1,569
Views
7
CrossRef citations to date
0
Altmetric
Addendum

New insights into the metabolic and nutritional determinants of severe combined immunodeficiency

, , , &
Article: e1112479 | Received 23 Jul 2015, Accepted 19 Oct 2015, Published online: 31 Dec 2015

References

  • Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, Baker M, Ballow M, Bartoshesky LE, Bonilla FA, et al. Newborn Screening for Severe Combined Immunodeficiency in 11 Screening Programs in the United States. Jama-J Am Med Assoc 2014; 312(7):729-38; http://dx.doi.org/10.1001/jama.2014.9132
  • Watkins D, Schwartzentruber JA, Ganesh J, Orange JS, Kaplan BS, Nunez LD, Majewski J, Rosenblatt DS. Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband. J Med Genet 2011; 48(9):590-2; http://dx.doi.org/10.1136/jmedgenet-2011-100286
  • Burda P, Kuster A, Hjalmarson O, Suormala T, Bürer C, Lutz S, Roussey G, Christa L, Asin-Cayuela J, Kollberg G, et al. Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation and response to folic and folinic acid treatment. J Inherit Metab Dis 2015; 38(5):863-72.
  • Field MS, Kamynina E, Watkins D, Rosenblatt DS, Stover PJ. Human mutations in methylenetetrahydrofolate dehydrogenase 1 impair nuclear de novo thymidylate biosynthesis. Proc Natl Acad Sci USA 2015; 112(2):400-5; http://dx.doi.org/10.1073/pnas.1414555112
  • Fischer A. Severe combined immunodeficiencies (SCID). Clin Exp Immunol 2000; 122(2):143-9; http://dx.doi.org/10.1046/j.1365-2249.2000.01359.x
  • Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, Cunningham-Rundles C, Etzioni A, Franco JL, Gaspar HB, Holland SM, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol 2014; 5:162
  • Parvaneh N, Quartier P, Rostami P, Casanova JL, de Lonlay P. Inborn errors of metabolism underlying primary immunodeficiencies. J Clin Immunol 2014; 34(7):753-71; http://dx.doi.org/10.1007/s10875-014-0076-6
  • Touzot F, Hacein-Bey-Abina S, Fischer A, Cavazzana M. Gene therapy for inherited immunodeficiency. Exp Opin Biol Ther 2014; 14(6):789-98; http://dx.doi.org/10.1517/14712598.2014.895811
  • Cassani B, Mirolo M, Cattaneo F, Benninghoff U, Hershfield M, Carlucci F, Tabucchi A, Bordignon C, Roncarolo MG, Aiuti A. Altered intracellular and extracellular signaling leads to impaired T-cell functions in ADA-SCID patients. Blood 2008; 111(8):4209-19; http://dx.doi.org/10.1182/blood-2007-05-092429
  • Wolff T, Witkop CT, Miller T, Syed SB, Force USPST. Folic acid supplementation for the prevention of neural tube defects: an update of the evidence for the US. Preventive Services Task Force. Annals Int Med 2009; 150(9):632-9; http://dx.doi.org/10.7326/0003-4819-150-9-200905050-00010
  • Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 2009; 9(3):315-23; http://dx.doi.org/10.2174/156652409787847146
  • Ames BN. DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutation Res 2001; 475(1-2):7-20; http://dx.doi.org/10.1016/S0027-5107(01)00070-7
  • Choi SW, Mason JB. Folate and carcinogenesis: an integrated scheme. J Nutri 2000; 130(2):129-32
  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 1997; 94(7):3290-5
  • Stover PJ, Field MS. Trafficking of intracellular folates. Adv Nutri 2011; 2(4):325-31; http://dx.doi.org/10.3945/an.111.000596
  • Iacobazzi V, Infantino V, Castegna A, Andria G. Hyperhomocysteinemia: related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Mol Genet Metabol 2014; 113(1-2):27-33; http://dx.doi.org/10.1016/j.ymgme.2014.07.016
