4,853
Views
69
CrossRef citations to date
0
Altmetric
Review

Ribosomopathies: Global process, tissue specific defects

&
Article: e1025185 | Received 11 Dec 2014, Accepted 26 Feb 2015, Published online: 27 Apr 2015

References

  • Lafontaine DLJ, Tollervey D. The function and synthesis of ribosomes. Nat Rev Mol Cell Biol 2001; 2(7): 514–20; PMID:11433365; http://dx.doi.org/10.1038/35080045
  • Kressler D, Hurt E, Baβler J. Driving ribosome assembly. Biochimica et Biophysica Acta (BBA) - Mol Cell Res 2010; 1803(6): 673–83; PMID:19879902; http://dx.doi.org/10.1016/j.bbamcr.2009.10.009
  • Tschochner H, Hurt E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol 2003; 13(5): 255–63; http://dx.doi.org/10.1016/S0962-8924(03)00054-0
  • Dixon MJ, Marres HA, Edwards SJ, Dixon J, Cremers CW. Treacher Collins syndrome: correlation between clinical and genetic linkage studies. Clin Dysmorphol 1994; 3(2): 96–103; PMID:8055143; http://dx.doi.org/10.1097/00019605-199404000-00002
  • Marres HA, Cremers CW, Dixon MJ, Huygen PL, Joosten FB. The treacher collins syndrome. A clinical, radiological, and genetic linkage study on two pedigrees. Arch Otolaryngol Head Neck Surg 1995; 121(5): 509–14; PMID:7727083; http://dx.doi.org/10.1001/archotol.1995.01890050009002
  • Edwards SJ, Gladwin AJ, Dixon MJ. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon. Am J Hum Genet 1997; 60(3): 515–24; PMID:9042910
  • Gladwin AJ, Dixon J, Loftus SK, Edwards S, Wasmuth JJ, Hennekam RC, Dixon MJ. Treacher Collins syndrome may result from insertions, deletions or splicing mutations, which introduce a termination codon into the gene. Hum Mol Genet 1996; 5(10): 1533–8; PMID:8894686; http://dx.doi.org/10.1093/hmg/5.10.1533
  • Isaac C, Marsh KL, Paznekas WA, Dixon J, Dixon MJ, Jabs EW, Meier UT. Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell 2000; 11(9): 3061–71; PMID:10982400; http://dx.doi.org/10.1091/mbc.11.9.3061
  • Splendore A, Silva EO, Alonso LG, Richieri-Costa A, Alonso N, Rosa A, Carakushanky G, Cavalcanti DP, Brunoni D, Passos-Bueno MR. High mutation detection rate in TCOF1 among Treacher Collins syndrome patients reveals clustering of mutations and 16 novel pathogenic changes. Hum Mutat 2000; 16(4): 315–22; http://dx.doi.org/10.1002/1098-1004(200010)16:4<315::AID-HUMU4>3.0.CO;2-H
  • Laferte A, Favry E, Sentenac A, Riva M, Carles C, Chedin S. The transcriptional activity of RNA polymerase I is a key determinant for the level of all ribosome components. Genes Dev 2006; 20(15): 2030–40; PMID:16882981; http://dx.doi.org/10.1101/gad.386106
  • Moss T, Stefanovsky V, Langlois F, Gagnon-Kugler T. A new paradigm for the regulation of the mammalian ribosomal RNA genes. Biochem Soc Trans 2006; 34(Pt 6): 1079–81; PMID:17073755
  • Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochim Biophys Acta 2014; 1842(6): 769–78; PMID:24252615; http://dx.doi.org/10.1016/j.bbadis.2013.11.010
  • The Treacher Collins Syndrome Collaborative Group. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nat Genet. 1996 Feb; 12(2):130-6. PMID: 8563749
  • Treacher Collins E. Case with symmetrical congenital notches in the outer part of each lower lid and defective development of the malar bones. Trans Opthalmol Soc UK 1900;20:90
  • Franschetti A, Klein D. The mandibulofacial dysostosis; a new hereditary syndrome. Acta Ophthalmol (Copenh). 1949;27(2):143-224. PMID: 18142195
  • Poswillo D. The pathogenesis of the Treacher Collins syndrome (mandibulofacial dysostosis). Br J Oral Surg. 1975 Jul;13(1):1-26. PMID: 807232
  • Valdez BC, Henning D, So RB, Dixon J, Dixon MJ. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc Natl Acad Sci U S A 2004; 101(29): 10709–14; PMID:15249688; http://dx.doi.org/10.1073/pnas.0402492101
  • Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey JP, Dixon MJ, Trainor PA. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci U S A 2006; 103: 13403–8; PMID:16938878[http://dx.doi.org/10.1073/pnas.0603730103
  • Kadakia S, Helman SN, Badhey AK, Saman M, Ducic Y. Treacher collins syndrome: the genetics of a craniofacial disease. Int J Pediatr Otorhinolaryngol 2014; 78(6): 893–8; PMID:24690222; http://dx.doi.org/10.1016/j.ijporl.2014.03.006
  • Schaefer E, Collet C, Genevieve D, Vincent M, Lohmann DR, Sanchez E, Bolender C, Eliot MM, Nurnberg G, Passos-Bueno MR, et al. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet Med 2014; 16(9): 720–4; PMID:24603435; http://dx.doi.org/10.1038/gim.2014.12
  • Sermer D, Quercia N, Chong K, Chitayat D. Acrofacial dysostosis syndrome type Rodriguez: prenatal diagnosis and autopsy findings. Am J Med Genet A 2007; 143A(24): 3286–9; PMID:18000904; http://dx.doi.org/10.1002/ajmg.a.32021
  • White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, Langdon E, Tomlinson ML, Mosher J, Kaufman C, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature 2011; 471(7339): 518–22; PMID:21430780; http://dx.doi.org/10.1038/nature09882
  • Haggard ME, Lockhart LH. Megaloblastic anemia and orotic aciduria. A hereditary disorder of pyrimidine metabolism responsive to uridine. Am J Dis Child 1967; 113(6): 733–40; PMID:6026580; http://dx.doi.org/10.1001/archpedi.1967.02090210147020
  • Delaporta P, Sofocleous C, Stiakaki E, Polychronopoulou S, Economou M, Kossiva L, Kostaridou S, Kattamis A. Clinical phenotype and genetic analysis of RPS19, RPL5, and RPL11 genes in Greek patients with Diamond Blackfan Anemia. Pediatr Blood Cancer 2014; 61: 2249–55; PMID:25132370; http://dx.doi.org/10.1002/pbc.25183
  • Kim SK, Ahn HS, Back HJ, Cho B, Choi EJ, Chung NG, Hwang PH, Jeoung DC, Kang HJ, Kim H, et al. Clinical and hematologic manifestations in patients with Diamond Blackfan anemia in Korea. Korean J Hematol 2012; 47(2): 131–5; PMID:22783360; http://dx.doi.org/10.5045/kjh.2012.47.2.131
  • Zhang Y, Ear J, Yang Z, Morimoto K, Zhang B, Lin S. Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19. Cell Death Dis 2014; 5: e1352; PMID:25058426; http://dx.doi.org/10.1038/cddis.2014.318
  • Bibikova E, Youn MY, Danilova N, Ono-Uruga Y, Konto-Ghiorghi Y, Ochoa R, Narla A, Glader B, Lin S, Sakamoto KM. TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19 deficient hematopoietic progenitors. Blood 2014; 124: 3791–8; PMID:25270909; http://dx.doi.org/10.1182/blood-2014-06-584656
  • Singh SA, Goldberg TA, Henson AL, Husain-Krautter S, Nihrane A, Blanc L, Ellis SR, Lipton JM, Liu JM. p53-Independent cell cycle and erythroid differentiation defects in murine embryonic stem cells haploinsufficient for Diamond Blackfan anemia-proteins: RPS19 versus RPL5. PLoS One 2014; 9(2): e89098; PMID:24558476; http://dx.doi.org/10.1371/journal.pone.0089098
  • Kamimae-Lanning AN, Kurre P. L-Leucine alleviates Diamond-Blackfan anemia. Blood 2012; 120(11): 2157–8; PMID:22977078; http://dx.doi.org/10.1182/blood-2012-07-443978
  • Narla A, Payne EM, Abayasekara N, Hurst SN, Raiser DM, Look AT, Berliner N, Ebert BL, Khanna-Gupta A. L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q- syndrome in a TP53-independent way. Br J Haematol 2014; 167: 524–8; PMID:25098371; http://dx.doi.org/10.1111/bjh.13069
  • Aspesi A, Pavesi E, Robotti E, Crescitelli R, Boria I, Avondo F, Moniz H, Da Costa L, Mohandas N, Roncaglia P, et al. Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for Diamond-Blackfan Anemia. Gene 2014; 545(2): 282–9; PMID:24835311; http://dx.doi.org/10.1016/j.gene.2014.04.077
