Cem Concr Res. 2020;137:106195. doi:10.1016/j.cemconres.2020.106195.
  • Hou G, Chen J, Lu B, et al. Composition design and pilot study of an advanced energy-saving and low-carbon rankinite clinker. Cem Concr Res. 2020;127:105926. doi:10.1016/j.cemconres.2019.105926.
  • Vahit A, Sadananda S, Sean Q, Xudong H, Nicholas D. Why CO2 matters - advances in a new class of cement. Zkg Int. 2014;67:60–63.
  • Hou G, Lu B, Gao X, et al. Preparation and carbonation-hardening process of low-calcium cement composition. J Chin Ceram Soc. 2016;44:286–291. doi:10.14062/j.issn.0454-5648.2016.02.15.
  • Aïtcin PC. Cements of yesterday and today: concrete of tomorrow. Cem Concr Res. 2000;30:1349–1359. doi:10.1016/S0008-8846(00)00365-3.
  • Gdoutos EE, Konsta-Gdoutos SM, Danoglidis PA. Portland cement mortar nanocomposites at low carbon nanotube and carbon nanofiber content: a fracture mechanics experimental study. Cem Concr Compos. 2016;70:110–118. doi:10.1016/j.cemconcomp.2016.03.010.
  • Ding XX, Li CY, Han B, et al. Effects of different deformed steel-fibers on preparation and fundamental properties of self-compacting SFRC. Constr Build Mater. 2018;168:471–481. doi:10.1016/j.conbuildmat.2018.02.162.
  • Serrano R, Cobo A, Prieto MI, et al. Analysis of fireresistance of concrete with polypropylene or steel fibers. Constr Build Mater. 2016;122:302–309. doi:10.1016/j.conbuildmat.2016.06.055.
  • Razmi A, Mirsayar MM. On the mixed mode I/Il fracture properties of jute fiber. reinforced concrete. Constr Build Mater. 2017;148:512–520. doi:10.1016/j.conbuildmat.2017.05.034.
  • Saulat H, Cao M, Khan MM, et al. Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Constr Build Mater. 2020;236:117613. doi:10.1016/j.conbuildmat.2019.117613.
  • Khan M, Cao ML, Hussain A, et al. Effect of silica-fume content on performance of CaCO3 whisker and basalt fiber at matrix interface in cement-based composites. Constr Build Mater. 2021;300:124046. doi:10.1016/j.conbuildmat.2021.124046.
  • Ma H, Cai JM, Lin Z, et al. CaCO3 whisker modified engineered cementitious composite with local ingredients. Constr Build Mater. 2017;151:1–8. doi:10.1016/j.conbuildmat.2017.06.05.
  • Li M, Yang YJ, Liu M, et al. Hybrid effect of calcium carbonate whisker and carbon fiber on the mechanical properties and microstructure of oil well cement. Constr Build Mater. 2015;93:995–1002. doi:10.1016/j.conbuildmat.2015.05.056.
  • Cao M, Wei J, Wang L. Serviceability and reinforcement of low content whisker in Portland cement. J Wuhan Univ Technol-Mater Sci Ed. 2011;26(4):749–753. doi:10.1007/s11595-011-0305-2.
  • Cao M, Zhang C, Lv H, et al. Characterization of mechanical behavior and mechanism of calcium carbonate whisker-reinforced cement mortar. Constr Build Mater. 2014;66:89–97. doi:10.1016/j.conbuildmat.2014.05.059.
  • Shen P, Lu J, Zhang Y, et al. Preparation aragonite whisker-rich materials by wet carbonation of cement: towards yielding micro-fiber reinforced cement and sequestrating CO2. Cem Concr Res. 2022;159:106891. doi:10.1016/j.cemconres.2022.106891.
  • Cao M, Xu L, Zhang C. Rheology, fiber distribution and mechanical properties of calcium carbonate (CaCO3) whisker reinforced cement mortar. Compos Part A-Appl Sci Manuf. 2016;90:662–669. doi:10.1016/j.compositesa.2016.08.033.
  • Ma Y, Qi L. Solution-phase synthesis of inorganic hollow structures by templating strategies. J Colloid Interface Sci. 2009;335(1):1–10. doi:10.1016/j.jcis.2009.02.049.
  • Santos RM, Ceulemans P, Van Gerven T. Synthesis of pure aragonite by sonochemical mineral carbonation. Chem Eng Res Des. 2012;90(6):715–725. doi:10.1016/j.cherd.2011.11.022.
  • Ota Y, Inui S, Iwashita T, et al. Preparation of aragonite whiskers. J Am Ceram Soc. 1995;78(7):1983–1984. doi:10.1111/j.1151-2916.1995.tb08924.x.
  • Park WK, Ko S-J, Lee SW, et al. Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. J Cryst Growth. 2008;310(10):2593–2601. doi:10.1016/j.jcrysgro.2008.01.023.
  • Tao Z, Cheng X, Huo C. The precipitation of calcium carbonate via a bubbling method in the presence of Mg2+ and glucose. Mol Cryst Liq Cryst. 2020;703(1):52–66. doi:10.1080/15421406.2020.1782064.
  • Zhu F, Nishimura T, Sakamoto T, et al. Tuning the stability of CaCO3 crystals with magnesium ions for the formation of aragonite thin films on organic polymer templates. Chem Asian J. 2013;8(12):3002–3009. doi:10.1002/asia.201300745.
  • Wang X, Nan Z. Formation of novel morphologies of aragonite induced by inorganic template. Mater Res Bull. 2011;46(7):1130–1138. doi:10.1016/j.materresbull.2011.01.028.