  • Clarke R, Halsey J, Lewington S, Lonn E, Armitage J, Manson JE, Bønaa KH, Spence JD, Nygård O, Jamison R, et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37 485 individuals. Arch Internal Med 2010; 170(18):1622-31; http://dx.doi.org/10.1001/archinternmed.2010.348
  • Zhou YH, Tang JY, Wu MJ, Lu J, Wei X, Qin YY, Wang C, Xu JF, He J. Effect of folic acid supplementation on cardiovascular outcomes: a systematic review and meta-analysis. PloS One 2011; 6(9):e25142; http://dx.doi.org/10.1371/journal.pone.0025142
  • Pan Y, Guo LL, Cai LL, Zhu XJ, Shu JL, Liu XL, Jin HM. Homocysteine-lowering therapy does not lead to reduction in cardiovascular outcomes in chronic kidney disease patients: a meta-analysis of randomised, controlled trials. Br J Nutri 2012; 108(3):400-7; http://dx.doi.org/10.1017/S0007114511007033
  • Antonio-Vejar V, Del Moral-Hernández O, Alarcón-Romero LC, Flores-Alfaro E, Leyva-Vázquez MA, Hernández-Sotelo D, Illades-Aguiar B. Ethnic variation of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate-reductase (MTHFR) gene in southwestern Mexico. Genetics Mol Res 2014; 13(3):7950-7; http://dx.doi.org/10.4238/2014.September.29.8
  • Binia A, Contreras AV, Canizales-Quinteros S, Alonzo VA, Tejero ME, Silva-Zolezzi I. Geographical and ethnic distribution of single nucleotide polymorphisms within genes of the folatehomocysteine pathway metabolism. Genes Nutri 2014; 9(5):421; http://dx.doi.org/10.1007/s12263-014-0421-7
  • Wilcken B, Bamforth F, Li Z, Zhu H, Ritvanen A, Renlund M, Stoll C, Alembik Y, Dott B, Czeizel AE, et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas world wide. J Med Genet 2003; 40(8):619-25; http://dx.doi.org/10.1136/jmg.40.8.619
  • Tsang BL, Devine OJ, Cordero AM, Marchetta CM, Mulinare J, Mersereau P, Guo J, Qi YP, Berry RJ, Rosenthal J, Crider KS, et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677C>T polymorphism and blood folate concentrations: a systematic review and meta-analysis of trials and observational studies. Am J Clin Nutrt 2015; 101(6):1286-94
  • Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ. Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 2002; 277(41):38381-9; http://dx.doi.org/10.1074/jbc.M205000200
  • Field MS, Kamynina E, Agunloye OC, Liebenthal RP, Lamarre SG, Brosnan ME, Brosnan JT, Stover PJ. Nuclear enrichment of folate cofactors and methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) protect de novo thymidylate biosynthesis during folate deficiency. J Biol Chem 2014; 289(43):29642-50; http://dx.doi.org/10.1074/jbc.M114.599589
  • Fox JT, Shin WK, Caudill MA, Stover PJ. A UV-responsive internal ribosome entry site enhances serine hydroxymethyltransferase 1 expression for DNA damage repair. J Biol Chem 2009; 284(45):31097-108; http://dx.doi.org/10.1074/jbc.M109.015800
  • Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 2012; 287(10):7051-62; http://dx.doi.org/10.1074/jbc.M111.333120
  • Hoffbrand AV, Herbert V. Nutritional anemias. Seminars Hematol 1999; 36(4 Suppl 7):13-23
  • Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell 2006; 127(5):917-28; http://dx.doi.org/10.1016/j.cell.2006.09.041
  • Kishimoto K, Kobayashi R, Sano H, Suzuki D, Maruoka H, Yasuda K, Chida N, Yamada M, Kobayashi K. Impact of folate therapy on combined immunodeficiency secondary to hereditary folate malabsorption. Clin Immunol 2014; 153(1):17-22; http://dx.doi.org/10.1016/j.clim.2014.03.014