  • Lu S, Lee KK, Harris B, Xiong B, Bose T, Saraf A, Hattem G, Florens L, Seidel C, Gerton JL. The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 2014; 15(5): 609–17; PMID:24631914; http://dx.doi.org/10.1002/embr.201337974
  • Monnich M, Kuriger Z, Print CG, Horsfield JA. A zebrafish model of Roberts syndrome reveals that Esco2 depletion interferes with development by disrupting the cell cycle. PLoS One 2011; 6(5): e20051; PMID:21637801; http://dx.doi.org/10.1371/journal.pone.0020051
  • van der Lelij P., Godthelp BC, van Zon W, van Gosliga D, Oostra AB, Steltenpool J, de Groot J, Scheper RJ, Wolthuis RM, Waisfisz Q, et al. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PLoS One 2009; 4(9): e6936; PMID:19738907; http://dx.doi.org/10.1371/journal.pone.0006936
  • Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587(15): 2299–312; PMID:23831059; http://dx.doi.org/10.1016/j.febslet.2013.06.035
  • Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE. Cohesinopathies of a feather flock together. PLoS Genet 2013; 9(12): e1004036; PMID:24367282; http://dx.doi.org/10.1371/journal.pgen.1004036
  • Dupont C, Bucourt M, Guimiot F, Kraoua L, Smiljkovski D, Le Tessier D, Lebugle C, Gerard B, Spaggiari E, Bourdoncle P, et al. 3D-FISH analysis reveals chromatid cohesion defect during interphase in Roberts syndrome. Mol Cytogenet 2014; 7(1): 59; PMID:25320640; http://dx.doi.org/10.1186/s13039-014-0059-6
  • Harris B, Bose T, Lee KK, Wang F, Lu S, Ross RT, Zhang Y, French SL, Beyer AL, Slaughter BD, et al. Cohesion promotes nucleolar structure and function. Mol Biol Cell 2014; 25(3): 337–46; PMID:24307683; http://dx.doi.org/10.1091/mbc.E13-07-0377
  • Beser OF, Cokugras FC, Erkan T, Kutlu T, Adaletli I, Kurugoglu S. Shwachman-Diamond syndrome with development of bone formation defects during prenatal life. J Pediatr Gastroenterol Nutr 2014; 58(4): e38-40; PMID:23254443; http://dx.doi.org/10.1097/MPG.0b013e318282994e
  • Carvalho CM, Zuccherato LW, Williams CL, Neill NJ, Murdock DR, Bainbridge M, Jhangiani SN, Muzny DM, Gibbs RA, Ip W, et al. Structural variation and missense mutation in SBDS associated with Shwachman-Diamond syndrome. BMC Med Genet 2014; 15: 64; PMID:24898207; http://dx.doi.org/10.1186/1471-2350-15-64
  • Chung NG, Kim M. Current insights into inherited bone marrow failure syndromes. Korean J Pediatr 2014; 57(8): 337–44; PMID:25210520; http://dx.doi.org/10.3345/kjp.2014.57.8.337
  • Henson AL, Moore J. B. t., Alard P, Wattenberg MM, Liu JM, Ellis SR. Mitochondrial function is impaired in yeast and human cellular models of Shwachman Diamond syndrome. Biochem Biophys Res Commun 2013; 437(1): 29–34; PMID:23792098; http://dx.doi.org/10.1016/j.bbrc.2013.06.028
  • Sezgin G, Henson AL, Nihrane A, Singh S, Wattenberg M, Alard P, Ellis SR, Liu JM. Impaired growth, hematopoietic colony formation, and ribosome maturation in human cells depleted of Shwachman-Diamond syndrome protein SBDS. Pediatr Blood Cancer 2013; 60(2): 281–6; PMID:22997148; http://dx.doi.org/10.1002/pbc.24300
  • Matsui K, Giri N, Alter BP, Pinto LA. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br J Haematol 2013; 163(1): 81–92; PMID:23889587; http://dx.doi.org/10.1111/bjh.12475
  • Finch AJ, Hilcenko C, Basse N, Drynan LF, Goyenechea B, Menne TF, Gonzalez Fernandez A, Simpson P, D'Santos CS, Arends MJ, et al. Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev 2011; 25(9): 917–29; PMID:21536732; http://dx.doi.org/10.1101/gad.623011
  • Hermanns P, Bertuch AA, Bertin TK, Dawson B, Schmitt ME, Shaw C, Zabel B, Lee B. Consequences of mutations in the non-coding RMRP RNA in cartilage-hair hypoplasia. Hum Mol Genet 2005; 14(23): 3723–40; PMID:16254002; http://dx.doi.org/10.1093/hmg/ddi403