  • Wu SH, You XJ, Wang MM, et al. Increasing flexural strength of CO2 cured cement paste by CaCO3 polymorph control. Cem Concr Compos. 2023;141:105128. doi:10.1016/j.cemconcomp.2023.105128.
  • Sharma R, Kim H, Lee NK, et al. Microstructural characteristics and CO2 uptake of calcium sulfoaluminate cement by carbonation curing at different water-to-cement ratios. Cem Concr Res. 2023;163:107012. doi:10.1016/j.cemconres.2022.107012.
  • GB/T29756-2013. Test methods of physical property for dry-mix mortar. National standardization management committee. Beijing. China; 2013.
  • Soin AV, Catalan LJJ, Kinrade SD. A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements. Cem Concr Res. 2013;48:17–24. doi:10.1016/j.cemconres.2013.02.007.
  • Dhandapani Y, Santhanam M. Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem Concr Res. 2017;84:36–47. doi:10.1016/j.cemconcomp.2017.08.012.
  • Khan RI, Ashraf W, Olek J. Amino acids as performance-controlling additives in carbonation-activated cementitious materials. Cem Concr Res. 2021;147:106501. doi:10.1016/j.cemconres.2021.106501.
  • Zhang Z, Xie Y, Xu X, et al. Transformation of amorphous calcium carbonate into aragonite. J Cryst Growth. 2012;343(1):62–67. doi:10.1016/j.jcrysgro.2012.01.025.
  • Günther C, Becker A, Wolf G, et al. In vitro synthesis and structural characterization of amorphous calcium carbonate. Zeitschrift Anorg Allge Chemie. 2005;631(13–14):2830–2835. doi:10.1002/zaac.200500164.
  • Ashraf W, Olek J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials. J Mater Sci. 2016;51(13):6173–6191. doi:10.1007/s10853-016-9909-4.
  • Liu S, Zhang H, Wang Y, et al. Carbon-dioxide-activated bonding material with low water demand. Adv Cem Res. 2021;33(5):193–196. doi:10.1680/jadcr.18.00222.
  • Ševčík R, Pérez-Estébanez M, Viani A, et al. Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives. Powder Technol. 2015;284:265–271. doi:10.1016/j.powtec.2015.06.064.
  • Ding Y, Liu Y, Ren Y, et al. Controllable synthesis of all the anhydrous CaCO3 polymorphs with various morphologies in CaCl2-NH3-CO2 aqueous system. Powder Technol. 2018;333:410–420. doi:10.1016/j.powtec.2018.04.056.
  • Chen Q, Zhu L, Wang Y, et al. The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2. Sci Total Environ. 2022;852:158516. doi:10.1016/j.scitotenv.2022.158516.
  • Lu B, Drissi S, Liu J, et al. Effect of temperature on CO2 curing, compressive strength and microstructure of cement paste. Cem Concr Res. 2022;157:106827. doi:10.1016/j.cemconres.2022.106827.
  • Zhang D, Ghouleh Z, Shao Y. Review on carbonation curing of cement-based materials. J CO2 Util. 2017;21:119–131. doi:10.1016/j.jcou.2017.07.003.
  • Huang Q, Lu G, Wang J, et al. Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. J Anal Appl Pyrol. 2011;91(1):159–164. doi:10.1016/j.jaap.2011.02.005.
  • Shah V, Scrivener K, Bhattacharjee B, et al. Changes in microstructure characteristics of cement paste on carbonation. Cem Concr Res. 2018;109:184–197. doi:10.1016/j.cemconres.2018.04.016.
  • Long W-J, Gu Y-C, Xing F, et al. Microstructure development and mechanism of hardened cement paste incorporating graphene oxide during carbonation. Cem Concr Compos. 2018;94:72–84. doi:10.1016/j.cemconcomp.2018.08.016.
  • Wang L, Chen SS, Tsang DCW, et al. Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater. 2016;125:316–325. doi:10.1016/j.conbuildmat.2016.08.053.
  • Thiery M, Villain G, Dangla P, et al. Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res. 2007;37(7):1047–1058. doi:10.1016/j.cemconres.2007.04.002.
  • Shen P, Jiang Y, Zhang Y, et al. Production of aragonite whiskers by carbonation of fine recycled concrete wastes: an alternative pathway for efficient CO2 sequestration. Renewable Sustainable Energy Rev. 2023;173:113079. doi:10.1016/j.rser.2022.113079.
  • Jiang L, Wu Q, Huo Z, et al. An approach to improve compressive strength of cement paste at low temperature by carbonation curing. Constr Build Mater. 2023;365:130128. doi:10.1016/j.conbuildmat.2022.130128.
  • GB175-2007. Common Portland cement. Beijing. China; 2007.
  • Mehdizadeh H, Jia X, Mo KH, et al. Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes. Environ Pollut. 2021;280:116914. doi:10.1016/j.envpol.2021.116914.
  • Li L, Cao M, Yin H. Comparative roles between aragonite and calcite calcium carbonate whiskers in the hydration and strength of cement paste. Cem Concr Compos. 2019;104:103350. doi:10.1016/j.cemconcomp.2019.103350.
  • Liang R, Liu Q, Hou D, et al. Flexural strength enhancement of cement paste through monomer incorporation and in situ bond formation. Cem Concr Res. 2022;152:106675. doi:10.1016/j.cemconres.2021.106675.
  • You XJ, Hu X, Xiao ZQ, et al. Thermodynamic modelling of CaCO3 polymorphs during CO2 sequestration by cement slurry with the addition of MgCl2. J Clean Prod. 2023;410:137294. doi:10.1016/j.jclepro.2023.137294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.