  • Teplitsky V, Huminer D, Zoldan J, Pitlik S, Shohat M, Mittelman M. Hereditary partial transcobalamin II deficiency with neurologic, mental and hematologic abnormalities in children and adults. Isr Med Assoc J 2003; 5(12):868-72
  • Watkins D, Rosenblatt DS. Inborn errors of cobalamin absorption and metabolism. Am J Med Genet Seminars Med Genet 2011; 157C(1):33-44; http://dx.doi.org/10.1002/ajmg.c.30288
  • Trakadis YJ, Alfares A, Bodamer OA, Buyukavci M, Christodoulou J, Connor P, Glamuzina E, Gonzalez-Fernandez F, Bibi H, Echenne B, et al. Update on transcobalamin deficiency: clinical presentation, treatment and outcome. J Inherited Metab Dis 2014; 37(3):461-73; http://dx.doi.org/10.1007/s10545-013-9664-5
  • Solomon LR. Disorders of cobalamin (vitamin B12) metabolism: emerging concepts in pathophysiology, diagnosis and treatment. Blood Rev 2007; 21(3):113-30; http://dx.doi.org/10.1016/j.blre.2006.05.001
  • Zhao R, Min SH, Qiu A, Sakaris A, Goldberg GL, Sandoval C, Malatack JJ, Rosenblatt DS, Goldman ID. The spectrum of mutations in the PCFT gene, coding for an intestinal folate transporter, that are the basis for hereditary folate malabsorption. Blood 2007; 110(4):1147-52; http://dx.doi.org/10.1182/blood-2007-02-077099
  • Geller J, Kronn D, Jayabose S, Sandoval C. Hereditary folate malabsorption: family report and review of the literature. Medicine 2002; 81(1):51-68; http://dx.doi.org/10.1097/00005792-200201000-00004
  • Haberle J, Pauli S, Berning C, Koch HG, Linnebank M. TC II deficiency: avoidance of false-negative molecular genetics by RNA-based investigations. J Hum Genet 2009; 54(6):331-4; http://dx.doi.org/10.1038/jhg.2009.34
  • Thomas PK, Hoffbrand AV, Smith IS. Neurological involvement in hereditary transcobalamin II deficiency. J Neurol Neurosurg Psychiatry 1982; 45(1):74-77; http://dx.doi.org/10.1136/jnnp.45.1.74
  • Ohlhorst SD, Russell R, Bier D, Klurfeld DM, Li Z, Mein JR, Milner J, Ross AC, Stover P, Konopka E. Nutrition research to affect food and a healthy life span. Am J Clin Nutri 2013; 98(2):620-5; http://dx.doi.org/10.3945/ajcn.113.067744
  • Brody LC, Conley M, Cox C, Kirke PN, McKeever MP, Mills JL, Molloy AM, O'Leary VB, Parle-McDermott A, Scott JM, et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenasemethenyltetrahydrofolate cyclohydrolaseformyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 2002; 71(5):1207-15; PMID:12384833; http://dx.doi.org/10.1086/344213
  • Parle-McDermott A, Kirke PN, Mills JL, Molloy AM, Cox C, O'Leary VB, Pangilinan F, Conley M, Cleary L, Brody LC, et al. Confirmation of the R653Q polymorphism of the trifunctional C1-synthase enzyme as a maternal risk for neural tube defects in the Irish population. Eur J Hum Genet 2006; 14(6):768-72; http://dx.doi.org/10.1038/sj.ejhg.5201603
  • Parle-McDermott A, Pangilinan F, Mills JL, Signore CC, Molloy AM, Cotter A, Conley M, Cox C, Kirke PN, Scott JM, et al. A polymorphism in the MTHFD1 gene increases a mother's risk of having an unexplained second trimester pregnancy loss. Mol Hum Reprod 2005; 11(7):477-80; http://dx.doi.org/10.1093/molehr/gah204
  • Martiniova L, Field MS, Finkelstein JL, Perry CA, Stover PJ. Maternal dietary uridine causes, and deoxyuridine prevents, neural tube closure defects in a mouse model of folate-responsive neural tube defects. Am J Clin Nutri 2015; 101(4):860-9; http://dx.doi.org/10.3945/ajcn.114.097279