  • Reicherter K, Veeramani AI, Jagadeesh S. Cartilage-hair hypoplasia caused by novel compound heterozygous RMRP mutations. Indian Pediatr 2011; 48(7): 559–61; PMID:21813924; http://dx.doi.org/10.1007/s13312-011-0086-x
  • Boothby CB, Bower BD. Cartilage hair hypoplasia. Arch Dis Child 1973; 48(11): 918–21; PMID:4761063; http://dx.doi.org/10.1136/adc.48.11.918
  • Thiel CT, Mortier G, Kaitila I, Reis A, Rauch A. Type and level of RMRP functional impairment predicts phenotype in the cartilage hair hypoplasia-anauxetic dysplasia spectrum. Am J Hum Genet 2007; 81(3): 519–29; PMID:17701897; http://dx.doi.org/10.1086/521034
  • Taskinen M, Toiviainen-Salo S, Lohi J, Vuolukka P, Grasbeck M, Makitie O. Hypoplastic anemia in cartilage-hair hypoplasia-balancing between iron overload and chelation. J Pediatr 2013; 162(4): 844–9; PMID:23140882; http://dx.doi.org/10.1016/j.jpeds.2012.09.050
  • Qiu H, Hu C, Anderson J, Bjork GR, Sarkar S, Hopper AK, Hinnebusch AG. Defects in tRNA processing and nuclear export induce GCN4 translation independently of phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol 2000; 20(7): 2505–16; PMID:10713174; http://dx.doi.org/10.1128/MCB.20.7.2505-2516.2000
  • Rogler LE, Kosmyna B, Moskowitz D, Bebawee R, Rahimzadeh J, Kutchko K, Laederach A, Notarangelo LD, Giliani S, Bouhassira E, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet 2014; 23(2): 368–82; PMID:24009312; http://dx.doi.org/10.1093/hmg/ddt427
  • Schmitt ME, Clayton DA. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13(12): 7935–41; PMID:8247008
  • Chu S, Archer RH, Zengel JM, Lindahl L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A 1994; 91(2): 659–63; PMID:8290578; http://dx.doi.org/10.1073/pnas.91.2.659
  • Lindahl L, Bommankanti A, Li X, Hayden L, Jones A, Khan M, Oni T, Zengel JM. RNase MRP is required for entry of 35S precursor rRNA into the canonical processing pathway. RNA 2009; 15(7): 1407–16; PMID:19465684; http://dx.doi.org/10.1261/rna.1302909
  • Martin AN, Li Y. RNase MRP RNA and human genetic diseases. Cell Res 2007; 17(3): 219–26; PMID:17189938.
  • Armistead J, Khatkar S, Meyer B, Mark BL, Patel N, Coghlan G, Lamont RE, Liu S, Wiechert J, Cattini PA, et al. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. Am J Hum Genet 2009; 84(6): 728–39; PMID:19463982; http://dx.doi.org/10.1016/j.ajhg.2009.04.017
  • Sondalle SB, Baserga SJ. Human diseases of the SSU processome. Biochim Biophys Acta 2014; 1842(6): 758–64; PMID:24240090; http://dx.doi.org/10.1016/j.bbadis.2013.11.004
  • Meyer B, Wurm JP, Kotter P, Leisegang MS, Schilling V, Buchhaupt M, Held M, Bahr U, Karas M, Heckel A, et al. The Bowen-Conradi syndrome protein Nep1 (Emg1) has a dual role in eukaryotic ribosome biogenesis, as an essential assembly factor and in the methylation of Psi1191 in yeast 18S rRNA. Nucleic Acids Res 2011; 39(4): 1526–37; PMID:20972225; http://dx.doi.org/10.1093/nar/gkq931
  • Thomas SR, Keller CA, Szyk A, Cannon JR, Laronde-Leblanc NA. Structural insight into the functional mechanism of Nep1/Emg1 N1-specific pseudouridine methyltransferase in ribosome biogenesis. Nucleic Acids Res 2011; 39(6): 2445–57; PMID:21087996; http://dx.doi.org/10.1093/nar/gkq1131
  • Chagnon P, Michaud J, Mitchell G, Mercier J, Marion JF, Drouin E, Rasquin-Weber A, Hudson TJ, Richter A. A missense mutation (R565W) in cirhin (FLJ14728) in North American Indian childhood cirrhosis. Am J Hum Genet 2002; 71(6): 1443–9; PMID:12417987; http://dx.doi.org/10.1086/344580
  • Yu B, Mitchell GA, Richter A. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis. Exp Cell Res 2005; 311(2): 218–28; PMID:16225863; http://dx.doi.org/10.1016/j.yexcr.2005.08.012
  • Drouin E, Russo P, Tuchweber B, Mitchell G, Rasquin-Weber A. North American Indian cirrhosis in children: a review of 30 cases. J Pediatr Gastroenterol Nutr 2000; 31(4): 395–404; PMID:11045837;http://dx.doi.org/10.1097/00005176-200010000-00013
  • Freed EF, Baserga SJ. The C-terminus of Utp4, mutated in childhood cirrhosis, is essential for ribosome biogenesis. Nucleic Acids Res 2010; 38(14): 4798–806; PMID:20385600; http://dx.doi.org/10.1093/nar/gkq185
  • Aggarwal R, Lucas M, Fertig N, Oddis CV, Medsger TA Jr. Anti-U3 RNP autoantibodies in systemic sclerosis. Arthritis Rheum 2009; 60(4): 1112–8; PMID:19333934; http://dx.doi.org/10.1002/art.24409
  • Hu L, Wang J, Liu Y, Zhang Y, Zhang L, Kong R, Zheng Z, Du X, Ke Y. A small ribosomal subunit (SSU) processome component, the human U3 protein 14A (hUTP14A) binds p53 and promotes p53 degradation. J Biol Chem 2011; 286(4): 3119–28; PMID:21078665; http://dx.doi.org/10.1074/jbc.M110.157842
  • Joseph CG, Darrah E, Shah AA, Skora AD, Casciola-Rosen LA, Wigley FM, Boin F, Fava A, Thoburn C, Kinde I, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 2014; 343(6167): 152–7; PMID:24310608; http://dx.doi.org/10.1126/science.1246886
  • LoRusso P, Janne PA, Oliveira M, Rizvi N, Malburg L, Keedy V, Yee L, Copigneaux C, Hettmann T, Wu CY, et al. Phase I study of U3-1287, a fully human anti-HER3 monoclonal antibody, in patients with advanced solid tumors. Clin Cancer Res 2013; 19(11): 3078–87; PMID:23591447; http://dx.doi.org/10.1158/1078-0432.CCR-12-3051
  • Wang Y, Kahaleh B. Epigenetic repression of bone morphogenetic protein receptor II expression in scleroderma. J Cell Mol Med 2013; 17(10): 1291–9; PMID:23859708; http://dx.doi.org/10.1111/jcmm.12105
  • Zhai W, Comai L. Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 2000; 20(16): 5930–8; PMID:10913176; http://dx.doi.org/10.1128/MCB.20.16.5930-5938.2000
  • Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, Glynn EF, Ellington L, Du C, Dixon J, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 2008; 14(2): 125–33; PMID:18246078; http://dx.doi.org/10.1038/nm1725
  • Gomez-Herreros F, Rodriguez-Galan O, Morillo-Huesca M, Maya D, Arista-Romero M, de la Cruz J, Chavez S, Munoz-Centeno MC. Balanced production of ribosome components is required for proper G1/S transition in Saccharomyces cerevisiae. J Biol Chem 2013; 288(44): 31689–700; PMID:24043628; http://dx.doi.org/10.1074/jbc.M113.500488
  • Dutt S, Narla A, Lin K, Mullally A, Abayasekara N, Megerdichian C, Wilson FH, Currie T, Khanna-Gupta A, Berliner N, et al. Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 2011; 117(9): 2567–76; PMID:21068437; http://dx.doi.org/10.1182/blood-2010-07-295238
  • Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH, Cordon-Cardo C, Pandolfi PP. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 2003; 299(5604): 259–62; PMID:12522253; http://dx.doi.org/10.1126/science.1079447
  • Ruggero D, Pandolfi PP. Does the ribosome translate cancer?” Nat Rev Cancer 2003; 3(3): 179–92; PMID:12612653; http://dx.doi.org/10.1038/nrc1015
  • Rubbi CP, Milner J. Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 2003; 22(22): 6068–77; PMID:14609953; http://dx.doi.org/10.1093/emboj/cdg579
  • Lindstrom MS, Deisenroth C, Zhang Y. Putting a finger on growth surveillance: insight into MDM2 zinc finger-ribosomal protein interactions. Cell Cycle 2007; 6(4): 434–7; PMID:17329973; http://dx.doi.org/10.4161/cc.6.4.3861
  • Xu B, Lee KK, Zhang L, Gerton JL. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet 2013; 9(10): e1003857; PMID:24098154; http://dx.doi.org/10.1371/journal.pgen.1003857
  • Cmejlova J, Dolezalova L, Pospisilova D, Petrtylova K, Petrak J, Cmejla R. Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica 2006; 91(11): 1456–64; PMID:17082006
  • Pospisilova D, Cmejlova J, Hak J, Adam T, Cmejla R. Successful treatment of a Diamond-Blackfan anemia patient with amino acid leucine. Haematologica 2007; 92(5): e66-7; PMID:17562599; http://dx.doi.org/10.3324/haematol.11498
  • Jaako P, Debnath S, Olsson K, Bryder D, Flygare J, Karlsson S. Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia. Blood 2012; 120(11): 2225–8; PMID:22791294; http://dx.doi.org/10.1182/blood-2012-05-431437
  • Payne EM, Virgilio M, Narla A, Sun H, Levine M, Paw BH, Berliner N, Look AT, Ebert BL, Khanna-Gupta A. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood 2012; 120(11): 2214–24; PMID:22734070; http://dx.doi.org/10.1182/blood-2011-10-382986
  • Xu B, Lu S, Gerton JL. Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014; 2: e27743; PMID:25054091; http://dx.doi.org/10.4161/rdis.27743
  • Wilkins BJ, Lorent K, Matthews RP, Pack M. p53-mediated biliary defects caused by knockdown of cirh1a, the zebrafish homolog of the gene responsible for North American Indian Childhood Cirrhosis. PLoS One 2013; 8(10): e77670; PMID:24147052; http://dx.doi.org/10.1371/journal.pone.0077670
  • Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2015; 35(2):225-85 doi: 0.1002/med.21327.
  • Qian J, Lavker RM, Tseng H. Mapping ribosomal RNA transcription activity in the mouse eye. Dev Dyn 2006; 235(7): 1984–93; PMID:16673408; http://dx.doi.org/10.1002/dvdy.20827
  • Weiner AM, Scampoli NL, Calcaterra NB. Fishing the molecular bases of Treacher Collins syndrome. PLoS One 2012; 7(1): e29574; PMID:22295061; http://dx.doi.org/10.1371/journal.pone.0029574
  • Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development. Front Physiol 2014; 5: 26; PMID:24550838; http://dx.doi.org/10.3389/fphys.2014.00026
  • Werner M, Thuriaux P, Soutourina J. Structure-function analysis of RNA polymerases I and III. Curr Opin Struct Biol 2009; 19(6): 740–5; PMID:19896367; http://dx.doi.org/10.1016/j.sbi.2009.10.005
  • Hu MC, Tranque P, Edelman GM, Mauro VP. rRNA-complementarity in the 5' untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base- pairing to 18S rRNA affects translational efficiency. Proc Natl Acad Sci U S A 1999; 96(4): 1339–44; PMID:9990025; http://dx.doi.org/10.1073/pnas.96.4.1339
  • Tatum D, Li W, Placer M, Li S. Diverse roles of RNA polymerase II-associated factor 1 complex in different subpathways of nucleotide excision repair. J Biol Chem 2011; 286(35): 30304–13; PMID:21737840;[http://dx.doi.org/10.1074/jbc.M111.252981
  • Kwon H, Green MR. The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein. J Biol Chem 1994; 269(48): 30140–6; PMID:7982918
  • Lin CY, Tuan J, Scalia P, Bui T, Comai L. The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF. Curr Biol 2002; 12(24): 2142–6.[http://dx.doi.org/10.1016/S0960-9822(02)01389-1
  • Yamamoto K, Yamamoto M, Hanada K, Nogi Y, Matsuyama T, Muramatsu M. Multiple protein-protein interactions by RNA polymerase I-associated factor PAF49 and role of PAF49 in rRNA transcription. Mol Cell Biol 2004; 24(14): 6338–49; PMID:15226435; http://dx.doi.org/10.1128/MCB.24.14.6338-6349.2004
  • Voit R, Schafer K, Grummt I. Mechanism of repression of RNA polymerase I transcription by the retinoblastoma protein. Mol Cell Biol 1997; 17(8): 4230–7; PMID:9234680
  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004; 18(20): 2491–505; PMID:15466158; http://dx.doi.org/10.1101/gad.1228804
  • Watson ML, Aldridge WG. Selective electron staining of nucleic acids. J Histochem Cytochem 1964; 12: 96–103; PMID:14187315; http://dx.doi.org/10.1177/12.2.96
  • Lodish HF. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature 1974; 251(5474): 385–8; PMID:4421673; http://dx.doi.org/10.1038/251385a0
  • Thomas A, Lee PJ, Dalton JE, Nomie KJ, Stoica L, Costa-Mattioli M, Chang P, Nuzhdin S, Arbeitman MN, Dierick HA. A versatile method for cell-specific profiling of translated mRNAs in Drosophila. PLoS One 2012; 7(7): e40276; PMID:22792260; http://dx.doi.org/10.1371/journal.pone.0040276
  • Volarevic S, Thomas G. Role of S6 phosphorylation and S6 kinase in cell growth. Prog Nucleic Acid Res Mol Biol 2001; 65: 101–27.[http://dx.doi.org/10.1016/S0079-6603(00)65003-1
  • Ferreira-Cerca S, Hurt E. Cell biology: arrest by ribosome. Nature 2009; 459(7243): 46–47; PMID:19424147; http://dx.doi.org/10.1038/459046a
  • Watson KL, Konrad KD, Woods DF, Bryant PJ. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc Natl Acad Sci U S A 1992; 89(23): 11302–06; PMID:1454811; http://dx.doi.org/10.1073/pnas.89.23.11302
  • Stewart MJ, Denell R. The Drosophila ribosomal protein S6 gene includes a 3' triplication that arose by unequal crossing-over. Mol Biol Evol 1993; 10(5): 1041–7; PMID:8412647
  • Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA, Hopkins N. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2(5): E139; PMID:15138505; http://dx.doi.org/10.1371/journal.pbio.0020139
  • Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I, Ball S, Tchernia G, Klar J, Matsson H, et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 1999; 21(2): 169–75; PMID:9988267; http://dx.doi.org/10.1038/5951
  • Gazda HT, Sieff CA. Recent insights into the pathogenesis of diamond-blackfan anaemia. Br J Haematol 2006; 135(2): 149–57; PMID:16942586; http://dx.doi.org/10.1111/j.1365-2141.2006.06268.x
  • Ebert BL, Pretz J, Bosco J, Chang CY, Tamayo P, Galili N, Raza A, Root DE, Attar E, Ellis SR, Golub TR. Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 2008; 451(7176): 335–9; PMID:18202658; http://dx.doi.org/10.1038/nature06494
  • Fumagalli S, Thomas G. The role of p53 in ribosomopathies. Semin Hematol 2011; 48(2): 97–105; PMID:21435506; http://dx.doi.org/10.1053/j.seminhematol.2011.02.004
  • Burwick N, Shimamura A, Liu JM. Non-diamond Blackfan anemia disorders of ribosome function: shwachman diamond syndrome and 5q- syndrome. Semin Hematol 2011; 48(2): 136–43; PMID:21435510; http://dx.doi.org/10.1053/j.seminhematol.2011.01.002
  • Sakai D, Trainor PA. Treacher collins syndrome: unmasking the role of Tcof1/treacle. Int J Biochem Cell Biol 2009; 41(6): 1229–32; PMID:19027870; http://dx.doi.org/10.1016/j.biocel.2008.10.026
  • Dixon J, Brakebusch C, Fassler R, Dixon MJ. Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, treacher collins syndrome. Hum Mol Genet 2000; 9(10): 1473–80; PMID:10888597; http://dx.doi.org/10.1093/hmg/9.10.1473
  • Rodriguez JI, Palacios J. Severe postaxial acrofacial dysostosis: an anatomic and angiographic study. Am J Med Genet 1990; 35(4): 490–2; PMID:2333876; http://dx.doi.org/10.1002/ajmg.1320350409
  • Trainor PA, Andrews BT. Facial dysostoses: etiology, pathogenesis and management. Am J Med Genet C Semin Med Genet 2013; 163C(4): 283–94; PMID:24123981; http://dx.doi.org/10.1002/ajmg.c.31375
  • Rainger J, Bengani H, Campbell L, Anderson E, Sokhi K, Lam W, Riess A, Ansari M, Smithson S, Lees M, et al. Miller (Genee-Wiedemann) syndrome represents a clinically and biochemically distinct subgroup of postaxial acrofacial dysostosis associated with partial deficiency of DHODH. Hum Mol Genet 2012; 21(18): 3969–83; PMID:22692683; http://dx.doi.org/10.1093/hmg/dds218
  • Gazda HT, Sheen MR, Vlachos A, Choesmel V, O'Donohue MF, Schneider H, Darras N, Hasman C, Sieff CA, Newburger PE, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients. Am J Hum Genet 2008; 83(6): 769–80; PMID:19061985; http://dx.doi.org/10.1016/j.ajhg.2008.11.004
  • Vlachos A, Ball S, Dahl N, Alter BP, Sheth S, Ramenghi U, Meerpohl J, Karlsson S, Liu JM, Leblanc T, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008; 142(6): 859–76; PMID:18671700; http://dx.doi.org/10.1111/j.1365-2141.2008.07269.x
  • Lipton JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am 2009; 23(2): 261–82; PMID:19327583; http://dx.doi.org/10.1016/j.hoc.2009.01.004
  • Gripp KW, Curry C, Olney AH, Sandoval C, Fisher J, Chong JX, Genomics U. W. C. f. M., Pilchman L, Sahraoui R, Stabley DL, Sol-Church K. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am J Med Genet A 2014; 164A(9): 2240–49; PMID:24942156; http://dx.doi.org/10.1002/ajmg.a.36633
  • Devlin EE, Dacosta L, Mohandas N, Elliott G, Bodine DM. A transgenic mouse model demonstrates a dominant negative effect of a point mutation in the RPS19 gene associated with Diamond-Blackfan anemia. Blood 2010; 116(15): 2826–35; PMID:20606162; http://dx.doi.org/10.1182/blood-2010-03-275776
  • Wang R, Yoshida K, Toki T, Sawada T, Uechi T, Okuno Y, Sato-Otsubo A, Kudo K, Kamimaki I, Kanezaki R, et al. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia. Br J Haematol 2014; 168: 854–64; PMID:25424902; http://dx.doi.org/10.1111/bjh.13229
  • Whelan G, Kreidl E, Wutz G, Egner A, Peters JM, Eichele G. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 2012; 31(1): 71–82; PMID:22101327; http://dx.doi.org/10.1038/emboj.2011.381
  • Dror Y. Shwachman-Diamond syndrome. Pediatr Blood Cancer 2005; 45(7): 892–901; PMID:16047374; http://dx.doi.org/10.1002/pbc.20478
  • Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol 2006; 26(17): 6656–63; PMID:16914746; http://dx.doi.org/10.1128/MCB.00091-06
  • Moore JBT, Farrar JE, Arceci RJ, Liu JM, Ellis SR. Distinct ribosome maturation defects in yeast models of Diamond-Blackfan anemia and Shwachman-Diamond syndrome. Haematologica 2010; 95(1): 57–64; PMID:19713223; http://dx.doi.org/10.3324/haematol.2009.012450
  • Bonafe L, Dermitzakis ET, Unger S, Greenberg CR, Campos-Xavier BA, Zankl A, Ucla C, Antonarakis SE, Superti-Furga A, Reymond A. Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet 2005; 1(4): e47; PMID:16244706; http://dx.doi.org/10.1371/journal.pgen.0010047
  • Wallace DC. Mouse models for mitochondrial disease. Am J Med Genet 2001; 106(1): 71–93; PMID:11579427; http://dx.doi.org/10.1002/ajmg.1393
  • Rosenbluh J, Nijhawan D, Chen Z, Wong KK, Masutomi K, Hahn WC. RMRP is a non-coding RNA essential for early murine development. PLoS One 2011; 6(10): e26270; PMID:22039455; http://dx.doi.org/10.1371/journal.pone.0026270
  • Cai T, Aulds J, Gill T, Cerio M, Schmitt ME. The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis. Genetics 2002; 161(3): 1029–42; PMID:12136008
  • Flanagan JD, Stein QP, Mroch AR, Deberg KL, Crotwell PL, Keppen LD. Bowen-conradi: a common Hutterite condition that mimics trisomy 18. S D Med 2012; 65(6): 221–3, 225.
  • Wu X, Sandhu S, Patel N, Triggs-Raine B, Ding H. EMG1 is essential for mouse pre-implantation embryo development. BMC Dev Biol 2010; 10: 99; PMID:20858271; http://dx.doi.org/10.1186/1471-213X-10-99
  • Betard C, Rasquin-Weber A, Brewer C, Drouin E, Clark S, Verner A, Darmond-Zwaig C, Fortin J, Mercier J, Chagnon P, et al. Localization of a recessive gene for North American Indian childhood cirrhosis to chromosome region 16q22-and identification of a shared haplotype. Am J Hum Genet 2000; 67(1): 222–8; PMID:10820129; http://dx.doi.org/10.1086/302993
  • Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ. NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing. PLoS Genet 2012; 8(8): e1002892; PMID:22916032; http://dx.doi.org/10.1371/journal.pgen.1002892
  • Neben CL, Idoni B, Salva JE, Tuzon CT, Rice JC, Krakow D, Merrill AE. Bent bone dysplasia syndrome reveals nucleolar activity for FGFR2 in ribosomal DNA transcription. Hum Mol Genet. 2014 Nov 1;23(21):5659-71. PMID: 24908667